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Abstract 

High density polyethylene (HDPE) is predominately processed from the molten state. However, there 

is the potential to enhance the mechanical properties by forming below the melt temperature, in the 

semi-solid phase. To further investigate this enhancement, HDPE sheets were deformed under 

constant width (CW), simultaneous equal biaxial (EB) and sequential biaxial (SQ) deformation. The 

samples were deformed at strain-rates, from 4 s-1 to 16 s-1, up to nominal strains of 3.0 at temperatures 

below 130°C. The strain-rate and high-strain level applied were chosen so that the data was comparable 

to the thermoforming process. It was discovered that in order for the HDPE sheet to deform at the high-

rate and high strains the processing temperature must be between 126°C and 130°C. This resulted in 

a processing window that was particularly small, 5°C, and that within this window a temperature change 

of 1°C had a significant impact on the stress-strain response. The samples were analyzed post 

deformation, where the elastic modulus was found to increase by a factor of 2.08 in the MD, when 

deformed via EB at 129°C. The results showed that HDPE can be deformed to strain levels comparable 

to the thermoforming process.  

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

High density polyethylene (HDPE) is the polymer of choice for many applications, such as milk bottles, 

oil tanks, chemical containers, grocery bags and packaging film. HDPE is predominately processed in 

the molten state via injection, extrusion and extrusion blow molding, where the polymer melt is 

manipulated into the desired shape. However, processing HDPE in the semi-solid phase, by processes 

such as thermoforming, has never reached the same levels of industrial success as melt processing 

and in fact HDPE is rarely thermoformed. A few studies [1,2] have shown that extruding HDPE just 

below the melting temperature in the semi-solid state,  can significantly improve the mechanical 

properties when compared to extrusion from the molten state. For example, Li et al. [1] found that the 

yield strength of extruded HDPE could be improved from 28MPa when processed from the molten state 

to 181MPa when extruded below the melting temperature. Therefore, there are potentially some clear 

benefits to forming HDPE in the semi-solid phase but as yet, there has been no published studies 

focusing on the mechanical response under comparable conditions.  

In order to successfully form a material, the materials response within the processing range must be 

fully understood so that the processing parameters can be optimized to produce a high quality product. 

The thermoforming process involves a range of biaxial deformation, including constant width (CW), 

simultaneous equal-biaxial (EB) and sequential biaxial (SQ) deformation at strain-rates in the range of 

0.1-10 s-1 and higher, for PP, HIPS and ABS [3]. However, there was no comparable study found within 

the literature that outlines the processing range for HDPE. As HDPE is a member of the polyolefin 

family, like PP, comparisons from previous work can be drawn for instance, Capt et al. [4] and Martin 

et al. [5] investigated PP at temperatures approaching the melting temperature under CW, EB and SQ 

deformation at strain-rates up to 1.5 s-1 and 32 s-1 respectively. Most studies investigating HDPE at 

elevated temperatures have focused on the corresponding changes in the microstructure. While 

investigating the effect of HDPE/MWCNT nanocomposites, Dong et al. [6] showed the stress-strain 

response for neat HDPE during EB deformation at 131°C and 4 s-1. The stress-strain response showed 

a fairly well defined yield point followed by no significant strain-hardening. Furthermore, Hillmansen and 

Hobeika [7] investigated the stress-strain behavior of HDPE under uniaxial deformation at temperatures 

ranging from room temperature to just below the melting temperature. One of the key findings from this 

study was that the strain-hardening behavior for uniaxial deformation is dependent on the deformation 

temperature, where increasing the temperature reduces the hardening. They observed no significant 



strain hardening at higher temperatures, 128°C, which was comparable with Dong et al. [6]. They 

proposed that the results were due to entanglements linking the crystalline regions. In HDPE these are 

present due to the crystalline structure and as the crystalline content decreases with increasing 

temperature so does the anchor points linking the entanglements and hence, the lack of strain-

hardening. Additionally, they indicate the temperature-dependence of the yield, with the yield point 

becoming less pronounced as the temperature increases. With regards to the microstructure of HDPE, 

serval studies have investigated the change in the microstructure during uniaxial deformation at 

temperatures ranging from 100ºC to 135ºC, using a combination of synchrotron WAXS and SAXS [8–

12]. A key finding was that the uniformity of deformation increased with increasing deformation 

temperature [8] and that the microstructure was significantly modified during the heating stage [9]. The 

enhanced uniformity with increasing temperature is not surprising given the ability of HDPE to 

reorganize and for crystal perfection to increase [13] at elevated temperatures below the melting 

temperature. The  enhanced crystal perfection reduces the lamellae thickness distribution leading to 

more uniform deformation [14]. The majority of the work published on HDPE has been based on uniaxial 

deformation however, this is not representative of industrial processes such as thermoforming or film 

stretching. Meng et al. [11] compared uniaxial deformation and CW deformation for HDPE with a key 

finding that for stretch ratios below 3.5 the samples had different microstructures, resulting from the 

boundary conditions applied. This highlights a significant limitation in using uniaxial data alone and 

hence, to achieve a representative mechanical response, comparable deformation modes should be 

applied. The response of HDPE typically exhibits a strain-rate dependence, at low strain rates such as 

0.001 – 0.00001 s-1 [15] and 0.1 – 0.001 s-1 [16] under uniaxial deformation, at room temperature. 

However, these rates are significantly slower when compared with rates experienced in thermoforming 

[3] and hence, are not directly relevant. Additionally, the strain-rate dependence has been shown to 

decrease with increasing temperature for HDPE [17] and hence, there is a need to understand the effect 

of the strain-rate at elevated temperatures.  

Therefore, while there is potential to enhance the mechanical properties by processing in the semi-solid 

state, there is currently a lack of understanding in regard to the processing window along with property 

enhancement. The aim of this study was to investigate the large strain formability of HDPE in the semi-

solid phase. The objectives were to firstly identify the forming window. Secondly, to investigate the 



materials response under large strain, at strain-rates typical of the thermoforming process [5] .Thirdly, 

to analyze the effect of the forming on the mechanical properties post deformation.  

2. Materials and Methods 

2.1 Sample Preparation 

The HDPE resin used in this study had a Mn of 28.6 kDa, Mw of 151.2 kDa and Mz of 850.2 kDa. HDPE 

samples with dimensions 76 x 76 x 2mm were injection molded using an Arburg 320S Allrounder 500-

350 machine. The injection temperature was 235°C and the injection pressure was 85 MPa, samples 

were held in the mold at 30°C for 15seconds, before ejection.  

2.2 Dynamic Mechanical Analysis (DMA) 

DMA was conducted using a Triton Tritec 2000 DMA. Specimens of dimensions 25 x 7.75 x 1.85mm 

were loaded in dual cantilever configuration with a span length of 15mm. Temperature sweeps at 

constant frequency of 1Hz and displacement of 0.025 mm were conducted between 35°C and 135°C 

at a rate of 1°C/min. 

2.3 Differential Scanning Calorimetry (DSC) 

A Perkin Elmer DSC6 was used to analyze 10 mg samples of HDPE, cut from the injection-molded 

sheet. The samples were heated to 180°C and held for 3 minutes, to ensure the sample was completely 

melted, and then cooled to room temperature. The crystallinity was determined by dividing the area 

under the endotherm by the enthalpy of fusion for PE, which was taken as 293 J/g [18]. The experiment 

was repeated three times and an average was taken for the degree of crystallinity and peak crystalline 

melting temperature.  

2.4 Forming Experiments 

The Queen’s University of Belfast (QUB) biaxial stretcher was used to replicate forming conditions for 

HDPE, as previously used for PP, HIPS and PET [5,19]. The equilibrium heating time was determined 

by comparing the stress-strain response for different heating times of 2, 4 and 8 minutes.  The results 

showed that there was no change in the response between 4 and 8 minutes and hence, a heating time 

of 4 minutes was determined to be the equilibrium time.  The heating time was further validated by 

simulating the heating procedure in the commercial finite element package Abaqus, where temperature 

dependent thermal conductivity, ranging from 0.2–0.5 W/m.K, and specific heat capacity, ranging from 



1944–18663 J/KgK were applied [20]. The simulation predicted that after 4 minutes the variation was 

less than 0.5°C. Hence, a heating time of 4 minutes was applied for all tests.  In this study constant 

width (CW), simultaneous equal-biaxial (EB) and sequential biaxial (SQ) deformation modes were 

applied to simulate industrial forming conditions at nominal strain rates of 4, 8 and 16 s-1. The 

deformation modes are shown in Figure 1. All stress strain curves displayed are the average curves 

determined from 3 tests, carried out on 3 consecutive days. Additionally, sample orientation was 

controlled throughout all the tests, where the machine direction (MD) referred to flow direction from 

injection and the transverse direction (TD) referred perpendicular to the MD.  

2.4 Tensile Testing 

Dog-bone specimens were cut from biaxially stretched HDPE sheets and analyzed post-deformation at 

room temperature, in both the MD and TD in accordance with ISO 527-2:2012(E) – Type 1BA, using 

an Instron 5564. The modulus was determined from nominal strain range of 0.05 to 0.25% and an 

average value was determined from 4 repeats. The gauge length was 55 mm and the deformation rate 

was 1 mm/min.  

3. Results 

3.1 DMA 

The storage modulus and the loss modulus results are shown in Figure 2 as a function of temperature. 

The storage modulus was initially 4 kPa at 35°C and then decreased almost linearly until the 

temperature reached 60°C. The storage modulus continued to decrease after this but, with a change in 

the gradient of the storage modulus. Furthermore, the storage modulus decreased by 75%, within 50°C, 

to 1 kPa at 85°C and continued to decrease further, until it reached approximately 0.015 kPa at 135°C. 

The loss modulus was initially 530 Pa at 35°C and remained constant until 50°C, after which it began 

to decrease fairly linearly to 260 Pa at 85°C and then continued to decrease to 30Pa and 135°C. The 

corresponding tan delta (ratio of loss modulus to storage modulus) curve is shown in Figure 2. The 

initial tan delta was 0.13 at 35°C, it then increased linearly to 0.2 at 60°C and then continued to increase 

at a lower rate to 0.35 at 125°C after which, it increased dramatically to 0.45 at 133°C before beginning 

to decrease. Thus, indicating a peak in the tan delta curve commencing at 125°C, indicating a potential 

forming temperature.  



3.2 DSC 

The heat flow against temperature plot obtained from DSC is shown in Figure 3. Firstly analyzing the 

melting peak, a melting range was observed due to a distribution of crystal sizes as commonly observed 

in semi-crystalline polymers, with smaller crystals melting first. The first sign of melting occurs at 

approximately 95°C with the onset of bulk melting commencing at 121°C and a peak melting 

temperature of 131°C. The area under the melting peak equated to a change in enthalpy of 198 J/g, 

which resulted in a crystallinity of 68%. Secondly, analyzing the cooling peak the first evidence of 

crystallization occurs at 116°C, with the peak crystallization occurring at 112°C.   

3.3 Forming Conditions 

The initial temperature range considered for biaxial tests was been 125 – 133°C, based on the peak 

observed from DMA results in Figure 2. For the strain-rates applied in this study it was found that 

samples could not be deformed below 125°C, the sample was too stiff and was pulled from the grips 

with minimal deformation. For temperatures above 130°C, the sample did not have sufficient structural 

integrity and hence, could not be successfully deformed. Therefore, the temperature processing window 

was defined as 126°C to 130°C, for the grade of HDPE used in this study. The stress-strain response 

during EB deformation is shown in Figure 4 for nominal strains up to 2.0 in the MD, for each temperature 

within the temperature processing window. The results indicate a clear temperature dependence with 

a temperature change of 1°C resulting in a shift in the stress response. The response at 126°C yields 

at a nominal strain of 0.3, a slight strain softening was observed post-yield and then a gradual increase 

in stress with increasing nominal strain was observed. There was no strain softening observed at 

temperatures above 126°C. The stress response in Figure 4 did not exhibit any significant strain 

hardening however, the gradient of the post-yield deformation was highest at 126°C and then decreased 

with increasing temperature. It is evident from Figure 4 that the yield stress decreased by 64% within 

the 5°C temperature processing window. Furthermore, the change in yield stress was more significant 

between 126°C and 128°C, with approximately 50% drop, when compared with 128°C to 130°C.  

The typical stress-strain response is shown in Figure 5 for EB deformation. The yield stress, 1.2MPa, 

was the same in both directions but, a level of anisotropy was observed between the MD and the TD 

for larger strains. The initial sample orientation was rotated through 90° and the same trend was 

observed, where a stiffer response was observed throughout in the MD. The effect of increasing the 

strain-rate is shown in Figure 5. The results show that the strain-rate has minimal effect on the stress 



response and that the yield stress was almost constant with increasing strain-rate, within the range 

investigated in the current study. However, interestingly the strain-rate affected the failure strain. For a 

strain rate of 4 s-1 the failure strain was 2.85 while this was reduced to 2.05 for a strain-rate of 8 s-1 and 

this was further reduced to 1.75 for strain-rate 16 s-1 for EB deformation.   

The sample orientation relative to the deformation direction, during CW and SQ, is shown in Figure 6 

and is key regarding the description of the results. The stress response under CW loading is shown in 

Figure 7, compared with EB. Firstly, the sample orientation during CW deformation was investigated. 

The stress response when the sample was deformed in the MD was significantly higher than the stress 

response in the TD. The CW_MD response was higher than the EB response in both directions but, the 

yield strain was the same as the CW and EB deformation modes. However, the yield stresses were not 

the same with CW_MD having the highest yield stress of 1.8MPa, both directions in EB had a yield 

stress of 1.2MPa and the yield stress in CW_TD was 0.8MPa. The final stress in CW_MD was roughly 

three times the stress in CW_TD, indicating the importance of sample orientation for CW deformation.  

The sample orientation was also investigated during SQ deformation, as shown in Figure 8 where true 

stress is plotted against time. The same trend was observed as in CW deformation, where a higher 

stress response was observed when the MD was deformed first. The stress was observed to drop for 

both orientations when the first deformation step was completed and the second deformation step 

began, the stress decreased by 3MPa for MD first whereas, the drop for TD first was 0.5MPa. 

Furthermore, during the second deformation step the stress response was higher when the MD was 

deformed second.  

3.4 Effect of Forming on Elastic Modulus 

The initial elastic modulus was 606MPa in the MD and 391MPa in the TD. The modulus post 

deformation was shown to increase by a factor of 2.0 in the MD and 3.3 in the TD. After EB deformation 

at 128°C, the level of anisotropy that was initially observed was reduced from a ratio of 1.55 to 1.08. 

Furthermore, there was no temperature or strain-rate dependence observed on the modulus, as all the 

values fell within the experimental error as shown in Figure 9. The effect of deformation mode is shown 

in Figure 10, note only the modulus in the deformation direction could be measured during CW 

deformation as the samples were not wide enough to cut a dog-bone test specimen from. Post CW 

deformation, the modulus increased by a factor of 2.0 and 2.9 in the MD and TD respectively. A similar 



trend was observed post EB deformation, where the modulus increased by a factor of 2.1 and 3.3 in 

the MD and TD respectively. The sample orientation and the deformation direction was found to have 

a significant impact on the modulus enhancement post forming. When the TD was deformed first 

(SQ_TD) the modulus was further increased by a factor of 2.5 and 4.0, in the MD and TD respectively. 

However, when the MD was deformed first (SQ_MD) the modulus was only enhanced by a factor of 1.6 

and 1.9, in the MD and TD respectively. The sample that was deformed via SQ_MD exhibited a series 

of stress induced crazes, after the initial CW deformation, in contrast to all the other processing 

conditions where no crazing was observed.  

4. Discussion   

The results show that HDPE can be formed in the semi-solid phase, to large strains at rates comparable 

with the thermoforming process. The temperature processing window was found to be between 126 

and 130°C, with the final strain level dependent upon the strain-rate applied. The use of DMA to 

determine the temperature processing window proved to be particularly successful, with the onset of 

the tan delta peak observed at 125°C corresponding to the lowest temperature at which biaxial 

deformation could be applied. This temperature range is above the alpha relaxation temperature 

observed, which signals the strong activation of crystal shearing which in turn causes the strained 

chains within the intra-lamellar amorphous phase to relax [8] [21]. Furthermore, the temperature range 

is within the crystalline melting range observed via DSC, commencing at 95°C. Therefore, the onset of 

melting reduces the crystalline content and enables further relaxation of strained chains within the 

material thus, increasing the ability to deform.  

The crystallinity was estimated to be 44% and 22% at 126°C and 130°C respectively, measured via 

DSC. This clearly indicates the temperature sensitivity of HDPE as the crystallinity was halved within a 

temperature change of 4°C. However, to get an accurate measurement of the crystallinity during 

heating, in-situ measurements would be required. The temperature sensitivity was further underlined 

by the fact that a change in temperature of 1°C results in a shift in the stress response, as shown in 

Figure 4. The yield stress was observed to decrease from 2.4 to 0.85 MPa within the temperature range, 

which was to be expected based on the widely accepted relationship that higher crystallinity results in 

a higher yield stress i.e. lower crystallinity leads to  a lower modulus [22–26]. Furthermore, from an 

industrial point of view, temperature control would be a critical aspect as poor temperature control could 



result in a highly non-uniform part being produced. While a very clear temperature sensitivity was 

observed in the stress-strain behavior during deformation there was no such dependence observed in 

the room temperature elastic modulus data post deformation, when the strain rate and level was kept 

constant. This corresponds with the post deformation crystallinity, which was determined to be 63% and 

66% for samples deformed at 126 and 130°C respectively thus, indicating minimal variation. However, 

to gain a clear understanding of the effect of the cooling post deformation, additional cooling regimes 

should be studied where more rapid cooling and extended cooling periods are applied.  

The level of strain hardening for PE has been attributed to the molecular weight (Mw) of the particular 

grade, with a higher Mw resulting in a higher strain hardening modulus. Ward [27] found that for a Mw 

greater than 105 the long chain molecules are likely to be included in more than one crystalline lamellae 

and hence, the total number of entanglements increases resulting in an increase in the strain hardening. 

The lack of significant strain hardening observed at 128°C was consistent with the findings of 

Hillmansen et al [7], who explained the results by a reduction of the entanglement anchor points located 

within the crystalline regions, due to crystal melting. The resin used in the current study had an Mw of 

151.2 kDa and hence, a similar analogy could be applied to describe the results. It should also be noted, 

that typically the gradient of the stress response did increase with strain however, the sharp upturn 

indicative of strain hardening was not observed for the strain range investigated.  

The strain-rate data showed that there was no statistically significant strain-rate dependence, based on 

the stress response observed. This was unexpected, given the large amount of published work showing 

a strain-rate dependence, particularly for lower strain-rates at lower temperatures. However, the strain-

rates investigated in the current study were considerably higher than the majority of published work and 

based on the experimental error, no clear strain-rate dependence was observed. The relative strain-

rate independence observed at 128°C  was comparable with the findings of Zeltmann et al. [17], who 

observed strain-rate dependence decreased with increasing temperature. Furthermore, Martin et al. [5] 

observed a similar stress response for PP deformed via EB in the semi-solid phase, at rates of 8 and 

16 s-1, were no clear strain-rate dependence was observed. However, they did observe a weak strain-

rate dependence over the range of strain-rates investigated, from 1 s-1 to 32 s-1.  Hence, a more detailed 

study investigating the strain-rate dependence over a wider strain-rate and temperature range would 

be required to fully investigate the relationship. The failure strain was observed to depend on the strain-

rate, with the failure strain reducing from 2.75 to 1.8, by increasing the strain-rate from 4 s-1 to 16 s-1. 



Furthermore, considering the elastic modulus post deformation was not affected by the deformation 

strain-rate, it would be advantageous to process at 4 s-1 compared to 16 s-1 due to the higher strain 

levels that can be applied.   

The deformation mode was observed to have a significant impact on the stress-strain response and in 

particular during CW deformation, where the sample orientation significantly altered the stress-strain 

response. The highest stress response was observed when the sample was deformed in the MD via 

CW, even higher than the response observed during EB. This was potentially a result of the initial 

crystalline orientation, which was orientated preferentially in the deformation direction, resulting in a 

higher stress response. The deformation in the TD produced the lowest stress response, clearly 

indicating the importance of the sample orientation. Butler and Donald [28] showed a similar trend for 

blown film, where the preferred orientation resulted in a stiffer response. They accounted for the 

differences in the sample orientations with lamellae corrugating in the MD whereas, lamellae thinning 

and intra-lamellar shear occurred in the TD and 45° respectively. The same trend was observed during 

SQ deformation in this study where, the highest stress-strain response was observed in the MD.  

The modulus was significantly affected by the sample orientation during both CW and SQ deformation. 

The higher modulus obtained in the MD during CW follows the trend observed previously but, the 

modulus post SQ deformation was found to be highly dependent on the sample orientation. When the 

first deformation was in the TD, the modulus increased by a factor of 2.5 and 4.0, in the MD and TD 

respectively. Whereas, when the deformation was in the MD first, the modulus increased by a factor of 

1.6 and 1.9, in the MD and TD respectively. Therefore, by simply changing the initial sample orientation 

relative to the deformation direction the modulus enhancement ratio was reduced by 0.9 in the MD and 

2.1 in the TD. However, when the SQ deformation was firstly in the MD a series of crazes were observed 

after the second stretch. This phenomenon was not observed when the sample was deformed in the 

TD first. To fully understand the relationship between the deformation and the modulus a more detailed 

study would be required where strain level and deformation mode should be analyzed, ideally with the 

corresponding microstructural changes. 

5. Conclusions  

The current study showed that like polypropylene [5], HDPE in the semi-solid phase can be deformed 

to large strains at rates comparable with the thermoforming process. The temperature processing 



window was determined to be particularly small, between 126 and 130°C, and within the window, a 

temperature change of 1°C was significant to shift the stress response. The data showed no statistically 

significant strain-rate dependence, within the range investigated. Additionally, the sample orientation 

relative to the deformation direction was found to significantly impact both the stress response and the 

elastic modulus post deformation. The elastic modulus post deformation was found to increase as a 

result of the deformation applied. The most significant enhancement was observed after SQ 

deformation with the initial deformation step in the TD and the least significant enhancement was 

observed after SQ deformation with the initial deformation step in the MD. Therefore, the elastic 

modulus can be enhanced by forming and hence, thinner parts can be produced without reducing the 

mechanical performance. Further work is required to determine the relationship between the 

deformation and the elastic modulus, to establish the optimal processing conditions, along with a series 

of thermoforming trials to fully validate the results.  
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Figure 1- Deformation modes applied 

 

Figure 2 - DMA temperature sweep 
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Figure 3 - DSC curves obtained from the initial sample, endo up 

 

 

Figure 4 – Temperature dependence observed during EB deformation in the MD at a strain-rate of 4s-1 

 



 

Figure 5 - Strain-rate dependence observed during EB deformation at 128°C, (A) in the MD and (B) in 

the TD 
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Figure 6 - Sample orientation relative to deformation direction during CW and SQ. 

 

 

Figure 7 - Comparison of deformation modes, at 128°C, at strain-rate of 4s-1 

 

 

 



 

 

 

 

 

 

 

 

 

 

Figure 8 - Comparison of sample orientation during SQ deformation at 128°C and strain-rate 4 s-1. 

SQ_TD and SQ_MD refer to sample orientation specified in Figure 6, axial and transverse refer to the 

deformation direction. 

First deformation Second deformation 



 

 

 

 

Figure 9 - The effect of forming temperature (A) and strain-rate (B) on the Young's Modulus of the 

sample post deformation at 128°C and strain-rate 4s-1, determined via tensile testing at room 

temperature. 
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Figure 10 - The effect of deformation mode on the Young's Modulus of the sample post deformation at 

128°C and strain-rate 4s-1, determined via tensile testing at room temperature. 

 


