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Abstract.  The purpose of this paper is to investigate the feasibility of using artificial neural network programming 
for the prediction of the fresh properties of self-compacting concrete.  The input parameters of the neural network 
were the mix composition influencing the fresh properties of self-compacting concrete namely, the cement content, 
the dosages of limestone powder and water, fine aggregate, coarse aggregate, and superplasticizer, and other 
parameter of time of testing (5, 30 and 60 minutes after addition of water).  The model is based on a multilayer feed 
forward neural network.  The details of the proposed ANN with its architecture, training and validation are presented 
in this paper.  Six outputs of the ANN models related to the fresh properties were the slump flow, T50, T60, V-funnel 
flow time, Orimet flow time, and blocking ratio (L-box).  The effectiveness of the trained ANN is evaluated by 
comparing its responses with the experimental data that were used in the training process.  The dosage of water was 
varied from 188 to 208 L/m

3
, the dosage of SP from 3.8 to 5.8 kg/m

3
, and the volume of coarse aggregates from 220 

to 360 L/m
3
 (587 to 961 kg/m

3
).  In total twenty mixes were used to measure the fresh properties with different mix 

compositions.  ANN performed well and provided very good correlation coefficients (R
2
) above 0.957 for slump 

flow, T50, V-funnel flow time, Orimet flow time, and L-box blocking ratio.  The predicting results for T60 was 
slightly lower (R

2
=0.823).  With the calculated models these properties of new mixes within the practical range of 

the input variables used in the training can be predicted with an absolute error for slump flow, T50, T60, V-funnel flow 
time, Orimet flow time, and L-box ratio of 3.3%, 13%, 16%, 14%, 15%, and 22%, respectively.  The results show 
that the ANN model can predict accurately the fresh properties of SCC. 
 

Keywords:  artificial neural network; blocking ratio of L-box test; orimet; prediction model; slump flow; 

V-funnel 

 
 
1. Introduction 
 

The use of self-compacting concrete (SCC) facilitates the placing of concrete by eliminating 

the need for compaction by vibration.  Due to the highly flowable nature of SCC, care is required 

to ensure excellent filling ability and passing ability and adequate stability.  It is essential to 
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reduce the coarse aggregate volume compared with conventional concrete, and to increase the 

volume of fine aggregate and the paste volume to enhance the filling ability.  The incorporation 

of continuously graded cement and fillers also can reduce inter-particle friction.  It is important to 

note that the selection of proper combinations of powders should take into account the effect of the 

adsorption of water and admixtures on the workability loss and the rise of temperature, as well as 

the durability and the development of properties in the hardened state (DeSchutter et al. 2007, 

Sonebi et al., 2003, Sonebi et al. 2009a).  The inter-particle friction between the various solids 

(coarse aggregate, sand, and powder materials) affects the filling ability.  Such solid-to-solid 

friction increases the internal resistance to flow, thus limiting the filling ability and speed of flow 

of the fresh concrete.  The extent of inter-particle friction increases when the concrete passes 

through restricted spaces because of the locally greater probability of collisions between the 

particles of the various solids in the mix.  This increases the rate of shear, thus resulting in greater 

shear stresses at a given capacity of the flow.  The use of SP can disperse cement grains and 

reduce inter-particle friction and enables the reduction in water content while maintaining the 

required level of flowability (Sonebi 2004, Hossain et al., 2012). 

The stability of self-compacting concrete can be enhanced by incorporating fine materials such 

as for example limestone powder, ground granulated blast slag (GGBS), fly ash, microsilica fume, 

metakaolin, etc. (Sonebi 2004, Khatib 2008, Sonebi et al. 2009a, Hossain et al. 2012).  The use of 

such powders can enhance the grain-size distribution and the particle packing, thus ensuring 

greater cohesiveness (Khatib 2008).  Another approach to enhance the stability of self-

compacting concrete is to incorporate a viscosity-modifying agent (VMA) along with a SP to 

ensure high fluidity and deformability, and adequate stability (Lachemi et al. 2004, Sonebi 2004, 

Khatib 2008, Leeman et al., 2007). 

The filling ability of SCC (unconfined flowability) can be described by the ability of the 

concrete to flow into and to fill all spaces of the formwork under its own weight.  Slump flow, 

T50, T60, V-funnel, Orimet and the blocking ratio were used to measure both filling ability and 

passing ability.  T50 and the flow times of V-funnel and Orimet can be used to assess the 

viscosity (Sonebi 2004, Khatib 2008).  The passing ability of SCC is the ability to flow through 

tight openings, such as spaces between reinforcing bars, under its own weight. If the concrete does 

not possess adequate passing ability, coarse aggregates will cause blockage between the 

reinforcing bars and resulting in a non-uniform structure.  The L-box, U-box, and J-ring test 

methods were suitable to assess the passing ability through closely spaced reinforcing bars (Bartos 

et al. 2002, ACI 237R-07 2007). 

Many researchers and engineers have reported the use of artificial neural network to predict the 

fresh properties of concrete such as high performance concrete, lightweight concrete, high 

performance grouts, recycling concrete, alkali silica reaction of concrete with nano-silica and 

indirect tensile strength of SCC (Yeh 2007, Mohebbi et al. 2011, Sonebi et. al 2011, Sonebi et al. 

2009a, Duan et al. 2013, Tabatabaei et al. 2014, Mazloom et al. 2013).  

Sonebi and Cevik used neurofuzzy (2009b) to predict the properties of fresh and hardened SCC 

containing Pulverised Fuel Ash (PFA).  The proposed neurofuzzy models gave accurate 

predictions, as compared to experimental results, for all of the properties of fresh and hardened 

SCC considered in their study.  In addition, they proposed genetic programming formulas for 

calculating fresh and hardened properties of SCC containing PFA.  They concluded that fresh and 

hardened properties of SCC are sensitive to the variation of mix ingredients. 

Artificial Neural Networks was used to model the slump values of fly ash and slag concrete 

based on its ingredients.  The complex nonlinear relationship between concrete components and 



concrete slump can be modeled more accurately using ANN as compared to nonlinear regression 

models. In addition, it was reported that response trace plots generated from ANN models for 

numerical experiments can be used conveniently to review the effects of mix proportions on 

concrete properties (Yeh 2007).  

Prasad et al. (2009) used ANN to predict slump flow and strength of SCC containing high 

volume fly ash.  They reported that the performance of ANN in predicting the slump flow is 

satisfactory but not as accurate as in predicting the compressive strength of SCC. 

Tabatabaei et al. (2014) reported that analysis of the ANN model determines the optimal 

percentage of additives, which has a strong influence on the rheological properties of fresh self 

compacting cement paste. Their proposed ANN models showed that metakaolin and silica fume 

affected the rheological properties in the same manner. Additionally, the ANN model introduced 

the optimal percentage of metakaolin, silica fume, calcium carbonate and limestone as 15, 15, 20 

and 20% by cement weight, respectively. 

ANN modeling is a nonlinear statistical technique used to solve problems that are not amenable 

to conventional methods.  In addition, to develop an effective ANN model, the network should be 

able to accurately predict the output when trained with a set of inputs within the practical range of 

the training data.  The most common feed-forward ANNs are used where information is 

processed in one direction—from input to output—and the neurons are ordered in layers.  They 

consist of an input layer, an output layer, and a number of hidden (intermediate) layers. An input 

layer is where data are presented to the neural network, whereas the output layer contains the 

response of the network.  ANNs are powerful modeling techniques based on a statistical 

approach.  These neural network modeling require a significant amount of data and powerful 

computing resources in order to work.  Hence, they are suitable for simulations of correlations 

which are hard to describe by physical models.  The model ANN can also run conveniently on 

almost any computer once it is created. 

 

2. Research significance 
 

The complexity of the fresh properties of SCC resulted in attempts mostly empirical in nature.  

The optimization of SCC often necessitates carrying out several trial batches to achieve adequate 

balance between filling ability, flowabilility, and passing ability.  Only recently, ANN attracted a 

growing interest in engineering applications including the modeling of concrete properties and 

cement-based materials.  In this paper, the feasibility of using artificial neural networks is studied 

to create such models that can be used to predict the flowability, filling ability, passing ability with 

the time of testing.  ANN can assist in designing SCC mixes without the need for a large number 

of trial mixes. 

 

3. Experimental program 

 

3.1 Materials 
 

The concrete mixes investigated in this study were prepared with CEM II-42.5 R cement in 

accordance with conform to EN 197-1, and limestone powder (LSP).  LSP, produced from very high 

purity carboniferous limestone (CaCO3 = 98%) was used.  The chemical properties of cement and LSP 

are presented in Table 1.  The specific densities of the limestone powder and cement were 2.70 and 3.08 

kg/dm
3
, respectively.  The grading curves of cement and LSP are given in Figure 1.  The mean particle 



size of LSP (d50%) was 4.5 µm and 22% of particles were smaller than 2 µm.  LSP was finer than the 

cement. 

Continuously graded crushed granite aggregates 4/8 mm and 8/16 mm and marine sand from 

Denmark were used.  The specific densities of the coarse aggregates 4/8 mm and 8/16 mm and sand 

were 2.67, 2.67 and 2.65, and their absorption were 0.87%, 0.72% and 0.30%, respectively.  The grading 

sizes of the coarse aggregates and the sand are given in Fig. 1.  A polycarboxylic-based SP was used, 

which had a solid content and specific density of 30% and 1.05, respectively. 

 
Table 1 Chemical and physical properties of cementitious materials 

Property Limestone powder CEM II 

SiO2, % 

Al2O3, % 

Fe2O3, % 

CaO, % 

MgO, % 

SO3, % 

Na2O eq., % 

LOI, % 

CaCO3, % 

0.8 

-- 

0.1 

-- 

-- 

-- 

-- 

-- 

98.0 

18.5 

5.0 

2.9 

62.0 

1.2 

3.6 

0.39 

0.65 

-- 

Relative Density (kg/dm
3
) 

Bulk Density (Packed) 

Blaine (m
2
/kg) 

2.70 

1200 

-- 

3.08 

-- 

469 
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Fig. 1 Particle size distribution of coarse aggregates, sand, cement and limestone powder 

 
 
 



3.2 Experimental plan 
 

The key parameters that can have a significant influence on mix characteristics of SCC were 

selected for evaluating their effect on the flowability, filling ability and passing properties.  In 

total, 20 mixes were tested.  The reference SCC mix having a good filling ability, passing ability 

and a good stability was made with 198 L/m
3
 of water, 133 kg/m

3
 of limestone powder, 470 kg/m

3
 

of cement, 291 L/m
3
 of volume of coarse aggregate and 4.75 kg/m

3
 of SP.  For all mixes, when 

the dosages of water and SP were varied, the ratio by volume of cement to limestone powder was 

the same (3.01) and the ratio between the coarse aggregates fractions (4/8 mm and 8/16 mm was 

kept constant at 0.43).  The volume of sand was adjusted to compensate for the increase or 

decrease of the coarse aggregates.  The mixes were made with water content in the range of 188 

to 208 L/m
3
, dosages of SP of 3.8 to 5.8 kg/m

3
, and the volume of coarse aggregate of 220 to 

361 L/m
3
.  The measurement of fresh properties are the slump flow, T50, T60, the V-funnel and 

Orimet flow times and the blocking ratio 5, 30 and 60 minutes after adding the first water. The 

variation of the parameters was chosen in order to obtain a wide range of characteristics in the 

fresh state. 

 

3.3 Test methods 
 

All concrete mixes were prepared in 40 litres batches in a rotating planetary mixer with a 120 L 

capacity.  The batching sequence consisted of homogenizing the powders, the sand and the coarse 

aggregates for 60 seconds, then adding most of the water into the mixer (except 50 ml) and 

continuing to mix for another minute.  After adding SP and the remaining water, the concrete was 

mixed for three minutes.  

Slump flow, T50, T60, V-funnel, Orimet, and L-box were used to test the filling ability 

(workability and deformability), and passing ability of SCC in accordance with EFNARC 

guideline (2002).  T50 and T60 are the times, which the concrete requires to reach 500 mm and 600 

mm of slump flow and they are a good indication of the viscosity of concrete.  The ability of 

aggregate particles and mortar to change their flow paths and spread through a restricted area 

without blockage was evaluated using V-funnel and Orimet (Fig. 2).  The Orimet is the same as 

developed by Bartos et al. (2002) where the flow of concrete is noted as the time between the 

opening of the outlet and the time when the light becomes visible from the top.  The orifices of V-

funnel and Orimet were a square (75 x 75 mm) and circular (diameter = 80 mm), respectively.  

The basic Orimet is provided with an orifice, which reduces the internal diameter from 120 mm 

within the casting pipe to 80 mm at the end of the orifice, a sample of at least 7.5 litres of fresh 

concrete mix is required.  The L-box used is shown in Fig. 2.  It is possible to measure filling 

ability and passing ability with the L-box.  The vertical part of the box (100 x 200 x 600 mm) is 

filled with 12.7 litres of concrete, which is left to rest for one minute in order to allow any 

segregation to occur.  After that, the gate is opened and the concrete flows out of the vertical part 

into the horizontal part (150 x 200 x 700 mm) through the reinforcement bars.  The gap between 

the reinforcement bars was 34 mm.  Three rib bars were used in the L-box.  The height H1 and 

H2 of concrete were measured and used to determine the L-box blocking ratio (h2/h1-ratio, Figure 

2).  All tests slump flow, V-funnel, Orimet and L-box were carried out at 5 min, 30 min and 

60 min. 

 



     
Fig. 2 V-funnel, L-box, and Orimet tests 

 
 

4. Test results and discussion 
 

The mix proportions and the results of fresh properties of all mixes prepared in this study are 

summarized in Tables 2 and 3, respectively. 

 
Table 2 Mix proportions of tested mixes 

Mix 
Cement 

(kg/m
3
) 

LSP 

(kg/m
3
) 

Water 

(kg/m
3
) 

SP  

(kg/m
3
) 

CA. 4/8mm 

(kg/m
3
) 

CA. 8/16mm 

(kg/m
3
) 

Sand 

(kg/m
3
) 

W/B 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

448 

444 

495 

491 

495 

491 

448 

444 

470 

470 

470 

470 

470 

470 

509 

430 

473 

466 

470 

470 

127 

126 

140 

139 

140 

139 

127 

126 

133 

133 

133 

133 

133 

133 

144 

122 

134 

132 

133 

133 

208 

208 

188 

188 

188 

188 

208 

208 

198 

198 

198 

198 

198 

198 

181 

215 

198 

198 

198 

198 

3.8 

5.8 

3.8 

5.8 

3.8 

5.8 

3.8 

5.8 

4.8 

4.8 

4.8 

4.8 

4.8 

4.8 

4.8 

4.8 

3.1 

6.4 

4.8 

4.8 

290 

178 

290 

290 

178 

178 

178 

290 

234 

234 

234 

234 

234 

234 

234 

234 

234 

234 

328 

139 

673 

412 

673 

673 

412 

412 

412 

673 

543 

543 

543 

543 

543 

543 

543 

543 

543 

543 

762 

323 

604 

975 

604 

604 

975 

975 

975 

604 

789 

789 

789 

789 

789 

789 

789 

789 

789 

789 

478 

1100 

0.37 

0.37 

0.30 

0.31 

0.30 

0.31 

0.37 

0.37 

0.34 

0.34 

0.34 

0.34 

0.34 

0.34 

0.28 

0.40 

0.33 

0.34 

0.34 

0.34 

LSP: Limestone powder; W/B : water-to-binder ratio 



Table 3 Properties of fresh properties of concretes  

Mix 

Slump 

Flow 

5 min 

Slump 

Flow 

30 min 

Slump 

Flow 

60 min 

T50  

at 5 min 

T60 

at 5 min 

V- 

Funnel 

5 min 

V- 

Funnel 

30 min 

V- 

Funnel 

60 min 

Orimet 

5 min 

Orimet 

30 min 

Orimet 

60 min 

L-box 

5 min 

L-box 

30 min 

L-box 

60 min 

 (mm) (mm) (mm( (s) (s) (s) (s) (s) (s) (s) (s)    

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

755 

878 

608 

775 

515 

688 

808 

923 

788 

800 

793 

818 

778 

808 

525 

945 

655 

845 

718 

688 

700 

820 

375 

630 

335 

555 

620 

720 

660 

675 

655 

710 

705 

685 

350 

810 

470 

830 

625 

565 

578 

765 

315 

565 

273 

490 

535 

735 

555 

605 

623 

640 

675 

638 

283 

793 

385 

758 

520 

498 

1.86 

0.9 

3.55 

2.15 

4.4 

3.45 

0.86 

1.21 

1.43 

1.30 

1.27 

1.55 

0.80 

1.49 

6.74 

1.03 

1.67 

1.24 

3.80 

2.62 

3.78 

2.03 

9.53 

4.22 

--- 

8.22 

1.93 

1.70 

2.69 

3.00 

2.59 

2.50 

1.99 

3.00 

--- 

1.84 

4.31 

2.06 

6.63 

5.94 

20.0 

4.1 

22.8 

47.4 

11.9 

8.9 

4.6 

11.8 

6.9 

6.5 

6.8 

5.7 

5.8 

5.3 

18.3 

3.0 

7.0 

5.1 

18.0 

7.2 

20.9 

4.9 

66.7 

85.5 

29.0 

9.6 

5.9 

16.1 

11.3 

11.5 

9.1 

9.0 

8.1 

7.7 

70.5 

4.3 

9.1 

7.1 

24.6 

7.7 

38.1 

6.7 

--- 

101.0 

--- 

14.3 

7.6 

16.2 

22.8 

19.3 

15.1 

12.1 

13.5 

11.2 

--- 

7.9 

--- 

10.6 

27.2 

11.3 

15.6 

2.1 

-- 

47.1 

7.9 

4.8 

2.3 

12.3 

3.5 

3.6 

3.3 

2.9 

3.1 

3.1 

13.3 

1.6 

3.4 

2.2 

26.1 

3.7 

30.5 

2.5 

-- 

67.3 

11.8 

6.1 

3.3 

16.9 

7.2 

6.7 

5.2 

5.6 

4.7 

4.6 

22.4 

2.8 

6.8 

3.6 

27.9 

5.1 

47.0 

3.3 

--- 

138.0 

--- 

9.2 

5.1 

22.1 

10.3 

9.9 

21.9 

5.5 

19.6 

25.8 

--- 

18.7 

11.8 

25.6 

45.3 

8.01 

0.98 

1.00 

0.42 

0.89 

0.26 

0.88 

0.98 

0.89 

1.00 

0.99 

0.98 

1.00 

0.98 

0.96 

0.35 

1.00 

0.72 

0.93 

0.62 

0.87 

0.52 

1.00 

0.00 

0.53 

0.00 

0.73 

0.79 

0.70 

0.86 

0.97 

0.86 

0.97 

0.83 

0.90 

0.00 

1.00 

0.24 

1.00 

0.25 

0.70 

0.03 

1.00 

0.00 

0.00 

0.00 

0.49 

0.54 

0.64 

0.52 

0.70 

0.76 

0.76 

0.77 

0.75 

0.00 

0.97 

0.00 

0.96 

0.04 

0.41 



4.1 Basıc prıncıples and development of the neural networks 
 

The general scheme of the model of ANN for the prediction of the fresh properties is given in 

Fig. 3.  The input parameters of the neural network are compositions of self-compacting concrete 

which are commonly applied components, namely dosage of water, cement content, limestone 

powder content (LSP), sand content, coarse aggregate content, SP and time.  The outputs of the 

neural network model comprised the fresh properties of SCC examined namely slump flow, T50, 

T60, V-funnel, Orimet and the L-box blocking ratio. 

 

                                             

Fig. 3 Schematic model of the artificial neural network (ANN) for the prediction of fresh properties for SCC 

 

An artificial neural network, in short, a neural network is an information processing system that 

mimics the biological system of the brain and hence, is a powerful computational tool capable of 

self-organizing, pattern recognition, and functional approximation.  Neural networks are also 

nowadays used in engineering applications including the modeling of concrete properties, and 

cement-based materials. 

Artificial neural network modeling is a nonlinear statistical technique used to solve problems 

that are not amenable to conventional methods.  Although they had been successful in identifying 

complex nonlinear relationships and in modeling various applications, their effectiveness depends 

mainly on the quality of the database used for its training.  In addition, in order to develop an 

effective ANN model, the network should be able to accurately predict the output when trained 

with a set of inputs within the practical range of the training data (Haykin 1999). 

In this study the most common Feed-forward ANNs are used where information is processed in 

one direction -from input to output- and the neurons are ordered in layers.  They consist of an 

input layer, an output layer, and a number of hidden (intermediate) layers.  An input layer is 

where data is presented to the neural network, whereas the output layer contains the response of 

the network (Fig. 4). 

In this study Matlab ANN toolbox is used for ANN applications. Various Back propagation 

Training Algorithms are used given in Table 1.  Matlab ANN toolbox randomly assigns the initial 

weights for each run each time which considerably changes the performance of the trained ANN 

even all parameters and ANN architecture are kept constant.  This leads to extra difficulties in the 

selection of optimal Network architecture and parameter settings. To overcome this difficulty a 

program has been developed in Matlab which handles the trial and error process automatically. 

Concrete 

composition 

 

Time of 
testing 

 

Slump-flow 

T60 

L-box ratio 

V-funnel 

 
Orimet 

T50 

 

 

Artificial 

Neural 

Network 



The program tries various number of layers and neurons in the hidden layers both for first and 

second hidden layers for a constant epoch for several times and selects the best ANN architecture 

with the minimum MAPE (Mean Absolute % Error) or RMSE (Root Mean Squared Error) of the 

testing set, as the training of the testing set is more critical.  For instance an ANN architecture 

with 1 hidden layer with 7 nodes is tested 10 times and the best ANN is stored where in the second 

cycle the number of hidden nodes is increased up to 8 and the process is repeated.  The best ANN 

for cycle 8 is compared with cycle 7 and the best one is stored as best NN. This process is repeated 

N times where N denotes the number of hidden nodes for the first hidden layer. This whole process 

is repeated for changing number of nodes in the second hidden layer. More over this selection 

process is performed for different back propagation training algorithms such as trainlm, trainscg 

and trainbfg given in Table 4 (Cevik 2006).  The program begins with simplest ANN architecture 

i.e. ANN with 1 hidden node for the first and second hidden layers and ends up with optimal NN 

architecture as shown in Fig 4. 

 
Table 4 Back propagation Training Algorithms used in NN training. 

MATLAB 

Function name  
Algorithm  

trainbfg  BFGS quasi-Newton back propagation  

traincgf Fletcher-Powell conjugate gradient back propagation  

traincgp  Polak-Ribiere conjugate gradient back propagation  

traingd  Gradient descent back propagation  

traingda  Gradient descent with adaptive lr back propagation  

traingdx  Gradient descent w/momentum & adaptive linear back propagation  

trainlm  Levenberg-Marquardt back propagation  

trainoss  One step secant back propagation  

trainrp  Resilient back propagation (Rprop)  

trainscg  Scaled conjugate gradient back propagation  

 
1 - Water 

 

2 - Cement 

 

3 - LSP 

 

4 - Sand 

 

5 - CA 

 

6 - SP  

 

7 - Time 

 

Fig. 4 Architecture of the network model 

OUTPUT LAYER 

Second hidden 

layer 



Without the hidden layer, only linear tasks are performed hence, ANN loses its advantage to 

present and compute complicated associations between patterns.  Each hidden layer includes a 

number of neurons (processing units) partially of fully connected to neurons (synapses) in the 

adjacent layers, and no connection is permitted between neurons within the same layer.  Each 

neuron in the hidden and output layers receives multiple inputs from neurons in the previous layer 

through connections with associated strengths (weights). 

The weights are the coefficients of linear combinations plus biases.  These weights represent 

the backbone of the ANN model whereby they determine the nature and strength of the influence 

between the interconnected neurons.  Each neuron then performs a simple computation to 

calculate a net input (weighted sum) and to transform that net input into an output via an assigned 

transfer function to serve as an input to neurons in the subsequent layer or as a network output if 

the neuron is in the output layer as shown in Fig. 4. 

The transfer function is generally non linear sigmoid.  A ‘sigmoid’ function is an S-shaped 

“squashing function” which maps a real value, which may be arbitrarily large in magnitude, 

positive or negative to a real value, which lies within some narrow range.  The transfer function 

modulates the weighted sum of the inputs whereby when input gets larger, output approaches unity 

but when input gets smaller, output approaches zero. 

The model developed must be able to learn the relationship between a set of inputs and 

corresponding output when trained.  Hence, the experimental data must be large, reliable and 

comprehensive enough to catch all essential aspects that might influence the input/output 

relationship within the practical range of all input parameters covered.  Usually, the models are 

trained so that a particular set of inputs produces, as nearly as possible, a specific set of target 

outputs.  In order to build an effective ANN model, the selection of database, network 

architecture and network training and testing are essential to conduct the modeling. 

The accuracy of ANN predictions was evaluated using the mean absolute error (MAE) 

calculated by: 

100
1

1

exp







n

i pred

pred

R

RR

n
MAE                        (1) 

 

where Rexp is experimental value of SCC property from measured data, Rpred is predicted value 

of SCC property by the neural network, and n is the number of data points. 

 

4.2 Database 
 

The ANN technique used in this study to model the fresh properties of SCC must be trained 

using a comprehensive number of representative experimental data sets in order to be become able 

to capture the relationships between the mix parameters of SCC and the measured fresh properties.  

The ANN was designed using 60 pairs of input and output vectors for slump flow, T50, T60, V-

funnel, Orimet, and L-box ratio predictions.  The data sets are given in Table 3.  The input 

vector consisted of mix variables and the output vectors were the slump flow T50, T60, V-funnel, 

Orimet, and L-box ratio.  For all predictions of the fresh properties of SCC, the input parameters 

were dosages of cement and limestone powder (kg/m
3
), water content, sand content (kg/m

3
), 

coarse aggregate content (kg/m
3
), dosage of superplasticizer (kg/m

3
) and the testing time (min). 



 
4.3 Slump flow test 

 

The neural network was trained to predict the slump flow values using a total of 60 patterns.  

Each training pattern contains an input vector of 7 elements representing the ingredients of 

concrete and time and a target representing the corresponding measured slump flow.  Satisfactory 

completion of the training process was verified by calling the network model to predict the slump 

flow values of the concrete used in the training (40 data) sets and testing processes (20 data) sets 

and the responses were plotted in Fig. 5.  It should be noted that the network has successfully 

learned to map between mix parameters and associated slump flow values, its performance in 

predicting the slump flow of the training mixes is satisfactory with an MAE = 3.3 %.  The 

coefficient of correlation was very good (0.976). 
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Fig. 5 Measured versus predicted slump flow (mm) using ANN  

 
 
4.4 T50 and T60 

 

Similarly, the same network architecture was applied using a total of 34 training patterns to 

predict T50 and T60 of SCC (18 for testing).  The network was presented with training patterns 

containing the values of mix composition of concrete with time and the corresponding T50 and T60.  

Its task was to predict the T50 and T60 values for concrete used in the training process.  The 

coefficients of correlation R
2
 for T50 and T60 were 0.957 and 0.823, respectively (Figs. 6 and 7).  

With these data responses, the value of MAE were 13% and 16%, respectively, and the model 

responses in predicting the T50 and T60 values of the training mixes were considered satisfactory.  

The slightly lower performance of the network model in this case is believed to be due to the 

numerically very small values of T50 and T60; even small prediction errors already lead to a high 

MAE and due to the higher variability in the experimental data itself which is also related to the 

difficulty of measure T50 and T60. 
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Fig. 6 Measured versus predicted T50 (s) using ANN 
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Fig. 7 Measured versus predicted T60 (s) using ANN 

4.5 V-funnel and Orimet tests 
 

The same ANN model was trained to predict the V-funnel and Orimet values using a total of 56 

and 37 training patterns, respectively.  After completion of the training process, the model was 

required to predict the V-funnel and Orimet values for the training mixes and its response.  The 

coefficients of correlation R
2
 for V-funnel and Orimet were 0.988 and 0.974, respectively (Figs. 8 

and 9).  With data of V-funnel and Orimet of the training mixes, the values of MAE were 14% 

and 15%, respectively.  The slightly lower performance of the network model in this case is 

believed to be caused by the numerically very small values of V-funnel and Orimet times; small 

prediction errors cause a high MAE.  It could also be due to the higher variability in the 

experimental data itself using V-funnel and Orimet tests, which are affected by all main flow 

characteristics of SCC and therefore, are more difficult to assess lab compared to slump flow 

values. 
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Fig. 8 Measured versus predicted V-funnel flow time (s) using ANN 
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Fig. 9 Measured versus predicted Orimet flow time (s) using ANN 

 
4.6 L-box test 

 

A similar process was adopted in training the same neural network using a total of 60 and 40 

training patterns to predict the L-box blocking ratio of SCC.  The coefficient of correlation of R
2
 

was 0.981 (Fig. 10) for the measured and predicted L-box ratios.  The value of MAE was 22% 

for all results.  The model response in predicting the L-box blocking ratio was considered 

satisfactory. 
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Fig. 10 Measured versus predicted of L-box ratio using ANN 

 

4.7 Sensitivity of ANN models 
 

Since the ANN model developed herein showed satisfactory performance and demonstrated 

its ability to predict the fresh properties of SCC mixes designed within the practical range of the 

results, it would be worth investigating whether the model has captured the sensitivity of mix 

properties to individual mix composition parameters.  Therefore, a single mix was randomly 

selected from the data and used to create six new mixes by changing the dosage of cement, or LSP, 

or water or SP, or sand, or coarse aggregate.  The dosages of cement and LSP, water, SP, sand, 

and coarse aggregate were varied from 430 to 510 kg/m
3
, 120 to 140 kg/m

3
, 180 to 220 kg/m

3
, 3.5 

to 5.5 kg/m
3
, 600 to 1000 kg/m

3
, and 450 to 850 kg/m

3
, respectively.  The sensitivity of the effect 

time at 5 to 60 min on slump flow was also modelled.  Fig. 11 shows the relationship between the 

dosage of cement, LSP, water, SP, sand, CA and time and the predicted values of slump flow.  It 

is clear that increasing cement and LSP led to a reduction of the spread of slump flow due to the 

absorption of water by fine particles.  As expected, the increase of water and SP and CA increased 

the slump flow.  More water increases the flowability and increasing SP improved the dispersion 

of cement particles.  However, the increase of sand led to a slight reduction of slump flow.  The 

slump flow was smaller when it was measured at 30 min and 60 min. 
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Fig. 11 Sensitivity of slump flow versus mix composition of concrete and time 

 

Similarly, new mixes were simulated from a single mix randomly selected from the testing 

data used in the T50 and T60 models, by changing the dosage of cement and LSP, water, SP, sand, 

and coarse aggregate to investigate the ability of the ANN model to recognize the influence of 

these parameters on the T50 and T60 values.  Similar variation of the ingredients as for slump flow 

was used.  Figs. 12 and 13 illustrate the ANN prediction of T50 and T60 values associated with 

different dosages of C, LSP, W, SP, sand, CA and time.  As expected, it is indicated that by 

increasing the dosage of cement, LSP, the flowability reduced (T50 and T60 increased).  The 

increase of the dosage of water and SP on T50 and T60 caused an improvement of the filling ability 

of concrete.  The effect of an increase of CA is more pronounced compared to variation of sand. 
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Fig. 12 Sensitivity of T50 versus mix composition of concrete 
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Fig. 13 Sensitivity of T60 versus mix composition of concrete 

 

Figs. 14 and 15 present the predicted V-funnel and Orimet flow times obtained with ANN 

models for variations in mix composition.  As expected, the dosage of cement, LSP and CA had a 

significant effect on the V-funnel and Orimet values.  From these figures, as expected, it can be 

seen that the increase of dosages water and SP reduced the V-funnel and Orimet flow times 

leading to a better flowability and deformability.  An increase of sand improved the V-funnel and 

Orimet values. Conversely, the CA increased these values which can be attributed to a lower 

passing ability.  The flow times of V-funnel and Orimet increased at 60 min due to loss of 

flowability. 

Other data sets were created from a single mix randomly selected for the L-box blocking ratio 

by using the ANN model to recognize the influence of cement, LSP, water, SP, sand, CA and time.  

Figure 16 illustrates the ANN prediction of L-box values.  As expected, it is indicated that by 

increasing the dosages of cement and LSP led to a reduction of the L-box ratio.  Conversely, the 

increase of water, SP, sand and CA demonstrated an increase of the L-box ratio which led to a 

better passing ability.  It can be noticed from Fig. 16 that the L-box ratio reduced with the time. 
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Fig. 14 Sensitivity of V-funnel versus mix composition of concrete and time 
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Fig. 15 Sensitivity of Orimet versus mix composition of concrete and time 
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Fig. 16 Sensitivity of L-box ratio versus mix composition of concrete and time 

 

4. Conclusions 
 

This study presented that the artificial neural network (ANN) modelling can be used to predict 

the fresh properties of self-compacting concrete.  Input parameters were the mix composition 

namely the cement content, the dosages of limestone powder, water, fine aggregate, coarse 

aggregate, and superplasticizer and time.  Based on this investigation, the following conclusions 

can be warranted: 

1- This study demonstrates the feasibility of using an artificial neural network to predict the 

fresh properties of SCC such as filling ability, flowability and passing ability with good 

accuracy.  The ANN model thus developed was not only able to predict the fresh 

properties of mixes used in the training process, but it also generalized its predictions 

beyond the training data to new mixes designed within the practical training range. 

2- The prediction of the fresh properties of SCC (slump flow, T50 and T60, V-funnel, Orimet 

and L-box blocking ratio) as a function of mix ingredients is difficult to achieve 

analytically, whereas a successfully trained neural network model can predict such 

behavior instantly and accurately.  Therefore, the use of ANNs are a powerful alternative 

approach to the available traditional statistical methods in modeling the fresh properties of 

SCC. 

3- The ANN model developed in this study demonstrated the ability to recognize and 

evaluate the effect of mix composition on slump flow, T50 and T60, V-funnel, Orimet and 

L-box blocking ratio.  The sensitivity analysis showed that the developed models for 

slump flow, T50 and T60, V-funnel, Orimet and L-box blocking ratio captured the effect of 

mix composition ingredients and the time of testing on the results.  Thus, it could be used 

to simulate mixes with tailor-made properties without the need to execute a large number 

of trial batches as it is current practice. 



4- The outcomes of this study are very promising.  Further enhancement of the ANN model 

can be achieved by using new data on fresh properties which can easily be used for a 

wider range of input variables by providing additional training sets. 
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