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Abstract 14	

Rice bran, a by-product of milling rice, is highly nutritious but contains very high 15	

levels of the non-threshold carcinogen inorganic arsenic (i-As), at concentrations 16	

around 1 mg/kg. This i-As content needs to be reduced to make rice bran a useful 17	

food ingredient. Evaluated here is a novel approach to minimizing rice bran i-As 18	

content which is also suitable for its stabilization namely, cooking bran in percolating 19	

arsenic-free boiling water. Up to 96% of i-As removal was observed for a range of 20	

rice bran products, with i-As removal related to the volume of cooking water used. 21	

This process reduced the copper, potassium, and phosphorus content, but had little 22	

effect on other trace- and macro- nutrient elements in the rice bran. There was little 23	

change in organic composition, as assayed by NIR, except for a decrease in the 24	

soluble sugar and an increase, due to biomass loss, in dietary fiber.  25	
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1. Introduction 29	

Rice bran has high concentration in micro- and macro nutrient elements, vitamins and 30	

soluble fiber, and is considered a good source of hypoallergenic protein (Zhang, 31	

Zhang, Wang, & Guo, 2012). It is becoming a popular ingredient in health-promoting 32	

value-added products, it is marketed as a superfood, and has been considered as a 33	

health food supplement for malnourished children in international aid programs 34	

among other applications (Nagendra Prasad MN, Kr, & Khatokar M, 2011; Qureshi, 35	

Sami, & Khan, 2002; Sun et al., 2008; Zhang et al., 2012). However, the realization 36	

that rice bran also contains high levels of the carcinogen inorganic arsenic (i-As) 37	

(Andrew A. Meharg et al., 2008; Sun et al., 2008), has stalled the development of the 38	

utilization of this otherwise very valuable product. 39	

 40	

Rice accumulates much higher levels of i-As than other cereals and foodstuff, in 41	

general, due to being cultivated in flooded soils (A. A. Meharg & Zhao, 2012; Sun et 42	

al., 2008; Williams et al., 2007). In rice grain most of the i-As is accumulated in the 43	

outer bran layers, the pericarp and the aleurone, having i-As concentrations as high as 44	

1 mg/kg (Andrew A. Meharg et al., 2008; Sun et al., 2008). The European Union has 45	

formulated regulations on the maximum levels of i-As in rice in order to reduce 46	

exposure, and the most restrictive one has been established at 0.1 mg/kg for rice 47	

destined for the production of food for infants and young children, the level of which 48	

has also been recently proposed as a maximum limit in infant rice cereals by the U.S. 49	

Food and Drug Administration (EC, 2015; FDA, 2016). The UN WHO has also set an 50	

advisory maximum level of i-As in polished rice grain at 0.2 mg/kg (WHO, 2014), 51	

which is also the EU standard. Fortification with rice bran has become popular in 52	

health/organic/whole-meal foodstuffs, and such rice bran fortified foods, such as 53	
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baby/toddler foods, tend to be elevated in i-As, leading them to have i-As 54	

concentrations above EU standards, for example (Signes-Pastor et al., 2016).  55	

 56	

Previous studies have shown that i-As in rice is quite soluble in cooking water, and 57	

that the larger the volume of cooking water used the greater the i-As removal (Raab, 58	

Baskaran, Feldmann, & Meharg, 2009). The method of cooking rice might enable i-59	

As mitigation, especially when low i-As cooking water is available (Carey, Jiujin, 60	

Gomes Farias, & Meharg, 2015). Carey et al. (2015) developed this observation to 61	

pioneer a novel approach to rice cooking to maximize i-As removal. Their findings 62	

showed that if rice was percolated with clean, i.e. i-As free, cooking water, up to 85% 63	

of i-As could be removed from rice grains while cooking. The percolated cooking 64	

water was either recycled (as steam then condensed to form percolating water) or 65	

discarded. In the study reported here the efficacy of such percolating cooking 66	

technologies in removing i-As from rice bran was trialed. Key to this study was that 67	

this cooking of whole rice bran had minimal impact on the beneficial nutritional 68	

qualities of bran such as fiber, protein and mineral nutrient content.  69	

 70	

2. Material and Methods 71	

2.1. Rice bran cooking 72	

Commercial rice bran samples (16) were purchased, including pure rice bran (n = 14) 73	

and rice bran water-soluble (n = 2) products. An off-the-shelf coffee percolator by 74	

Andrew James, with no adaptation, was used to cook rice bran, as per Carey et al. 75	

(2015). This type of coffee-maker provides a continual stream of percolating, near 76	

boiling, water through a filter unit. Here, the water reservoir was filled with 1.5 L of 77	

deionized water, which took 15 min. to fully discharge through the filter unit. In the 78	
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metal-mesh filter unit 20 g of bran was placed. The bran samples were then cooked in 79	

1- 4 15 min. cycles with the reservoir re-filled at the end of each cycle, water-to-rice 80	

bran ratios of which were 75:1, 150:1 and 300:1, respectively.  81	

 82	

2.2. Sample preparation and chemical analysis 83	

The raw and cooked rice bran samples were freeze-dried using a Christ Alpha 1-4 LD 84	

Plus, and then powdered using a Retch PM100. The powder was used for X-ray 85	

fluorescence (XRF) and near infrared (NIR) spectroscopy analyses. For arsenic 86	

speciation powdered sample, 0.1 g, was accurately weighed into 50 ml polypropylene 87	

centrifuge tubes and 10 ml of 1% concentrated nitric acid was added and left 88	

overnight. Then samples were microwave digested in a CEM MARS 6 instrument for 89	

30 min. at 95oC using a 3 stage slow heating program: to 55oC in 5 min. held for 10 90	

min., to 75oC in 5 min., held for 10 min. to 95oC in 5 min., held for 30 min. The 91	

digestate was centrifuged with a Sorvall Legend RT at 4,500 g and a 1 ml aliquot was 92	

transferred to a 2 ml polypropylene vial and 10 �l of analytical grade hydrogen 93	

peroxide was added to convert any arsenite to arsenate to facilitate subsequent 94	

chromatographic species separation by ion chromatography with mass spectrometric 95	

detection (IC-ICP-MS). All samples were analyzed in 2 batches including 3 blanks 96	

and 3 replicate samples of the certified reference material (CRM) NIST 1568b rice 97	

flour per batch. For total element analysis by inductively coupled plasma - mass 98	

spectrometric (ICP-MS) 2 ml of concentrated nitric acid and 2 ml of hydrogen 99	

peroxide were added into 50 ml polypropylene centrifuge tubes containing 0.1 g of 100	

powdered sample and left to stand overnight. The samples were microwave digested. 101	

The temperature was raised to 95oC in 5 min. and held for 10 min. and then to 135oC 102	

in 5 min. and held for 10 min. Finally the digest was taken up to 180oC in 5 min. and 103	
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maintained for 30 min. Samples were cooled to room temperature and then an internal 104	

standard (30 μl of 10 mg/kg rhodium) was added to the digestate and accurately 105	

diluted to 30 ml with deionized distilled water. Several blanks and samples of NIST 106	

1568b rice flour CRM were included per batch of total element analysis. 107	

 108	

A Thermo Scientific IC5000 ion chromatography (IC) system, with a Thermo AS7, 109	

2x250 mm column and a Thermo AG7, 2x50 mm guard column interfaced with a 110	

Thermo ICAP Q ICP-MS in collision cell mode was used to quantify arsenic 111	

speciation. A linear gradient mobile phase was carried out over 15 minutes starting at 112	

100% mobile phase of 20 mM ammonium carbonate and finishing at 100% mobile 113	

phase of 200 mM ammonium carbonate. The resulting chromatogram was compared 114	

with that for authentic standards; dimethylarsinic acid (DMA), i-As, 115	

monomethylarsonic acid (MMA), tetratmethylarsonium and arsenobetaine. DMA 116	

concentration series were used to calibrate the arsenic present under each 117	

chromatographic peak.  118	

 119	

Total elements were also measured using the Thermo ICAP Q but in direct solution 120	

acquisition mode. All elements reported were present both in calibration standards 121	

and in CRM NIST 1568b with only elements with good CRM recoveries reported. 122	

Additional elements were also analyzed by bench-top XRF (Rigaku CG), including 123	

samples of NIST 1568b rice flour CRM in each batch of samples. Only elements 124	

present in the CRM and with good analytical recoveries were presented. Rice bran 125	

composition was also analyzed with a Thermo near infrared (NIR) spectroscopy. Each 126	

rice bran samples was analyzed in triplicate and the mean value was used to calculate 127	

the percentage of compositional variation of individual samples.   128	
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 129	

2.3. Statistical analyses 130	

The median and range concentration of the main arsenic species in commercial rice 131	

bran samples were determined. Likewise, total elements concentration (Ca, Cu, Fe, 132	

Mn, P and S) and the percentage of the rice bran organic composition variation (fat, 133	

fiber, protein, starch and sugar) according to the cooking percolating water-to-rice 134	

bran ratio was also analyzed. The analysis of variance (ANOVA) and the Tukey’s 135	

range test were used to determine any significant differences in the main arsenic 136	

species and total elements concentration between groups according to the volume of 137	

percolating cooking water. All statistical analyses and plots were performed using the 138	

R Statistical Software (R Core Team, 2014). The limit of detection (LOD) was 139	

calculated as the mean of the blank concentrations plus three times the standard 140	

deviation of the blank concentrations multiplied by the dilution factor. The ½ LOD 141	

value was assigned for statistical analyses of the data when samples were below the 142	

LOD.  143	

 144	

3. Results 145	

The mean ± SE concentration and recovery of rice CRM flour NIST-1568b for 146	

arsenic species were: 0.099 ± 0.001 mg/kg and 107 ± 2% for i-As, 0.184 ± 0.007 147	

mg/kg and 102 ± 4% for DMA, and 0.010 ± 0.001 mg/kg and 89 ± 3% for MMA, 148	

based on N = 6. The arsenic species in the rice CRM had i-As, DMA and MMA 149	

certified at 0.092 ± 0.010 mg/kg, 0.182 ± 0.012 mg/kg, and 0.0116 ± 0.0035 mg/kg, 150	

respectively. The limit of detection (LOD) for arsenic speciation, calculated from 151	

DMA calibration, was 0.002 mg/kg. All samples presented were above the LOD for 152	

DMA and i-As, however, almost half of the rice bran samples analyzed had MMA 153	
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content below the LOD, and in this case ½ LOD was used in statistical analysis of the 154	

data. 155	

 156	

The predominant arsenic species in the commercial rice bran samples analyzed was i-157	

As, followed by DMA and MMA (Table 1). The median and range percentage of i-As 158	

in the entire commercial raw/uncooked rice bran dataset were 95.4% and 93.4% – 159	

97.7 %, respectively. The commercial rice bran water-soluble samples, obtained with 160	

the carbohydrases treatment (Qureshi et al., 2002), had 1.6-fold higher median i-As 161	

(0.916 mg/kg) than that found in uncooked pure rice bran (0.561 mg/kg). The DMA 162	

concentration in uncooked rice bran was about an order of magnitude lower than that 163	

of i-As, with a median of 0.025 mg/kg and a range from 0.013 to 0.055 mg/kg for the 164	

entire commercial uncooked rice bran dataset. Only ~half of the commercial raw rice 165	

bran dataset had traces of MMA higher than the LOD, with a median of 0.003 mg/kg 166	

ranging from <LOD to 0.006 mg/kg.  167	

 168	

The i-As concentration in cooked rice bran was significantly lower compared to that 169	

in the uncooked rice bran (p<0.001) (Table 2). This study shows that greater i-As 170	

removal from cooked rice bran can be achieved with greater water-to-rice bran ratio, 171	

but only up to a certain extent (Table 2 and Figure 1). The i-As concentration in 172	

cooked rice bran with 150:1 and 300:1 water-to-rice bran ratios did not differ 173	

statistically (Table 2). A median percentage of 68% and 76% of i-As could be 174	

removed at the highest water-to-rice bran ratios (150:1 and 300:1, respectively), and 175	

even higher than 90% in some individual samples (Figure 1). The DMA 176	

concentration in cooked rice bran was significantly lower compared with that in the 177	

uncooked rice bran (p<0.001), however, the volume of cooking water did not affect 178	



	 9

statistically the DMA concentration in the cooked rice bran (Table 2). A median 179	

percentage of 52%, 62% and 65% of DMA could be removed at 75:1, 150:1 and 180	

300:1 water-to-rice bran ratios, respectively (Figure 1). The cooking process did not 181	

affect the MMA concentration in the rice bran. The MMA traces found in the 182	

uncooked samples were still found in the cooked rice bran regardless of the volume of 183	

the cooking water tested.  184	

 185	

When a range of trace- and macro- elements were analyzed between uncooked and 186	

cooked rice bran with different volumes of cooking water, only copper (p = 0.002), 187	

potassium (p<0.001), and phosphorus (p<0.001) were significantly different, while 188	

calcium, iron, manganese, sulfur and zinc were non-significant (Table 2). The loss of 189	

copper, potassium and phosphorus during the cooking process was 37%, 54% and 190	

16%, respectively, regardless of cooking water volume tested, which did not 191	

statistically affect the concentration of these elements in the cooked rice bran (Table 192	

2).  193	

 194	

When the compositional variation in rice bran due to the cooking process with 195	

different volumes of water was explored only the fiber and the sugar content seemed 196	

to differ from the original content in the uncooked rice bran, while fat, protein and 197	

starch appeared to be stable throughout the cooking process regardless of the volume 198	

of cooking water (Figure 2). The fiber content in cooked rice bran had a median 199	

percentage increment of 14%, 35%, and 40% compared to that in uncooked rice bran 200	

when 75:1, 150:1 and 300:1 water-to-rice bran ratios were performed, respectively, 201	

increment of which is probably due to the overall rice bran biomass decrease caused 202	

during the cooking process. On the contrary, the relationship between fiber and sugar 203	
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had a negative correlation coefficient of -0.63, with a median percentage reduction of 204	

sugar content of 35%, 57%, and 82% according to the level of percolating cooking 205	

water volume. 206	

 207	

4. Discussion 208	

Rice bran has become a popular ingredient in “health-products” due to its positive 209	

nutritional aspects. However, rice bran contains high concentrations of i-As, up to 1.1 210	

mg/kg in this study here, which needs to be reduced to make rice bran suitable for the 211	

human consumption. Using a continuous flow of arsenic-free near boiling water 212	

percolated through pure rice bran enables an i-As removal from rice bran of up to 213	

96%, a higher percentage than that previously reported for whole-grain and polished 214	

rice samples where a maximum removal value of 85% was obtained for individual 215	

rice samples (Carey et al., 2015). This may be related to the larger cooking water-to-216	

rice bran ratio used in this study (i.e. 300:1) compared to that previously tested with 217	

rice (i.e. 12:1). A moderation of i-As removal efficiency from rice bran was described 218	

for the higher volumes of cooking water, reaching a plateau at a cooking water-to-rice 219	

bran ratio of 150:1. The i-As removal approach described here provides a novel 220	

solution to significantly reduce the i-As concentration in pure rice bran below the UN 221	

WHO advisory level and the maximum EU i-As limit for non-parboiled milled rice 222	

(0.200 mg/kg). A patented methodology to remove arsenic in rice bran protein has 223	

been previously developed in China; however, the patent differs from the approach 224	

detailed in this study focused on i-As removal from whole rice bran instead of from 225	

the subcomponent rice bran protein. In addition, the patented approach is for an 226	

industrial setting, and combines a static cooking chemical extraction with sodium 227	

hydroxide at pH 11.5 and a centrifugation step (China Faming Zhuanli Shenqing, 228	
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2013). Conversely, the approach described here can be applied from a 229	

home/homestead to an industrial setting, and only uses pure water in a continuous 230	

novel percolation cooking technique.  231	

 232	

The heat involved in cooking may stabilize the rice bran by destruction or inhibition 233	

of lipase – the enzyme that causes development of free fatty acids responsible for 234	

rancidity, which would save including an extra process to stabilize the rice bran 235	

(Nagendra Prasad MN et al., 2011). This remains to be tested along with the effect of 236	

the cooking process on the sensorial features of the final rice bran, i.e. texture and 237	

color; however, moist heat stabilization is one of the methods used in the normal rice 238	

bran processing before its use (Kim, Chung, & Lim, 2014; Lakkakula, Lima, & 239	

Walker, 2004; Patil, Kar, & Mohapatra, 2016).  240	

 241	

The removal approach reduced the copper, potassium and phosphorus content in the 242	

cooked rice bran; however, the concentrations of these elements were still very high 243	

compared to that found in rice (Carey et al., 2015), and if necessary, they could be 244	

refortified after cooking process. The i-As removal approach described here also 245	

reduced the soluble sugar content in favor of an increment of insoluble dietary fiber in 246	

treated rice bran, possibly due to the decrease in biomass. This could help in creating 247	

healthier food products due to the cooked brans lower sugar and higher fiber content 248	

(The Lancet, 2016; Wang, Suo, de Wit, Boom, & Schutyser, 2016). Neither vitamins 249	

nor other bioactive compounds removed due to rice bran processing with percolating 250	

near boiling water were assessed here, and thus further studies are required to address 251	

this, especially for those water-soluble and thermo sensitive, i.e B-vitamins group and 252	

phenolic compounds, which rice bran contains in notable amounts (Kim & Lim, 2016; 253	
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Patil et al., 2016; Tuncel, Yilmaz, Kocabiyik, & Uygur, 2014). Again, if key vitamins 254	

are remove, these could be refortified if necessary. 255	

 256	

The approach studied here demonstrates that the continual percolating of near boiling 257	

cooking water flow principle is an efficient i-As whole rice bran removal method. The 258	

high volumes of water used here could be greatly reduced if the cooking water was 259	

recycled through distillation by using the previously validated for i-As removal from 260	

rice grain (Carey et al., 2015).  261	

 262	
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Table 1: Inorganic arsenic and DMA concentration in commercial rice bran, and 335	

percentage of inorganic arsenic (median (min – max)). *RB = Pure rice bran and RB 336	

WS = Rice bran water-soluble. 337	

Commercial 
RB 

N i-As (mg/kg d.w.) DMA (mg/kg d.w.) i-As % 

RB 14 
0.561 (0.376 - 

0.818) 
0.025 (0.013 - 

0.032) 
95.5 (93.4 - 97.7) 

RB_WS 2 
0.916 (0.753 - 

1.079) 
0.041 (0.028 - 

0.055) 
95.6 (95.0 - 96.3) 

          

RB_1 3 
0.668 (0.664 - 

0.818) 
0.016 (0.013 - 

0.018) 
97.6 (96.5 - 97.7) 

RB_2 4 
0.570 (0.535 - 

0.626) 
0.025 (0.024 - 

0.025) 
95.6 (95.4 - 95.9) 

RB_3 2 
0.533 (0.504 - 

0.562) 
0.027 (0.024 - 

0.030) 
94.5 (94.3 - 94.7) 

RB_4 1 
0.583 (0.583 - 

0.583) 
0.027 (0.027 - 

0.027) 
94.8 (94.8 - 94.8) 

RB_5 1 
0.561 (0.561 - 

0.561) 
0.030 (0.030 - 

0.030) 
94.1 (94.1 - 94.1) 

RB_6 2 
0.521 (0.484 - 

0.559) 
0.030 (0.029 - 

0.032) 
93.5 (93.4 -93.6) 

RB_7 1 
0.376 (0.376 - 

0.376) 
0.017 (0.017 - 

0.017) 
95.6 (95.6 - 95.6) 

RB_8_WS 1 
1.079 (1.079 - 

1.079) 
0.055 (0.055 - 

0.055) 
95.0 (95.0 - 95.0) 

RB_9_WS 1 
0.753 (0.753 - 

0.753) 
0.028 (0.028 - 

0.028) 
96.3 (96.3 - 96.3) 

 338	

 339	
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Table 2: Arsenic speciation (i-As and DMA), and total calcium, copper, potassium, iron, manganese, phosphorus, sulfur, and zinc in raw and 

cooked rice bran according to the cooking time (median (min – max)).  

Water:Rice ratio N i-As (mg/kg) DMA (mg/kg) Ca (mg/kg) Cu (mg/kg) K (mg/kg) 

Uncooked 7 0.601 (0.535 - 0.818)a  0.025 (0.013 - 0.030)a 515.0 (402.0 - 769.0) 
10.60 (9.350 - 

13.90)a 
15,300 (14,000 - 

19,700)a 

75:1 7 0.374 (0.277 - 0.526)b 0.012 (0.006 - 0.020)b 379.0 (299.0 - 787.0) 
6.980 (6.380 - 

10.00)b 
8,430 (8,030 - 

12,000)b 

150:1 7 0.212 (0.032 - 0.376 )c 0.007 (0.003 - 0.014)b 489.0 (228.0 - 661.0) 
6.860 (5.090 - 

11.10)b 
6,720 (4,040 - 

10,800)b 

300:1 4 0.167 (0.028 - 0.260)c 0.006 (0.003 - 0.011)b 445.5 (389.0 - 567.0) 
6.195 (5.850 - 

9.890)b 
4,805 (1,890 - 

10,500)b 
p-value <0.001 <0.001 0.543 0.002 <0.001 

Water:Rice ratio N Fe (mg/kg) Mn (mg/kg) P (mg/kg) S (mg/kg) Zn (mg/kg) 

Uncooked 7 84.90 (79.90 - 131.0) 276.1 (214.7 - 417.1) 
18,679 (17,131 - 

20,703)a 
1,530 (1,340 - 1,830) 60.60 (46.00 - 73.50) 

75:1 7 71.50 (62.30 - 91.40) 291.2 (231.4 - 408.6) 
16,238 (14,649 - 

17,376)ab 
1,390 (1,250 - 1,840) 52.90 (38.60 - 56.00) 

150:1 7 75.50 (53.40 - 149.0) 303.5 (233.5 - 427.1) 
14,776 (11,064 - 

17,237)b 
1,450 (1,090 - 2,120) 54.30 (35.90 - 84.50) 

300:1 4 67.25 (51.00 - 118.0) 382.8 (319.4 - 424.8) 
14,494 (11,151 - 

16,536)b 
1,235 (1,010 - 2,090) 48.50 (34.50 - 77.40) 

p-value   0.504 0.362 <0.001 0.635 0.601 
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Figure 1: Inorganic arsenic and DMA concentration in rice bran, and removal 

percentage according to water-to-rice bran ratio. 
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Figure 2: Percentage of compositional variation according to the water-to-rice bran 

ratio. Each point at 75:1 and 150:1 ratios shows the median percentage obtained from 

7 rice bran samples, respectively. Each point at 300:1 ratio shows the median 

percentage obtained from 4 rice bran samples.   

 

 


