

Linking Genes to Microbial Biogeochemical Cycling Lessons from Arsenic

Zhu, Y.-G., Xue, X.-M., Kappler, A., Rosen, B. P., & Meharg, A. A. (2017). Linking Genes to Microbial Biogeochemical Cycling Lessons from Arsenic. *Environmental science & technology*, *51*(13), 7326-7339. https://doi.org/10.1021/acs.est.7b00689

Published in:

Environmental science & technology

Document Version: Peer reviewed version

Queen's University Belfast - Research Portal:

Link to publication record in Queen's University Belfast Research Portal

Publisher rights

Copyright 2017 American Chemical Society. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights

Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access

This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

1	Linking genes to microbial biogeochemical cycling: lessons from arsenic
2	Yong-Guan Zhu, ^{†, ‡, #, *} Xi-Mei Xue, ^{†, #} Andreas Kappler, ¹ Barry P Rosen, [§] Andrew A
3	Meharg [⊥]
4	[†] Key Laboratory of Urban Environment and Health, Institute of Urban Environment,
5	Chinese Academy of Sciences, Xiamen, China
6	‡ State Key Laboratory of Urban and Regional Ecology, Research Center for
7	Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
8	Geomicrobiology, Center for Applied Geosciences, University of Tübingen,
9	Tübingen 72076, Germany
10	[§] Department of Cellular Biology and Pharmacology, Herbert Wertheim College of
11	Medicine, Florida International University, Miami, FL 33199, U.S.A.
12	[⊥] Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5HN,
13	United Kingdom
14	
15	[#] These authors contributed equally to the article.
16	*Address correspondence to Yong-Guan Zhu
17	Address: Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei
18	Road, Xiamen 361021, China, Phone number: +86(0)592 6190997, Fax number:
19	+86(0)592 6190977, Email address: ygzhu@rcees.ac.cn
20	

21 Abstract

22 The biotransformation of arsenic is highly relevant to the arsenic biogeochemical cycle. Identification of the molecular details of microbial pathways of arsenic 23 biotransformation coupled with analyses of microbial communities by meta-omics can 24 25 provide insights into detailed aspects of the complexities of this biocycle. Arsenic transformations couple to other biogeochemical cycles, and to the fate of both 26 nutrients and other toxic environmental contaminants. Microbial redox metabolism of 27 iron, carbon, sulfur and nitrogen affects the redox and bioavailability of arsenic 28 species. In this critical review we illustrate the biogeochemical processes and genes 29 30 involved in arsenic biotransformations. We discuss how current and future metagenomic-, metatranscriptomic-, metaproteomic-, 31 and metabolomic-based methods will help to decipher individual microbial arsenic transformation processes, 32 33 and their connections to other biogeochemical cycle. These insights will allow future use of microbial metabolic capabilities for new biotechnological solutions to 34 environmental problems. To understand the complex nature of inorganic and organic 35 arsenic species and the fate of environmental arsenic will require integrating 36 systematic approaches with biogeochemical modeling. Finally, from the lessons 37 38 learned from these studies of arsenic biogeochemistry, we will be able to predict how the environment changes arsenic, and, in response, how arsenic biotransformations 39 change the environment. 40

42 **1. Introduction**

Biogeochemical cycles are interconnected through redox reactions and other 43 biotransformations. ¹ Biogeochemical processes such as the cycling of a particular 44 45 element are likely to be mediated by multiple microbes and are often linked to other 46 biogeochemical processes. For example, redox changes of arsenic are mediated by diverse arsenate (As(V))-reducing and arsenite (As(III))-oxidizing microbes. Arsenic 47 biogeochemical cycling is often coupled to the cycling of iron (Fe), 2 carbon (C) 3 and 48 nitrogen (N), ⁴ and to the dynamics of elements/ions associated with the arsenic redox 49 cycle, such as sulfur (S). ⁵ Coupling of biogeochemical cycles has recently received 50 attention. The study of coupled biogeochemical cycles offers a scientific basis for 51 major current environmental problems.⁶ 52

The proteins catalyzing physiological processes in living organisms are 53 influenced by geological, physical and chemical forces and therefore continuously 54 evolve and redistribute chemical species involved in biogeochemical cycles. Genetic 55 analysis is the key to understand the arsenic biogeochemical cycle. Once the genes 56 57 associated with the reactions and the environmental signals that affect gene expression are understood, we will be able to predict how microbial metabolism influences 58 59 arsenic biogeochemical cycling. In this review, we focus on the known genes involved in arsenic biotransformations and the effect of other elements on arsenic 60 61 biogeochemistry. We highlight the effects of other elements on arsenic metabolism and the current state of meta-omics research in microbial arsenic metabolism. Finally, 62 we discuss how integration of meta-omics information into biogeochemical models 63 64 can allow us to predict the possible biotransformation of other elements.

66 2. Arsenic metabolism: from genes to biogeochemical processes

Organisms have evolved various strategies to transform arsenic for detoxification or
energy metabolism. ⁷ An overview about the enzymatic pathways for arsenic
biotransformations is presented in Figure 1, and related microbial genes are
summarized in Table 1.

71 **2.1** The arsenic redox cycle

The earliest microorganisms evolved in an anoxic environment, where the 72 predominant arsenic species was most probably reduced As(III), with little oxidized 73 As(V). The physiological activities of the earliest microorganisms were, therefore, 74 largely driven by anaerobic metabolic processes, ⁸ and we propose that As(III) 75 76 bioavailability was a driving force for the evolution or acquisition of genes encoding anaerobic respiratory pathways. ³³ For example, the photosynthetic purple sulfur 77 bacterium Ectothiorhodospira PHS-1 carries out anoxygenic photosynthesis using 78 As(III) as an electron donor in the light ^{34, 35, 36} and uses As(V) as an electron acceptor 79 in the dark. ³⁷ The chemolithoautotrophic As(III)-oxidizer Alkalilimnicola ehrlichii 80 MLHE-1 utilizes As(III) as an electron donor and nitrate as an electron acceptor in 81 energy-generating respiratory chains. ³⁸ Microorganisms with similar metabolic 82 versatility probably evolved quite early. These microbes could cope with extreme 83 84 growth conditions, such as high concentrations of As(III) or low oxygen, similar to 85 those that existed in an primordial anoxic biosphere.

Since As(III) was probably the primary bioavailable arsenic species on the early anoxic Earth, it was the inevitable choice for organisms to utilize As(III) as an electron donor to produce energy. ³⁹ As(III) oxidation is catalyzed by the enzyme As(III) oxidase, which is composed of two different subunits, a large subunit (α) having molybdopterin and a [3Fe-4S] cluster (AioA) and a smaller subunit (β)

incorporating a Rieske-type [2Fe-2S] cluster (AioB). ⁴⁰ The cluster of *aioA* and *aioB* 91 genes (aio operon) usually consists of aioS and aioR genes, encoding for a 92 two-component signal transduction pair, AioS (sensor histidine kinase)/AioR 93 94 (transcriptional regulator), which regulates expression of aio genes via recognizing As(III). ⁹ The operon sometimes has an aioX gene that encodes an As(III)-binding 95 protein involved in As(III)-based signaling and regulation of As(III) oxidation. ¹² a 96 cytC gene encoding a cytochrome c that is required for efficient As(III) oxidation in 97 Ochrobactrum tritici SCII24, ⁴¹ or a moeA gene encoding MoeA protein that 98 synthesizes the molybdenum cofactor of AioAB oxidase. ⁹ Recently, a new type of 99 As(III) oxidase, ArxA that exhibited both As(V) reductase and As(III) oxidase 100 activities in vitro, ¹⁰ was identified in A. ehrlichii MLHE-1. ⁴² In Ectothiorhodospira 101 sp. PHS-1 these genes code for As(III) oxidation coupled to photosynthesis .^{35, 11} In 102 addition to arxA, the MLHE-1 and PHS-1 arx operons, contain four other genes arxB2, 103 104 arxB, arxC, and arxD, that encode two proteins with [4Fe-4S] centers, a membrane anchoring and quinol oxidoreductase subunit and a TorD-like molybdoenzyme 105 chaperone respectively. ¹¹ An adjacent and divergent gene cluster, *arxXSR*, encodes 106 putative regulatory proteins, a periplasmic substrate-binding protein specific for 107 108 phosphate (ArxX), a two-component histidine kinase sensor (ArxS), and a response regulator (ArxR). ¹¹ ArxA has higher sequence similarity to the ArrA subunit than to 109 110 AioA, and fills the phylogenetic gap between As(III) oxidases and As(V) reductases. 42, 11 111

112 Note that As(III) oxidation by anaerobes would have produced As(V) in the 113 absence of an oxygen-containing atmosphere, which opened a niche for 114 As(V)-respiring microbes prior to the Great Oxidation Event (GOE). ³³ Dissimilatory 115 As(V)-respiring prokaryotes (DARPs) evolved pathways to take advantage of the 116 appearance of As(V) as a terminal electron acceptor. This new energy-generating respiratory chain utilized the respiratory As(V) reductase, ArrAB, that reduce the less 117 toxic As(V) to the more toxic and potentially more mobile As(III). ^{40, 43, 44} ArrAB is a 118 heterodimer consisting of a large catalytic subunit (ArrA) and a small subunit (ArrB). 119 ^{15, 16} The arr operon also includes arrC, arrD, arrS, and arrR. Their gene products are 120 ArrC, a membrane-bound As(V) reductase subunit, ArrD, a As(V) reductase chaperon, 121 ArrS, a sensor histidine kinase and ArrR, a transcriptional regulator respectively. ¹⁷ A 122 phylogenetic analysis was conducted to search for molybdenum-bis (pyranopterin 123 124 guanine dinucleotide)-containing catalytic subunits of representative enzymes. This complex iron sulfur molybdoenzyme family includes Arr, Aio, Arx, polysulfide 125 126 reductase, and nitrate reductase. The results indicate that Arr clusters most likely evolved from polysulfide reductases.¹⁷ 127

After the GOE, As(III) in oceans mostly oxidized to As(V), a new environmental 128 toxin. As(V) enters the cells of most organisms adventitiously via phosphate uptake 129 systems. ⁴⁵ As a consequence, early life had to evolve novel strategies for coping with 130 new (potentially toxic) arsenic species. As described in more detail below, nearly 131 every extant microbe has ArsB or Acr3 efflux permeases for As(III) detoxification, so 132 it is reasonable to assume that organisms that arose before the GOE already had an 133 134 As(III) efflux system. When As(V) became the predominant soluble species, all cells had to do was to reduce As(V) to As(III), the substrate of ArsB or Acr3, and they 135 would become resistant to As(V). A number of independently-evolved As(V)136 reductases arose in a variety of organisms using a small molecular mass protein As(V) 137 reductases (one of several types of ArsC or Acr2 reductases). The ArsC system 138 conferred by the ars operon is the most well studied mechanism of arsenic 139 detoxification and resistance (for details see the previous review). ¹⁸ Most recently, a 140

141 glutathione S-transferase B (GstB) was found to mediate an alternate pathway which conferred As(V) resistance to E. coli mutant cells lacking arsC by directly reducing 142 As(V) to As(III).²¹ These enzymes all use small molecule proteins such as 143 glutaredoxin (Grx) or reduced glutathione (GSH) coupled to thioredoxin (Trx) as 144 electron donor. The Acr2 reductases evolved from proteins that incorporated the 145 phosphate binding loop of phosphorprotein tyrosine phosphatases related to the cell 146 phosphatase CDC25. ⁴⁶ These phosphatase can be converted into As(V) reductases by 147 just a few mutations, ⁴⁷ indicating a facile evolutionary path. 148

149 **2.2 The arsenic methylation cycle**

In addition to oxidation and reduction of inorganic arsenic species, pathways for 150 including 151 biotransformation of arsenic, methylation and demethylation, 152 organoarsenical degradation, evolved in early organisms. Interest in arsenic biomethylation began in 1800's with the observation that inorganic arsenic 153 compounds used as wallpaper pigments were converted into Gosio gas 154 155 (trimethylarsine) by fungi. More recent reports of methylated arsenical showed that arsenic methylation was widespread in the environment and detected in bacteria, ⁴⁸ 156 cyanobacteria, ⁴⁹ algae, ²³ protozoa. ⁵⁰ Arsenic methylation is a common stratagem to 157 detoxify arsenic. The highly toxic trivalent products are rapidly oxidized 158 nonenzymatically in air to the less toxic pentavalent methylated arsenic species. Also, 159 160 gaseous end-products such as trimethylarsine will emit to air, thus removing the product. Methylation is catalyzed by the enzyme As(III) S-adenosylmethionine (SAM) 161 methyltransferase (EC 2.1.1.137), designated as AS3MT in animals and as ArsM in 162 microorganisms. Expression of typical prokaryotic and archaeal arsM genes are 163 regulated by the As(III)-responsive transcriptional repressor ArsR, ²⁰ consistent with 164 arsenic methylation being a detoxification pathway in the microbes. Expression of 165

arsM in some cyanobacteria appears to be constitutive, ⁵¹ indicating that alternate 166 167 detoxification pathways are used by microorganisms in which the expression of *arsM* is not regulated. ⁵² 168

The degradation of environmental organoarsenicals has been documented for 169 some time, 53, 54 while few molecular mechanisms for these reactions have been 170 171 demonstrated. Recently, a two-step pathway of MSMA reduction and demethylation was elucidated. 55 Although no reductases of pentavalent organoarsenicals have been 172 identified as yet, the enzyme, ArsI, which catalyzes demethylation of trivalent 173 174 organoarsenicals, was identified and characterized from the environmental isolate bacterium *Bacillus* sp. MD1²⁴ and from the cyanobacterium *Nostoc* sp. 7120. ⁵⁶ ArsI, 175 176 a non-heme iron-dependent dioxygenase with C-As lyase activity, cleaves the C-As 177 bond in MAs(III), trivalent roxarsone, and other trivalent aromatic arsenicals. Putative ArsI orthologs were found only in bacterial species, suggesting that alternate 178 pathways of organoarsenical demethylation might exist in other organisms.²⁴ 179

180

2.3 The organoarsenical cycle

The arsenic concentration in seawater is around 1 to 2 µg per liter, mainly inorganic 181 arsenic that is usually transformed into complex organoarsenical compounds by 182 marine organisms. ⁵⁷ Arsenosugars, first identified in 1981, ⁵⁸ are commonly detected 183 water-soluble arsenic species present in marine algae; arsenobetaine is the most 184 abundant arsenic species in the majority of marine animals. ⁵⁷ More complex 185 organoarsenicals have been identified with the improvement of analytical techniques 186 in recent years. Since the structure of an arsenosugar phospholipid (AsPL) from a 187 brown alga Undaria pinnatifida was first identified, ⁵⁹ AsPL has been found in algae 188 ⁶⁰ and cyanobacteria. ⁶¹ Arsenic-containing fatty acids (AsFA) that were first 189 identified in cod liver oil ⁶² have now been found in algae ⁶³ and various fish species. 190

^{64, 65} AsHC that were first reported in capelin ⁶⁶ have been detected in fish ^{64, 65} and 191 algae. ⁶⁰ A new class of arsenolipids, trimethylarsenio fatty alcohols (TMAsFOH), 192 was reported in Capelin oil. 67 Two new groups of arsenolipids, arsenic-containing 193 phosphatidylcholines (AsPC) and arsenic-containing phosphatidylethanolamine 194 (AsPE) from herring caviar, were characterized. ⁶⁸ In total, more than 20 arsenosugars 195 196 and 70 arsenolipids have been identified in marine organisms that live in low phosphate and high salt environments. These organoarsenicals are not toxic for the 197 marine plants and animals, but their function in these marine organisms is not known. 198 199 Phytoplankton can substitute sulfur- and nitrogen-containing membrane lipids for membrane phospholipids, ⁶⁹ arsenolipids might be used in membranes in place of 200 201 phospholipids due to the more similarity of As(V), than sulfate and nitrate, to 202 inorganic phosphate. Thus As(V) could be used as a phosphate-sparing substitute in phosphate-limiting environments. A recent study on Ectocarpus siliculosus that was 203 204 found to produce more arsenosugar phospholipids under low-phosphate than under normal phosphate conditions ⁷⁰ supports this hypothesis. 205

These organoarsenicals may be toxic to organisms that cannot biosynthesize them. *In vitro* toxicological characterization of three arsenic-containing hydrocarbons showed that cytotoxicity of the arsenic-containing hydrocarbons was comparable to that of As(III) for cultured human bladder and liver cells, ⁷¹ and arsenolipids were metabolized by humans to dimethylated arsenical species (DMAs) and other small molecular arsenic compounds, then excreted in the urine. ^{72, 73}

Although several potential pathways have been proposed for the synthesis of complex organoarsenicals, ⁸ few genes involved in these biotransformation have been identified. Even less is known about the degradation of these organoarsenicals, and more studies are needed on this front.

216 **2.4 The arsenic thiolation cycle**

Thioarsenates (H₃AsS_nO_{4-n}) are the dominant arsenic species in alkaline, arsenic-rich, 217 sulfidic environments. These play a significant role in the arsenic biochemical cycle in 218 sulfidic geothermal environments. ^{74, 75, 76} Thioarsenates are transformed to As(V) 219 and/or As(III) via exposing to oxidizing agents or increased pH, ⁷⁷ by biological 220 conversion by sulfur-oxidizing bacteria,^{75, 78} or by abiotic decomposition 221 (desulfidation) with subsequent biological oxidation. 77, 79 Thioarsenates contain 222 reduced S^{2-} and oxidized As(V). They can serve both as electron donors and electron 223 224 acceptors. For example, monothioarsenate can be used as an electron donor by Thermocrinis ruber OC 14/7/2, ⁸⁰ and for anoxygenic photosynthesis by phototrophic 225 purple sulfur bacteria growing in an alkaline environment.⁸¹ Recently, the 226 haloalkaliphilic bacterium MLMS-1 can grow chemolithotrophically by oxidizing the 227 S^{2-} of monothioarsenate to S^{0} or SO_{4}^{2-} , while concurrently reducing As(V) to As(III).

S²⁻ of monothioarsenate to S⁰ or SO₄²⁻, while concurrently reducing As(V) to As(III). No. 78 In summary, various microbes have evolved to utilize thioarsenates that are widespread in sulfidic environments.

231 **2.5 Arsenic efflux pathways**

The best way to deal with toxic arsenicals in cells is acquisition of an efficient efflux 232 233 system. As(III) efflux systems have been intensively studied in both microbes and higher organisms. ^{82, 83} As(III) efflux in most bacteria is mediated by ArsB in an 234 235 energy-dependent process, driven in Staphylococcus aureus by the membrane potential⁸⁴ and in *E. coli* by ATP hydrolysis that ArsA binds to ArsB to an 236 ATP-driven arsenic-specific pump.²⁶ In the legume symbiont S. meliloti, an 237 aquaglyceroporin (AqpS), instead of ArsB, has been identified to extrude As(III) from 238 cells. ²⁷ Acr3 has been shown to be an As(III)-efflux transporter in both bacteria and 239 yeast, and provides a pathway for As(III) extrusion from cells. ¹⁹ In fact, genes for 240

Acr3 are more wide-spread in bacteria and archaea than are *arsB* genes. The cytosolic
As(III)/glutathione complex sequestered into vacuoles by an ABC-type transporter,
Ycf1p (yeast cadmium factor protein), is the second pathway for As(III)
detoxification in yeast *S. cerevisiae*. ²⁸

Moreover, a novel mechanism for As(V) resistance was identified in a variety of 245 microbes including *Pseudomonas aeruginosa*.²⁹ In these bacteria there are two genes 246 that always go together, one encoding a typical glyceraldehyde-3-phosphate 247 dehydrogenase (GAPDH) and the second one, called arsJ, that encodes an 248 organoarsenical efflux permease (ArsJ). GAPDH uses As(V) and glyceraldehyde 249 250 3-phosphate form the extremely unstable organoarsenical to 251 1-arsenso-3-phosphoglycerate, which is extruded from cells by ArsJ and immediately 252 breaks down into As(V) and 3-phosphoglycerate. The net reaction is effectively As(V) extrusion, and the coupled reaction confers As(V) resistance to these microbes, the 253 254 only known efflux pathway for As(V). Meanwhile the bacterial permease, ArsP, from Campylobacter jejuni, was demonstrated to be an efflux system specific for trivalent 255 organoarsenicals. ³⁰ It is more selective for the ancient organoarsenical MAs(III) than 256 for the recently anthropogenically-developed antimicrobial aromatic arsenical growth 257 promoters such as trivalent roxarsone. More and more arsenic reductases and trivalent 258 259 arsenic-specific transporters identified show that arsenic reduction and efflux play an 260 important role in arsenic biogeochemical cycling.

261

262 **3.** Coupling of arsenic biogeochemical cycling to other elements

Any biogeochemical process, such as the cycling of a particular element, is likely to be mediated by more than one organism, and often linked to other fundamental biogeochemical processes. Arsenic biotransformations are often coupled to the cycling of C, Fe, S and N. ^{85, 2, 86} The effect of turnover of these elements on microbes
involved in arsenic biogeochemical cycling is summarized in Figure 2 which contains
data based on previous studies ^{8, 87, 88, 89} and as described below.

269 **3.1** The effects of iron on arsenic biogeochemical cycling

270 The chemical speciation of arsenic and arsenic mobility in natural environments are strongly dependent on redox potential and pH. Under oxic conditions, As(V) is the 271 predominated arsenic species, present mainly as H₂AsO₄⁻ at acid pH or HAsO₄²⁻ at 272 alkaline pH. In anoxic environments, arsenic occurs primarily as reduced As(III) 273 (As(OH)₃ at neutral pH or H₂AsO₃⁻ at alkaline pH), and more mobile than As(V). ⁹⁰ 274 275 Moreover, pH will impact arsenic interactions with Fe, the sorption of As(V) onto amorphous iron oxide and goethite is higher than that of As(III) below pH 5-6, As(V) 276 277 and As(III) sorption onto iron oxide are both relatively high at neutral pH, As(III) is more easily adsorbed to iron oxide than As(V) above pH 7-8. 91 278

Transformation of arsenic-bearing Fe mineral phases strongly affects the bioavailability of arsenic within soils and aquifers due to direct and indirect interactions between the arsenic and Fe cycles including mineral formation, transformation, dissolution and redox reactions. ^{89, 92, 93, 94} Previous studies from our laboratory showed that Fe plaque consisting of Fe(III) (oxyhydr)oxides, which was induced artificially through adding ferrous iron in solution to paddy soils, has high affinity for As(V), and reduced arsenic uptake by rice. ^{95, 96, 97}

Fe(III)-reducing bacteria modulate arsenic mobility in the rhizosphere. ^{98, 99, 100} Dissimilatory reduction of Fe(III) (oxyhydr)oxides to Fe(II) by dissimilatory iron-reducing bacteria (DIRB) can result either in the release of As(V) from poorly crystalline or more crystalline ferric minerals as well as from sorption sites within sediments, ¹⁰¹ or in the binding of arsenic to the formed Fe(II) minerals. ^{102, 103, 104, 105,}

¹⁰⁶ DIRB are commonly present in rice paddy soil, and mediate dissimilatory 291 reduction of Fe(III) on the rice root-plaque. ¹⁰⁷ A study on the role of DIRB in arsenic 292 release under a range of biogeochemical regimes indicated that Fe(III) reduction was 293 294 stimulated by addition of acetate as a potential electron donor that resulted in a marked increase in the number of DIRB, reduction of As(V) to As(III), and arsenic 295 release after Fe(III) reduction. ¹⁰⁰ If DARPs were used as Fe(III)-reducers, *Shewanella* 296 sp. ANA-3 ¹⁰⁸ or *Sulfurospirillum barnesii* ¹⁰⁹ could release both As(III) and Fe(II) 297 from ferrihydrite containing As(V) by reducing solid-phase As(V) and Fe(III). 298 299 Eventually, most of the ferrihydrite matrix was liberated as Fe(II) and As(III) if sufficient organic electron donor was present.¹¹⁰ There is more aluminum in the crust 300 than iron. However, S. barnesii does not reductively dissolve the As(V)-aluminum 301 hydroxide precipitate, ¹¹¹ so we did not include a detailed description of the effect of 302 303 aluminum on arsenic biogeochemical cycling.

In addition to Fe(III) reduction that has the potential to mobilize or immobilize 304 arsenic depending on geochemical conditions that lead to the formation of either 305 dissolved Fe²⁺ or Fe(II) minerals, the formation of Fe(III) minerals under 306 Fe(II)-oxidizing conditions has the potential to significantly immobilize arsenic and 307 thus to lower its bioavailability. 112, 113 In particular for nitrate-reducing 308 Fe(II)-oxidizing bacteria it has been shown that they form poorly soluble Fe(III) 309 minerals and efficiently co-precipitate arsenic (Figure 2). 112, 113, 114 Besides 310 nitrate-dependent Fe(II) oxidation, also microaerophilic Fe(II) oxidation has the 311 potential to influence arsenic mobility and could even be used in biotechnical 312 applications for arsenic removal, e.g. in drinking water filters ¹¹⁵ although it has been 313 shown that in commercial drinking water filters the formation of iron biominerals by 314 Fe(II)-oxidizing bacteria lowers arsenic removal from the water. ¹¹⁶ Moreover, a 315

thermo-acidophilic iron-oxidizing archaeon *Acidianus brierleyi*, has been used to
immobilize As(III) in the copper refinery process by producing thermodynamically
stable crystalline scorodite (FeAsO4·2H₂O).¹¹⁷

319 **3.2** The effects of sulfur on arsenic biogeochemical cycling

More than 200 different arsenic-containing minerals have been found in the Earth's crust, and 20% are sulfides and sulfosalts. ¹¹⁸ The behavior of arsenic is affected by abiotic or biological redox of sulfur, which can either release or immobilize arsenic. ^{114, 119} Abiotic sulfide, a strong reductant under sulfate-reduced conditions, plays a critical role in arsenic solubility by forming pyrite (FeS₂), realgar (AsS), orpiment (As₂S₃), ¹²⁰ arsenopyrite (FeAsS), ¹²¹ or by reducing As(V). ¹²²

In addition to abiotic factors, sulfate-reducing bacteria (SRB) also cause dramatic 326 changes in Fe, sulfide and arsenic species by generating hydrogen sulfide ¹²³ or 327 elemental sulfur from sulfate, ⁵ or by localized reprecipitation of released arsenic as 328 As₂S₃¹²⁴ or FeAsS, which have low solubility. ¹²⁵ Sulfur-oxidizing bacteria have the 329 potential to immobilize arsenic by using free or arsenic-bound sulfur as an electron 330 donor to directly or indirectly transform As(III) and thioarsenates to As(V),⁷⁵ or 331 reduce As(V) 126, 127 In brief, transformations involving sulfur have the potential to 332 significantly impact the fate of environmental arsenic. 333

334 **3.3** The effects of N on arsenic biogeochemical cycling

Nitrate is an ecologically significant oxidant that can support microbial oxidation of As(III) in the absence of oxygen. The first evidence that microbes are capable of linking anoxic As(III) oxidation to denitrification came from a field study in anoxic lake water columns. ⁴ The absence or presence of nitrate affected the redox state of arsenic. As(III) was present where nitrate was depleted, but As(V) was the dominant species during anoxic nitrate-rich periods. Subsequently, a nitrate-dependent As(III) oxidation bacterium *A. ehrlichi* strain MLHE-1 was found to be capable of coupling
As(III) oxidation with partial denitrification of nitrate to nitrite. ^{38, 128} Two other
anoxic chemolithoautotrophic strains, *Azoarcus* strain DAO1 and *Sinorhizobium*strain DAO10, were able to oxidize As(III) and fix CO₂ via complete denitrification of
nitrate to dinitrogen gas. ¹²⁹ Biological nitrate-dependent As(III) oxidation is
widespread in the environment, and potentially plays a significant role in arsenic
biogeochemical cycling. ¹³⁰

As mentioned above, nitrate also influences the bioavailability and mobility of 348 arsenic indirectly by linking nitrate reduction to Fe(II) oxidation. Previous studies 349 showed tight coupling between N, Fe, and arsenic in paddy soil. ⁸⁵ Addition of nitrate 350 reduced arsenic uptake by rice probably because i) the nitrate inhibited/reduced Fe(III) 351 352 reduction leading to less arsenic mobilization and ii) nitrate-dependent Fe(II)-oxidizing bacteria stimulated Fe(II) oxidation, which led to arsenic 353 co-precipitation with Fe(III) minerals in soil. Nitrate strongly affects arsenic cycling 354 under anoxic conditions in nitrate-rich Upper Mystic Lake by microbially catalyzing 355 As(III) to more particle-reactive As(V) and oxidizing Fe(II) to arsenic-sorbing 356 particulate ferric oxides. ⁴ Microbial nitrate-dependent Fe(II) oxidation in 357 groundwater, ¹³¹ freshwater sediments ¹³² and marine sediments ¹³³ has the potential to 358 contribute to the reduction of arsenic mobility in various ecosystems. 359

360 **3.4 The effects of organic matter on arsenic biogeochemical cycling**

<u>Natural organic matter</u> (NOM) is widely distributed in the environment. NOM consists of heterogeneous mixtures of organic compounds with various structural and functional properties, ¹³⁴ that influence the fate of arsenic by competitive adsorption and redox reactions, ^{135, 136, 137} and by formation of arsenic-bearing organic-metal-complexes and mineral colloids. ^{138, 139} NOM molecules have 366 combinations of carboxylic, amino, sulfhydryl, hydroxyl, esteric, phenolic, nitroso, and other functional groups. ¹⁴⁰ They are considered to be an efficient geochemical 367 trap for arsenic both under oxic and reducing conditions. Whereas As(V) is 368 immobilized by binding to protonated amino groups of NOM³ or a nucleophile 369 substitution reaction between As(V) and phenolic OH groups of NOM, ¹⁴¹ As(III) is 370 associated with NOM via phenolic OH or carboxyl groups of NOM by H-bonding, 371 hydrophobic As(III)-NOM interactions, ¹⁴¹ or via ternary As(III)-Fe(III)-NOM 372 complexes that form bridges between Fe(III), arsenic oxyanions and the functional 373 entities of NOM. ¹⁴² In contrast, under sulfate-reducing conditions, the formation of a 374 375 trigonal-pyramidal complex between As(III) and sulfhydryl groups of NOM could potentially be a sequestration mechanism for arsenic.¹⁴³ 376

377 Organic matter could also change the fate of arsenic by influencing microbial communities or activities. ^{144, 145, 146} NOM is thought to drive the reductive dissolution 378 of Fe(III) (oxyhydr)oxides, thereby causing redox transformations of As(V) to As(III) 379 and facilitate arsenic release. ¹⁴⁷ In addition to the reductive dissolution of 380 arsenic-bearing Fe(III) (oxyhydr)oxide phases, studies have revealed that addition of 381 organic matter to paddy soil significantly increased arsenic methylation and 382 volatilization. ¹⁴⁸ Application of rice straw into soil increased arsenic accumulation in 383 rice by influencing microbial processes involved in arsenic redox.¹⁴⁹ 384

Humic acids, which are forms of NOM, can reduce As(V). ^{150, 151, 152} Small organic molecules, including lactate, pyruvate, fumarate, malate, succinate, butyrate, citrate, acetate, glycerol, ethanol, and formate, can be used an electron donor by DARPs for As(V) reduction. ^{153, 154, 155, 156} *Desulfosporosinus* sp. Y5 has been found to couple even complex aromatic substrates such as phenol, syringic acid, benzoate, ferulic acid, and toluene, to As(V) reduction. ¹⁵⁷ In fact, some DARPs can also respire sulfate, selenite, Fe(III), thiosulfate, nitrate, or nitrite. ^{153, 154} This diversity of electron
donors and acceptors may be of benefit to microbes grown in environments where Fe,
N, S, or C coexist with arsenic.

Apart from iron oxides and organic materials, silicon significantly decreased As(III) concentration, but increased the concentration of DMAs in both the vegetative and reproductive tissues of rice. ¹⁵⁸ In brief, in addition to biological transformations, other inorganic elements, compounds/minerals and physico-chemical properties interact with arsenic in the environment. Coupling of arsenic with other elements makes it necessary to consider genes involved in cycling of other elements, such as Fe, N, S, and C when studying the arsenic biogeochemical cycling. ^{2, 87, 88}

Known genes involved in arsenic biotransformation are readily determined in 401 402 pure cultures. However, in the field, these genes cannot easily be quantified in 403 bacterial communities with a limited number of primers, even though As(V)-reducing and As(III)-oxidizing bacteria are widely distributed in the environment. ^{159, 160, 161} In 404 addition, the speciation, fate and biogeochemical transformation processes of arsenic 405 in the environment are much more complex than under laboratory conditions. ^{162, 163} It 406 is therefore necessary to apply more systematic and more comprehensive approaches 407 such as metagenomics, metatranscriptomics, metaproteomics, and metabolomics to 408 409 understand interactions between environmental microbes. These approaches will take 410 into account local geochemical surroundings and neighboring organisms by analyzing DNA, RNA, proteins, and metabolites extracted directly from environmental samples. 411

412

413 4 Understanding biogeochemical arsenic cycling by application of "omics"
414 methods and integrated modeling

415 **4.1 Metagenomics**

416 Metagenomics provides an inestimable window into the microbial world by characterizing microorganisms involved in difficult-to-elucidate but important 417 biochemical pathways, as the overwhelming majority of microbes in the environment 418 419 cannot be cultured in the laboratory. From a metagenomic library two arsenic-resistant bacteria and one novel As(V) resistance gene (arsN), which encodes 420 a protein similar to acetyltransferases, were identified. ²² Xiao et al applied 421 metagenomic techniques to analyze genes associated with arsenic transformation. 422 They analyzed five low-arsenic paddy soils using high-throughput sequencing and 423 424 constructed a protein database of arsenic metabolizing genes. Their analysis shows that arsenic metabolism genes are ubiquitous and abundant, even in low-arsenic 425 environments. ¹⁶⁴ Metagenomics was also used to unravel the correlations between the 426 microbes and arsenic transformation in different niches. ^{165, 166, 167, 168, 169} Although 427 metagenomics provides taxonomic and functional profiles of a microbial community, 428 it does not demonstrate the levels of expression of the genes nor their physiological 429 activity. ¹⁷⁰ Therefore, metatranscriptomics is needed to delineate the active functional 430 genes and communities. 431

432 4.2 Metatranscriptomics

Metatranscriptomics offers novel insights into the expression of functional genes and 433 microbial activities of complex microbial communities at a specific moment or under 434 435 specific environmental conditions by sequencing the total mRNAs extracted from natural microbial communities. Functional metatranscriptomics has potential for 436 isolation and characterization of novel genes involved in heavy metal transformation. 437 ¹⁷¹ Metatranscriptomics enhances our understanding of microbial responses to their 438 environment ¹⁷² and the functional profile of a microbial community. ¹⁷³ Recently, a 439 transcriptomics meta-analysis was used to unravel the effect of As(III) on the 440

441 symbiotic interaction between the model legume Medicago truncatula and its symbiont Ensifer (syn. Sinorbizobium) medicae MA11. ¹⁷⁴ This study identified the 442 adaptive responses of the bacterial symbiont to arsenic exposure. This 443 444 metatranscriptomic approach will be useful to study how microbes regulate their genes to adapt to the changes in environmental conditions, particularly arsenic 445 concentrations. ¹⁷⁵ The correlation between mRNA and protein inventories in 446 environmental microbial communities is low when environmental conditions change 447 rapidly. mRNA inventories respond rapidly and sensitively to the shift, while changes 448 in protein inventories are slow. ¹⁷⁶ As a consequence, microbial metaproteomics and 449 metabolomics had to be used to identify the repertoire of proteins and small molecular 450 451 metabolites that microbes use to adapt to complex and dynamic environments. In this 452 way, the metabolic activities of a microbial community in specific environments at the moment of sampling could be elucidated. 170 453

454 **4.3 Metaproteomics and metabolomics**

455 Metaproteomics and metabolomics are the comprehensive methods by which proteins produced by microbes and metabolites released by microorganisms into the 456 457 environment are characterized and quantified using a combination of liquid or gas chromatography-based separations and mass spectrometry-based identification 458 techniques. ^{177, 178} The study of microbial proteome and metabolome can provide 459 valuable information about the function of microbial communities and the interactions 460 of the microbial communities with the environment. ^{179, 180} When the diversity of 461 arsenic-adapted prokaryotic communities in mildly arsenic-contaminated sediments 462 463 was analyzed using meta-proteomic and 16S rRNA amplification, the results indicated that the data sizes provided by metaproteomics are less than those provided by 464 metagenomics and metatranscriptomics. ¹⁸¹ So far, metabolomics has been used 465

466 mainly to analyze low molecular mass metabolites within a tissue, biofluid, a cell or cell compartment of an organism including plants, animals, bacteria, and humans 467 exposed to an environmental stressor. ¹⁸⁰ High-throughput metabolomics has been 468 469 applied to the analysis of metabolites in the liver of mice when co-exposed to high fat and cholesterol diets and arsenic-contaminated drinking water. ¹⁸² However, 470 application of metaproteomic and metabolomic techniques to real environment is 471 limited due to difficulties with amplification and the low quantities of extractable 472 proteins and metabolites because of the interferences with many components present 473 in complex environmental systems, such as soil. 180, 183 474

475 4.4 Integrating meta-omic techniques

From the above, meta-omics are key techniques in elucidating the dynamic and 476 477 complex interactions between microbial communities and the environment. Integrating multiple meta-omic datasets will provide a complete exhibition from 478 genes to biogeochemical cycles. Metatranscriptomic and metagenomic techniques 479 were combined to detect large numbers of novel genes from complex marine 480 microbial communities. ¹⁷³ Datasets of meta-genomics were integrated with 481 482 metabolomics to reveal how a microbial community interacts with the environment and responds to environmental parameters. ¹⁸⁴ Taken together, meta-omic 483 technologies offer an unprecedented opportunity to elucidate the functions of 484 microbes that are not readily cultured under normal laboratory conditions in 485 biogeochemical cycles. 486

Recently, "Arsenomics" was termed as an approach to focusing on the analysis of alterations in transcriptome, proteome and metabolome occurring in microbes exposed to arsenic. ^{185, 186} With the application of meta-omics to environmental

490 science, we believe that Arsenomics will evolve to include the analysis of 491 metagenomic, metatranscriptomic, metaproteomic, and metabolomic changes in 492 microbial communities from the real environment where they are exposed to arsenic.

493 4.5 Integrating environmental meta-omics into biogeochemical models for 494 arsenic

Microbes are ubiquitous in diverse environmental niches including soil, oceans, 495 sediments, freshwater environments, and inside the body of animals or plants, and 496 exert great influence on biogeochemical cycles in these habitats. ¹⁸⁷ For example, 497 498 microbes involved in arsenic transformation are ubiquitously distributed in paddy soils, resulting in various concentrations and percentage of inorganic and methylated 499 arsenic species among different rice plants. ^{188, 189, 190, 191} Since higher plants appear 500 not to methylate arsenic, ¹⁹² microbial methylation is probably the primary source of 501 methylated arsenic in plants, which occurs in soil prior to plant uptake. 502

In situ measurements or prediction of arsenic transformations contribute to 503 analysis of the dynamics of arsenic and prediction of arsenic bioavailability. In situ 504 measurements of As(V) reduction in Mono Lake, California (dissolved inorganic 505 arsenic ~ 200 μ M), made with radiotracers (⁷³As and ³⁵S) of mass balance 506 considerations, revealed that As(V) reduction occurred in the monimolimnion waters 507 with the highest rates between 18 and 19 meters (rate, ~ 5.9 μ M/day) and sulfate 508 509 reduction rates increased with depth at depths of 21 meters and below with the highest rates at 28 meters (rate, \sim 2.3 $\mu M/day).$ 193 The radioisotope method was further 510 employed to examine the As(V) and sulfate reduction processes in sediments of two 511 512 arsenic-rich soda lakes, Mono Lake (moderately salt, ~ 90 g/L) and Searles Lake (saturated salt, ~ 340 g/L). ¹⁹⁴ The rate constant [k] of As(V) reduction was 0.103 to 513 0.04 h⁻¹ in Mono Lake and 0.012 to 0.002 h⁻¹ in Searles Lake, and sulfate reduction 514

was only detected in Mono Lake ($k=7.6 \times 10^4$ to 3.2×10^{-6} h⁻¹). Denatured gradient gel electrophoresis (DGGE) of 16S rRNA genes amplified from Mono Lake and Searles Lake sediment DNA indicated that microbial communities from two sediments were distinct from each other. More *arrA* gene signal was found in Mono Lake than in Searles Lake, where higher As(V) reduction activity was observed, due to PCR biases, the presence of novel *arrA* genes, or higher expression of low-abundance *arrA* genes.

522 Characterization of genes involved in arsenic biotransformation and application 523 of multiple meta-omics in environment analysis will lead to insights into the microbial world, as limited information on functional genes cannot predict the status of arsenic 524 525 in the environment. The information of field/in situ characterization of functional 526 genes/functional microbial communities and biogeochemical fluxes should be integrated into biogeochemical models to complete the transition from lab to the field, 527 from biochemistry to biogeochemistry, and from genes-genomics to microbial 528 529 communities. This integration will help to predict the dynamics of arsenic in the environment, and to improve the effectiveness of mitigation technologies. Many 530 strategies have been developed to model low complexity environments. For example, 531 recent work integrating environmental genomics and qPCR in biogeochemical models 532 explored the nexus between microbial community and geochemisty in the Arabian 533 Sea oxygen minimum zone. 195 Metabolic processes coupling C, N, and S 534 transformations in the Saanich Inlet oxygen-starved zone were integrated using a 535 biogeochemical model that integrates multi-omic information and geochemistry.¹⁹⁶ 536 537 These studies indicated that such integrated modeling approaches can provide a novel insight into microbial metabolic networks in water bodies, and pave a road for 538 prediction of elemental cycling. 539

540

541 **5** Perspectives

In summary, as arsenic biotransformations are catalyzed by a suite of enzymes from 542 543 diverse environmental organisms, and these are coupled to biogeochemical cycles of other elements such as Fe, S, and N. As more and more genomes are being sequenced, 544 more genes directly or indirectly involved in arsenic metabolism will be discovered 545 and characterized. With the development of new technologies, we anticipate rapid 546 advances in analytical chemistry, microbiology and genomics that will improve our 547 548 understanding of how microbial metabolic pathways contribute to and govern complex environmental processes. In the future, integrating meta-omic datasets into 549 550 biogeochemical models will improve the ability of prediction and offer a deeper 551 insight into arsenic biogeochemical processes in diverse niches.

In future studies, it will be necessary to analyze the interaction between 552 553 organisms and the environment using additional meta-omics approaches at different 554 spatio-temporal scales. Geochemical analyses in combination with genetic analyses will provide insights into the specific roles of the complex biochemical pathways in 555 the global arsenic biogeochemical cycle. More importantly, integrating modeling 556 approaches linking arsenic biogeochemical cycle with meta-omics data should be 557 developed to predict the dynamic of arsenic species in water, sediments and soils and 558 559 provide our society and authorities with the tools necessary for limiting arsenic pollution, improving remediation and providing safe drinking water and food. 560

561

562 Acknowledgments

Our research was supported by National Natural Science Foundation of China
(41571130063), Program of Chinese Academy of Sciences (XDB15020402), National
Natural Science Foundation of China (21507125), and International Science &
technology Cooperation Program of China (2011DFB91710). BPR was supported by
NIH grants GM55425 and ES023779.

Reference

570	(1)	Bashkin V N. Modern biogeochemistry; Springer Science & Business Media, 2002.
571	(2)	Oremland, R. S.; Stolz, J. F. The ecology of arsenic. Science (80). 2003, 300, 939-944 DOI:
572		10.1126/science.1081903.
573	(3)	Thanabalasingam, P.; Pickering, W. F. Arsenic sorption by humic acids. Environ. Pollut.
574		(Series B) 1986, 12 (3), 233–246 DOI: 10.1016/0143-148X(86)90012-1.
575	(4)	Senn, D. B.; Hemond, H. F. Nitrate controls on iron and arsenic in an urban lake. Science (80).
576		2002 , 296, 2373–2376 DOI: 10.1126/science.1072402.
577	(5)	Saalfield, S.; Bostick, B. Changes in iron, sulfur, and arsenic speciation associated with
578		bacterial sulfate reduction in ferrihydrate-rich systems. Environ. Sci. Technol. 2009, 43,
579		8787–8793 DOI: 10.1021/es901651k.
580	(6)	Finzi, A. C.; Cole, J. J.; Doney, S. C.; Holland, E. A.; Jackson, R. B. Research frontiers in the
581		analysis of coupled biogeochemical cycles. Front Ecol Env. 2011, 9 (1), 74-80 DOI:
582		10.1890/100137.
583	(7)	Mukhopadhyay, R.; Rosen, B. P.; Phung, L. T.; Silver, S. Microbial arsenic: from geocycles to
584		genes and enzymes. FEMS Microbiol Rev 2002, 26, 311-325 DOI:
585		10.1111/j.1574-6976.2002.tb00617.x.
586	(8)	Zhu, YG.; Yoshinaga, M.; Zhao, FJ.; Rosen, B. P. Earth Abides Arsenic Biotransformations.
587		Annu. Rev. Earth Planet. Sci. 2014, 42 (1), 443-467 DOI:
588		10.1146/annurev-earth-060313-054942.
589	(9)	Sardiwal, S.; Santini, J. M.; Osborne, T. H.; Djordjevic, S. Characterization of a
590		two-component signal transduction system that controls arsenite oxidation in the
591		chemolithoautotroph NT-26. FEMS Microbiol. Lett. 2010, 313 (1), 20-28 DOI:
592		10.1111/j.1574-6968.2010.02121.x.
593	(10)	Richey, C.; Chovanec, P.; Hoeft, S. E.; Oremland, R. S.; Basu, P.; Stolz, J. F. Respiratory
594		arsenate reductase as a bidirectional enzyme. Biochem. Biophys. Res. Commun. 2009, 382 (2),
595		298-302 DOI: 10.1016/j.bbrc.2009.03.045.
596	(11)	Zargar, K.; Conrad, A.; Bernick, D. L.; Lowe, T. M.; Stolc, V.; Hoeft, S.; Oremland, R. S.;
597		Stolz, J.; Saltikov, C. W. ArxA, a new clade of arsenite oxidase within the DMSO reductase
598		family of molybdenum oxidoreductases. Environ. Microbiol. 2012, 14 (7), 1635-1645 DOI:

599		10.1111/j.1462-2920.2012.02722.x.
600	(12)	Liu, G.; Liu, M.; Kim, E. H.; Maaty, W. S.; Bothner, B.; Lei, B.; Rensing, C.; Wang, G.;
601		McDermott, T. R. A periplasmic arsenite-binding protein involved in regulating arsenite
602		oxidation. Environ. Microbiol. 2012, 14 (7), 1624–1634 DOI:
603		10.1111/j.1462-2920.2011.02672.x.
604	(13)	Chen, J.; Bhattacharjee, H.; Rosen, B. P. ArsH is an organoarsenical oxidase that confers
605		resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry
606		growth promoter roxarsone. Mol. Microbiol. 2015, 96 (5), 1042–1052 DOI:
607		10.1111/mmi.12988.
608	(14)	Xue, X. M.; Yan, Y.; Xu, H. J.; Wang, N.; Zhang, X.; Ye, J. ArsH from Synechocystis sp. PCC
609		6803 reduces chromate and ferric iron. FEMS Microbiol. Lett. 2014, 356 (1), 105–112 DOI:
610		10.1111/1574-6968.12481.
611	(15)	Afkar, E.; Lisak, J.; Saltikov, C.; Basu, P.; Oremland, R. S.; Stolz, J. F. The respiratory
612		arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol. Lett. 2003,
613		226 (1), 107–112 DOI: 10.1016/S0378-1097(03)00609-8.
614	(16)	Krafft, T.; Macy, J. M. Purification and characterization of the respiratory arsenate reductase of
615		Chrysiogenes arsenatis. Eur. J. Biochem. 1998, 255 (3), 647–653 DOI:
616		10.1046/j.1432-1327.1998.2550647.x.
617	(17)	Van Lis, R.; Nitschke, W.; Duval, S.; Schoepp-Cothenet, B. Arsenics as bioenergetic substrates.
618		Biochim. Biophys. Acta - Bioenerg. 2013, 1827 (2), 176–188 DOI:
619		10.1016/j.bbabio.2012.08.007.
620	(18)	Mukhopadhyay, R.; Rosen, B. P. Arsenate reductases in prokaryotes and eukaryotes. Environ.
621		Health Perspect. 2002, 110, 745-748 DOI: 10.1289/ehp.02110s5745.
622	(19)	Wysocki, R.; Goffeau, A. Isolation of three contiguous genes, ACR1, ACR2 and ACR3,
623		involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast 1997,
624		13, 819–828 DOI: 10.1002/(SICI)1097-0061(199707)13.
625	(20)	David J. Thomas; Barry P. Rosen. Arsenic Methyltransferase. In Encyclopedia of
626		Metalloproteins; Uversky, V. N., Kretsinger, R. H., Permyakov, Ei. E. a., Eds.;
627		Science+Business Media: New York, 2013; pp 138–143 DOI: 10.1007/978-1-4614-1533-6.
628	(21)	Chrysostomou, C.; Quandt, E. M.; Marshall, N. M.; Stone, E.; Georgiou, G. An alternate
629		pathway of arsenate resistance in E. coli mediated by the glutathione S-transferase GstB. ACS
630		Chem. Biol. 2015, 10 (3), 875–882 DOI: 10.1021/cb500755j.
631	(22)	Chauhan, N. S.; Ranjan, R.; Purohit, H. J.; Kalia, V. C.; Sharma, R. Identifcation of genes
632		conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge
633		metagenomic library. FEMS Microbiol Ecol 2009, 67, 130–139 DOI:
634		10.1111/j.1574-6941.2008.00613.x.
635	(23)	Qin, J.; Rosen, B. P.; Zhang, Y.; Wang, G.; Franke, S.; Rensing, C. Arsenic detoxification and
636		evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine
637		methyltransferase. Proc. Natl. Acad. Sci. 2006, 103 (7), 2075–2080 DOI:
638		10.1073/pnas.0506836103.

639 (24)Yoshinaga, M.; Rosen, B. P. A C · As lyase for degradation of environmental organoarsenical 640 herbicides and animal husbandry growth promoters. Proc. Natl Acad. Sci. 2014, 111 (21), 641 7701-7706 DOI: 10.1073/pnas.1403057111. 642 Louis S. Tisa; Rose, B. P. Molecular characterization of an anion pump-The ArsB protein is the (25)643 membrane anchor for the ArsA protein. J. Biol. Chem. 1990, 265, 190-194. 644 (26)Lin, Y.; Walmsley, A. R.; Rosen, B. P. An arsenic metallochaperone for an arsenic 645 detoxification pump. Proc. Natl Acad. Sci. 2006, 103 (42), 15617-15622 DOI: 646 10.1073/pnas.0603974103. 647 (27)Yang, H.; Cheng, J.; Finan, T. M.; Rosen, B. P. Novel pathway for arsenic detoxification in the 648 legume symbiont Sinorhizobium meliloti. J. Bacteriol. 2005, 187 (20), 6991-6997 DOI: 649 10.1128/JB.187.20.6991. 650 (28) Ghosh, M.; Shen, J.; Rosen, B. P. Pathways of As (III) detoxification in Saccharomyces 651 cerevisiae. Proc. Natl Acad. Sci. 1999, 96, 5001-5006 DOI: 10.1073/pnas.96.9.5001. 652 (29)Chen, J.; Yoshinaga, M.; Garbinski, L. D.; Rosen, B. P. Synergistic interaction of 653 glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux 654 permease, confers arsenate resistance. Mol. Microbiol. 2016, 100 (6), 945-953 DOI: 655 10.1111/mmi.13371. 656 (30)Chen, J.; Madegowda, M.; Bhattacharjee, H.; Rosen, B. P. ArsP: A methylarsenite efflux 657 permease. Mol. Microbiol. 2015, 98 (4), 625-635 DOI: 10.1111/mmi.13145. 658 Grondin, K.; Haimeur, A.; Mukhopadhyay, R.; Rosen, B. P.; Ouellette, M. Co-amplification of (31)659 the gamma-glutamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in 660 arsenite-resistant Leishmania tarentolae. EMBO J. 1997, 16 (11), 3057-3065 DOI: 661 10.1093/emboj/16.11.3057. 662 (32) Wang, L.; Chen, S.; Xiao, X.; Huang, X.; You, D.; Zhou, X.; Deng, Z. arsRBOCT arsenic 663 resistance system encoded by linear plasmid pHZ227 in Streptomyces sp. strain FR-008. Appl 664 Env. Microbiol 2006, 72 (5), 3738-3742 DOI: 10.1128/AEM.72.5.3738. 665 (33) Oremland, R. S.; Saltikov, C. W.; Wolfe-Simon, F.; Stolz, J. F. Arsenic in the Evolution of 666 Earth and Extraterrestrial Ecosystems. Geomicrobiol. J. 2009, 26 (V), 522-536 DOI: 667 10.1080/01490450903102525. 668 (34)McCann, S. H.; Boren, A.; Hernandez-maldonado, J.; Stoneburner, B.; Saltikov, C. W.; Stolz, J. 669 F.; Oremland, R. S. Arsenite as an Electron Donor for Anoxygenic Photosynthesis: Description 670 of Three Strains of Ectothiorhodospira from Mono Lake, California and Big Soda Lake, 671 Nevada. Life 2016, 7 (1), 1-14 DOI: 10.3390/life7010001. 672 Hernandez-maldonado, J.; Sanchez-sedillo, B.; Stoneburner, B.; Boren, A.; Miller, L.; Mccann, (35)673 S.; Rosen, M.; Oremland, R. S.; Saltikov, C. W. The genetic basis of anoxygenic 674 photosynthetic arsenite oxidation. Env. Microbiol 2017, 19, 130-141 DOI: 675 10.1111/1462-2920.13509. 676 (36) Kulp, T. R.; Hoeft, S. E.; Asao, M.; Madigan, M. T.; Hollibaugh, J. T.; Fisher, J. C.; Stolz, J. F.; 677 Culbertson, C. W.; Miller, L. G.; Oremland, R. S. Arsenic(III) fuels anoxygenic photosynthesis 678 in hot spring biofilms from Mono Lake, California. Science 2008, 321 (5891), 967-970 DOI:

679		10.1126/science.1160799.
680	(37)	Hoeft, S. E.; Kulp, T. R.; Han, S.; Lanoil, B.; Oremland, R. S. Coupled arsenotrophy in a hot
681	(07)	spring photosynthetic biofilm at mono lake, California. <i>Appl. Environ. Microbiol.</i> 2010 , <i>76</i> (14),
682		4633–4639 DOI: 10.1128/AEM.00545-10.
683	(38)	Oremland, R. S.; Hoeft, S. E.; Santini, J. M.; Bano, N.; Hollibaugh, R. a; Hollibaugh, J. T.
684	(50)	Anaerobic Oxidation of Arsenite in Mono Lake Water and by a Facultative, Arsenite-Oxidizing
685		Chemoautotroph, Strain MLHE-1. <i>Appl Env. Microbiol</i> 2002 , 68 (10), 4795–4802 DOI:
686		10.1128/AEM.68.10.4795.
687	(39)	Kulp, T. R. Arsenic and primordial life. <i>Nat. Geosci.</i> 2014 , <i>7</i> (11), 785–786 DOI:
688	(3))	10.1038/ngeo2275.
689	(40)	Stolz, J. F.; Basu, P.; Oremland, R. S. Microbial Arsenic Metabolism: New Twists on an Old
690	(10)	Poison. <i>Microbe</i> 2010 , <i>5</i> (2), 53–59 DOI: 10.1128/microbe.5.53.1.
691	(41)	Branco, R.; Francisco, R.; Chung, A. P.; Morais, P. V. Identification of an aox system that
692	(11)	requires cytochrome c in the highly arsenic-resistant bacterium <i>Ochrobactrum tritici</i> SCII24.
693		<i>Appl. Environ. Microbiol.</i> 2009 , <i>75</i> (15), 5141–5147 DOI: 10.1128/AEM.02798-08.
694	(42)	Zargar, K.; Hoeft, S.; Oremland, R.; Saltikov, C. W. Identification of a novel arsenite oxidase
695	()	gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium <i>Alkalilimnicola ehrlichii</i> strain
696		MLHE-1. J. Bacteriol. 2010, 192 (14), 3755–3762 DOI: 10.1128/JB.00244-10.
697	(43)	Hery, M.; Gault, A. G.; Rowland, H. A. L.; Lear, G.; Polya, D. A.; Lloyd, J. R. Molecular and
698	(10)	cultivation-dependent analysis of metal-reducing bacteria implicated in arsenic mobilisation in
699		south-east asian aquifers. Appl. Geochemistry 2008, 23 (11), 3215–3223 DOI:
700		10.1016/j.apgeochem.2008.07.003.
701	(44)	Pederick, R. L.; Gault, A. G.; Charnock, J. M.; Polya, D. A.; Lloyd, J. R. Probing the
702		biogeochemistry of arsenic: Response of two contrasting aquifer sediments from Cambodia to
703		stimulation by arsenate and ferric iron. J. Environ. Sci. Heal. Part A 2007, 42, 1763–1774 DOI:
704		10.1080/10934520701564269.
705	(45)	Yan, Y.; Ding, K.; Yu, X.; Ye, J.; Xue, X. Ability of Periplasmic Phosphate Binding Proteins
706		from Synechocystis sp. PCC 6803 to Discriminate Phosphate Against Arsenate. Water. Air.
707		Soil Pollut. 2017, 228, 148 DOI: 10.1007/s11270-017-3334-4.
708	(46)	Bhattacharjee, H.; Sheng, J.; Ajees, A. A.; Mukhopadhyay, R.; Rosen, B. P. Adventitious
709		arsenate reductase activity of the catalytic domain of the human Cdc25B and Cdc25C
710		phosphatases. Biochemistry 2010, 49 (4), 802-809 DOI: 10.1021/bi9019127.
711	(47)	Zhou, R.; Royyuru, A.; Athma, P.; Suits, F.; Silverman, B. D. Magnitude and spatial
712		orientation of the hydrophobic moments of multi-domain proteins. Int. J. Bioinform. Res. Appl.
713		2006 , 2 (2), 161–176 DOI: 10.1016/j.molbiopara.2006.03.009.
714	(48)	Wang, P.; Sun, G.; Jia, Y.; Meharg, A. A.; Zhu, Y. A review on completing arsenic
715		biogeochemical cycle: Microbial volatilization of arsines in environment. J. Environ. Sci. 2014,
716		26, 371–381 DOI: 10.1016/S1001-0742(13)60432-5.
717	(49)	Yin, XX.; Chen, J.; Qin, J.; Sun, GX.; Rosen, B. P.; Zhu, YG. Biotransformation and
718		volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol. 2011, 156 (3),

719		1631–1638 DOI: 10.1104/pp.111.178947.
720	(50)	Yin, X. X.; Zhang, Y. Y.; Yang, J.; Zhu, Y. G. Rapid biotransformation of arsenic by a model
721		protozoan Tetrahymena thermophila. Environ. Pollut. 2011, 159 (4), 837–840 DOI:
722		10.1016/j.envpol.2010.12.033.
723	(51)	Ye, J.; Rensing, C.; Rosen, B. P.; Zhu, Y. G. Arsenic biomethylation by photosynthetic
724		organisms. Trends Plant Sci. 2012, 17 (3), 155–162 DOI: 10.1016/j.tplants.2011.12.003.
725	(52)	Xue, XM.; Ye, J.; Raber, G.; Francesconi, K. A.; Li, G.; Gao, H.; Yan, Y.; Rensing, C.; Zhu,
726		YG. Arsenic Methyltransferase is Involved in Arsenosugar Biosynthesis by Providing DMA.
727		<i>Environ. Sci. Technol.</i> 2017 , <i>51</i> (3), 1224–1230 DOI: 10.1021/acs.est.6b04952.
728	(53)	Stolz, J. F.; Perera, E.; Kilonzo, B.; Kail, B.; Crable, B.; Fisher, E.; Ranganathan, M.; Wormer,
729		L.; Basu, P. Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (Roxarsone) and
730		release of inorganic arsenic by clostridium species. <i>Environ. Sci. Technol.</i> 2007, 41 (3),
731		818–823 DOI: 10.1021/es061802i.
732	(54)	Lehr, C. R.; Polishchuk, E.; Radoja, U.; Cullen, W. R. Demethylation of methylarsenic species
733		by Mycobacterium neoaurum. Appl. Organomet. Chem. 2003, 17 (11), 831–834 DOI:
734		10.1002/aoc.544.
735	(55)	Yoshinaga, M.; Cai, Y.; Rosen, B. P. Demethylation of methylarsonic acid by a microbial
736	()	community. <i>Environ. Microbiol.</i> 2011 , <i>13</i> (5), 1205–1215 DOI:
737		10.1111/j.1462-2920.2010.02420.x.
738	(56)	Yan, Y.; Ye, J.; Xue, XM.; Zhu, YG. Arsenic Demethylation by a C · As Lyase in
739		Cyanobacterium Nostoc sp. PCC 7120. Environ. Sci. Technol. 2015, 49, 14350–14358 DOI:
740		10.1021/acs.est.5b03357.
741	(57)	Edmonds, J. S.; Francesconi, K. A. Organoarsenic compounds in the marine environment. In
742		Organometallic compounds in the environment; Craig, P. J., Ed.; Wiley: Chichester, 2013; pp
743		195–222 DOI: 10.1017/CBO9781107415324.004
744	(58)	Edmonds, J. S.; Francesconi, K. A. Arseno-sugars from brown kelp (Ecklonia radiata) as
745		intermediates in cycling of arsenic in a marine ecosystem. <i>Nature</i> 1981 , 289, 602–604 DOI:
746		10.1038/289602a0
747	(59)	Morita, M.; Shibata, Y. Isolation and identification of arseno-lipid from a brown alga, Undaria
748		<i>pinnatifida</i> (Wakame). <i>Chemosphere</i> 1988 , <i>17</i> (6), 1147–1152 DOI:
749		10.1016/0045-6535(88)90180-4.
750	(60)	Garcıi'a-Salgadoı, S.; Raber, G.; Raml, R.; Magnes, C.; Francesconi, K. A. Arsenosugar
751		phospholipids and arsenic hydrocarbons in two species of brown macroalgae. <i>Environ. Chem.</i>
752		2012 , <i>9</i> , 63–66 DOI: 10.1071/EN11164.
753	(61)	Xue, XM.; Raber, G.; Foster, S.; Chen, SC.; Francesconi, K. A.; Zhu, YG. Biosynthesis of
754		arsenolipids by the cyanobacterium Synechocystis sp. PCC 6803. Environ. Chem. 2014, 11 (5),
755		506–513 DOI: 10.1071/EN14069.
756	(62)	Rumpler, A.; Edmonds, J. S.; Katsu, M.; Jensen, K. B.; Goessler, W.; Raber, G.;
757	· /	Gunnlaugsdottir, H.; Francesconi, K. A. Arsenic-containing long-chain fatty acids in cod-liver
758		oil: A result of biosynthetic infidelity? Angew. Chemie - Int. Ed. 2008, 47 (14), 2665–2667

759		DOI: 10.1002/anie.200705405.
760	(63)	Raab, A.; Newcombe, C.; Pitton, D.; Ebel, R.; Feldmann, J. Comprehensive analysis of
761		lipophilic arsenic species in a brown alga (Saccharina latissima). Anal. Chem. 2013, 85 (5),
762		2817–2824 DOI: 10.1021/ac303340t.
763	(64)	Taleshi, M. S.; Raber, G.; Edmonds, J. S.; Jensen, K. B.; Francesconi, K. A. Arsenolipids in oil
764		from blue whiting <i>Micromesistius poutassou</i> evidence for arsenic-containing esters. <i>Sci. Rep.</i>
765		2014 , <i>4</i> , 7492 DOI: 10.1038/srep07492.
766	(65)	Taleshi, M. S.; Edmonds, J. S.; Goessler, W.; Ruiz-Chancho, M. J.; Raber, G.; Jensen, K. B.;
767		Francesconi, K. A. Arsenic-containing lipids are natural constituents of sashimi tuna. Environ.
768		Sci. Technol. 2010, 44 (4), 1478–1483 DOI: 10.1021/es9030358.
769	(66)	Taleshi, M. S.; Jensen, K. B.; Raber, G.; Edmonds, J. S.; Gunnlaugsdottir, H.; Francesconi, K.
770		A. Arsenic-containing hydrocarbons: natural compounds in oil from the fish capelin, <i>Mallotus</i>
771		villosus. Chem. Commun. 2008, 39 (39), 4706–4707 DOI: 10.1039/b808049f.
772	(67)	Amayo, K. O.; Raab, A.; Krupp, E. M.; Gunnlaugsdottir, H.; Feldmann, J. Novel identification
773		of arsenolipids using chemical derivatizations in conjunction with RP-HPLC-ICPMS/ESMS.
774		Anal. Chem. 2013, 85 (19), 9321–9327 DOI: 10.1021/ac4020935.
775	(68)	Viczek, S. A.; Jensen, K. B.; Francesconi, K. A. Arsenic-containing Phosphatidylcholines: a
776		New Group of Arsenolipids Discovered in Herring Caviar. Angew. Chemie Int. Ed. 2016, 55,
777		5259–5262 DOI: 10.1002/anie.201512031.
778	(69)	Van Mooy, B. a S.; Fredricks, H. F.; Pedler, B. E.; Dyhrman, S. T.; Karl, D. M.; Koblízek, M.;
779		Lomas, M. W.; Mincer, T. J.; Moore, L. R.; Moutin, T.; et al. Phytoplankton in the ocean use
780		non-phosphorus lipids in response to phosphorus scarcity. Nature 2009, 458, 69–72 DOI:
781		10.1038/nature07659.
782	(70)	Petursdottir, A. H.; Fletcher, K.; Gunnlaugsdottir, H.; Krupp, E.; Kupper, F. C.; Feldmann, J.
783		Environmental effects on arsenosugars and arsenolipids in Ectocarpus (Phaeophyta). Environ.
784		Chem. 2016, 13 (1), 21–33 DOI: 10.1071/EN14229.
785	(71)	Meyer, S.; Matissek, M.; Müller, S. M.; Taleshi, M. S.; Ebert, F.; Francesconi, K. A.;
786		Schwerdtle, T. In vitro toxicological characterisation of three arsenic-containing hydrocarbons.
787		Metallomics 2014, 6, 1023–1033 DOI: 10.1039/c4mt00061g.
788	(72)	Schmeisser, E.; Goessler, W.; Francesconi, K. A. Human metabolism of arsenolipids present in
789		cod liver. Anal. Bioanal. Chem. 2006, 385 (2), 367-376 DOI: 10.1007/s00216-006-0401-x.
790	(73)	Taylor, V.; Goodale, B.; Raab, A.; Schwerdtle, T.; Reimer, K.; Conklin, S.; Karagas, M. R.;
791		Francesconi, K. A. Human exposure to organic arsenic species from seafood. Sci. Total
792		Environ. 2017, 580, 266–282 DOI: 10.1016/j.scitotenv.2016.12.113.
793	(74)	Planer-friedrich, B.; Suess, E.; Scheinost, A. C.; Wallschla, D. Arsenic speciation in sulfidic
794		waters: Reconciling contradictory spectroscopic and chromatographic evidence. Anal. Chem.
795		2010 , 82 (24), 10228–10235 DOI: 10.1021/ac1024717.
796	(75)	Fisher, J. C.; Wallschlager, D.; Planer-Friendrich B., H. J. T. A new role for sulfur in arsenic
797		cycling. Environ. Sci. Technol. 2008, 42 (1), 81-85 DOI: 10.1021/es0713936.
798	(76)	Planer-Friedrich, B.; London, J.; Mccleskey, R. B.; Nordstrom, D. K.; Wallschlager, D.

799 800 801		Thioarsenates in geothermal waters of yellowstone National Park: Determination, preservation, and geochemical importance. <i>Environ. Sci. Technol.</i> 2007 , <i>41</i> (15), 5245–5251 DOI: 10.1021/es070273v.
802	(77)	Taylor, P.; Planer-friedrich, B.; Fisher, J. C.; Hollibaugh, J. T.; Süß, E.; Planer-friedrich, B.;
803		Fisher, J. C.; Hollibaugh, J. T.; Elke, S.; Wallschl, D. Oxidative Transformation of
804		Trithioarsenate Along Alkaline Geothermal Drainages — Abiotic versus Microbially Mediated
805		Processes. <i>Geomicrobiol J</i> 2009, 26, 339–350 DOI: 10.1080/01490450902755364.
806	(78)	Planer-friedrich, B.; Hartig, C.; Lohmayer, R.; Suess, E.; Mccann, S. H.; Oremland, R.
807	(, 0)	Anaerobic chemolithotrophic growth of the haloalkaliphilic bacterium strain MLMS-1 by
808		disproportionation of monothioarsenate. Env. Sci Technol 2015, 49, 6554–6563 DOI:
809		10.1021/acs.est.5b01165.
810	(79)	Härtig, C.; Planer-friedrich, B. Thioarsenate transformation by filamentous microbial mats
811	(7)	thriving in an alkaline, sulfidic hot Spring. <i>Environ. Sci. Technol.</i> 2012 , <i>46</i> (8), 4348–4356 DOI:
812		10.1021/es204277j.
813	(80)	Hartig, C.; Lohmayer, R.; Kolb, S.; Horn, M. A.; Inskeep, W. P.; Planer-friedrich, B.
814	(80)	Chemolithotrophic growth of the aerobic hyperthermophilic bacterium <i>Thermocrinis ruber</i> OC
815		14/7/2 on monothioarsenate and arsenite. <i>FEMS Microbiol Ecol</i> 2014 , <i>90</i> , 747–760 DOI:
816		10.1111/1574-6941.12431.
817	(81)	Edwardson, C. F.; Planer-friedrich, B.; Hollibaugh, J. T. Transformation of monothioarsenate
818	(01)	by haloalkaliphilic, anoxygenic photosynthetic purple sulfur bacteria. <i>FEMS Microbiol Ecol</i>
819		2014 , <i>90</i> , 858–868 DOI: 10.1111/1574-6941.12440.
820	(82)	Tamaki, S.; Frankenberger, W. T. J. Environmental biochemistry of arsenic. In <i>Reviews of</i>
821	(02)	environmental contamination and toxicology; Ware, G. W., Ed.; Springer New York: United
822		States, 1992; Vol. 124, pp 79–110 DOI: 10.1007/978-1-4612-2864-6 4
823	(83)	Ali, W.; Isayenkov, S. V.; Zhao, F. J.; Maathuis, F. J. M. Arsenite transport in plants. <i>Cell. Mol.</i>
824	(00)	<i>Life Sci.</i> 2009 , <i>66</i> (14), 2329–2339 DOI: 10.1007/s00018-009-0021-7.
825	(84)	Broer, S.; Ji, G.; Broer, A.; Silver, S. Arsenic efflux governed by the arsenic resistance
826	(0.)	determinant of <i>Staphylococcus aureus</i> plasmid pI258. <i>J. Bacteriol.</i> 1993 , <i>175</i> (11), 3480–3485
827		DOI: 10.1128/jb.175.11.3480-3485.1993.
828	(85)	Chen, XP.; Zhu, YG.; Hong, MN.; Kappler, A.; Xu, YX. Effects of different forms of
829	()	nitrogen fertilizers on arsenic uptake by rice plants. Environ. Toxicol. Chem. 2008, 27 (4),
830		881–887 DOI: 10.1897/07-368.1.
831	(86)	Handley, K. M.; Mcbeth, J. M.; Charnock, J. M.; Vaughan, D. J.; Wincott, P. L.; Polya, D. A.;
832		Lloyd, J. R. Effect of iron redox transformations on arsenic solid-phase associations in an
833		arsenic-rich, ferruginous hydrothermal sediment. Geochim. Cosmochim. Acta 2013, 102,
834		124–142 DOI: 10.1016/j.gca.2012.10.024.
835	(87)	Carlson, H. K.; Clark, I. C.; Blazewicz, S. J.; Iavarone, A. T.; Coates, J. D. Fe(II) oxidation is
836	. /	an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions. J.
837		Bacteriol. 2013, 195 (14), 3260–3268 DOI: 10.1128/JB.00058-13.
838	(88)	Bertin, P. N.: Heinrich-Salmeron, A.: Pelletier, E.: Goulhen-Chollet, F.: Arsène-Ploetze, F.:

838 (88) Bertin, P. N.; Heinrich-Salmeron, A.; Pelletier, E.; Goulhen-Chollet, F.; Arsène-Ploetze, F.;

	Gallien, S.; Lauga, B.; Casiot, C.; Calteau, A.; Vallenet, D.; et al. Metabolic diversity among
	main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics.
	ISME J. 2011, 5 (11), 1735–1747 DOI: 10.1038/ismej.2011.51.
(89)	Melton, E. D.; Swanner, E. D.; Behrens, S.; Schmidt, C.; Kappler, A. The interplay of
	microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat. Rev. Microbiol.
	2014 , <i>12</i> (12), 797–809 DOI: 10.1038/nrmicro3347.
(90)	Masscheleyn, P. H.; Delaune, R. D.; Patrick, Jr., W. H. Effect of redox potential and pH on
	arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. 1991, 25 (8),
	1414–1419 DOI: 10.1021/es00020a008.
(91)	Dixit, S.; Hering, J. G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide
	minerals: Implications for arsenic mobility. Environ. Sci. Technol. 2003, 37 (18), 4182-4189
	DOI: 10.1021/es030309t.
(92)	Amstaetter, K.; Borch, T.; Larese-Casanova, P.; Kappler, A. Redox transformation of arsenic
	by Fe(II)-activated goethite (-FeOOH). Environ. Sci. Technol. 2010, 44 (1), 102-108 DOI:
	10.1021/es901274s.
(93)	Borch, T.; Kretzschmar, R.; Kappler, A.; Van Cappellen, P.; Ginder-Vogel, M.; Voegelin, A.;
	Campbell, K. Biogeochemical redox processes and their impact on contaminant dynamics.
	Environ. Sci. Technol. 2010, 44 (1), 15–23 DOI: 10.1021/es9026248.
(94)	Liu, X.; Fu, W.; Da, E.; Shi, X.; Cao, Y.; Rathinasabapathi, B.; Chen, Y.; Ma, L. Q. Microbial
	siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by
	As-hyperaccumulator Pteris vittata. Environ. Pollut. 2017, 223, 230-237 DOI:
	10.1016/j.envpol.2017.01.016.
(95)	Liu, W. J.; Zhu, Y. G.; Smith, F. A.; Smith, S. E. Do iron plaque and genotypes affect arsenate
	uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J. Exp.
	Bot. 2004, 55 (403), 1707–1713 DOI: 10.1093/jxb/erh205.
(96)	Liu, W. J.; Zhu, Y. G.; Hu, Y.; Williams, P. N.; Gault, A. G.; Meharg, A. A.; Charnock, J. M.;
	Smith, F. A. Arsenic sequestration in iron plaque, its accumulation and speciation in mature
	rice plants (Oryza sativa L.). Environ. Sci. Technol. 2006, 40 (18), 5730-5736 DOI:
	10.1021/es060800v.
(97)	Chen, Z.; Zhu, Y. G.; Liu, W. J.; Meharg, A. A. Direct evidence showing the effect of root
	surface iron plaque on arsenite and aresnate uptake in rice (Oryza sativa) roots. New Phytol.
	2005 , <i>165</i> (1), 91–97 DOI: 10.1111/j.1469-8137.2004.01241.x.
(98)	Reyes, C.; Lloyd, J. R.; Saltikov, C. W. Geomicrobiology of Iron and Arsenic in Anoxic
	Sediments. In Arsenic Contamination of Groundwater; Ahuja, S., Ed.; John Wiley & Sons, Inc.:
	Hoboken, NJ, USA, 2008; pp 123-146 DOI: 10.1002/9780470371046.ch6
(99)	Lloyd, J. R.; Oremland, R. Microbial Transformations of Arsenic in the Environment: From
	Soda Lakes to Aquifers. <i>Elements</i> 2006, 2, 85–90 DOI: 10.2113/gselements.2.2.85.
(100)	Islam, F. S.; Gault, A. G.; Boothman, C.; Polya, D. A.; Charnock, J. M.; Chatterjee, D.; Lloyd,
	J. R. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature
	2004 , <i>430</i> (6995), 68–71 DOI: 10.1038/nature02638.
	 (90) (91) (92) (93) (93) (94) (95) (96) (97) (98) (99)

- (101) Cummings, D. E.; Caccavo, F.; Fendorf, S.; Rosenzweig, R. F. Arsenic mobilization by the
 dissimilatory Fe(III)-reducing bacterium *Shewanella alga* BrY. *Environ. Sci. Technol.* 1999, *33*(5), 723–729 DOI: 10.1021/es980541c.
- (102) Wang, X.-J.; Chen, X.-P.; Kappler, A.; Sun, G.-X.; Zhu, Y.-G. Arsenic binding to iron (II)
 minerals produced by an iron (III)-reducing aeromonas strain isolated from paddy soil. *Environ. Toxicol. Chem.* 2009, 28 (11), 2255–2262 DOI: 10.1897/09-085.1.
- 885 (103) Muehe, E. M.; Scheer, L.; Daus, B.; Kappler, A. Fate of arsenic during microbial reduction of
 886 biogenic versus abiogenic As-Fe(III)-mineral coprecipitates. *Environ. Sci. Technol.* 2013, 47
 887 (15), 8297–8307 DOI: 10.1021/es400801z.
- (104) Muehe, E. M.; Morin, G.; Scheer, L.; Le Pape, P.; Esteve, I.; Daus, B.; Kappler, A. Arsenic(V)
 Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III)
 (Oxyhydr)oxides. *Environ. Sci. Technol.* 2016, *50* (5), 2281–2291 DOI:

891 10.1021/acs.est.5b04625.

- (105) Islam, F. S.; Pederick, R. L.; Gault, A. G.; Adams, L. K.; Polya, D. A.; Charnock, J. M.; Lloyd,
 J. R. Interactions between the Fe(III) -Reducing Bacterium *Geobacter sulfurreducens* and
 Arsenate, and Capture of the Metalloid by Biogenic Fe(II). *Appl Env. Microbiolli* 2005, *71* (12),
 8642–8648 DOI: 10.1128/AEM.71.12.8642.
- (106) Islam, F. S.; Boothman, C.; Gault, A. G.; Polya, D. A.; Lloyd, J. R. Potential role of the
 Fe(III)-reducing bacteria *Geobacter* and *Geothrix* in controlling arsenic solubility in Bengal
 delta sediments. *Mineral. Mag.* 2005, *69* (5), 865–875 DOI: 10.1180/0026461056950294.
- Wang, X.; Chen, X.; Yang, J.; Wang, Z.; Sun, G. Effect of microbial mediated iron plaque
 reduction on arsenic mobility in paddy soil. *J. Environ. Sci.* 2009, 21 (11), 1562–1568 DOI:
 10.1016/S1001-0742(08)62456-0.
- 902 (108) Campbell, K. M.; Malasarn, D. Simultaneous Microbial Reduction of Iron(III) and Arsenic(V)
 903 in Suspensions of Hydrous Ferric Oxide. *Env. Sci Technol* 2006, 40 (19), 5950–5955 DOI:
 904 10.1021/es0600476.
- 905 (109) Kocar, B. D.; Herbel, M. J.; Tufano, K. J.; Fendorf, S. Contrasting effects of dissimilatory
 906 iron(III) and arsenic(V) reduction on arsenic retention and transport. *Environ. Sci. Technol.*907 2006, 40 (21), 6715–6721 DOI: 10.1021/es061540k.
- 908 (110) Oremland, R. S.; Stolz, J. F. Arsenic, microbes and contaminated aquifers. *Trends Microbiol.* 909 2005, 13 (2), 45–49 DOI: 10.1155/2011/863623.
- 910 (111) Zobrist, J.; Dowdle, P. R.; Davis, J. A.; Oremland, R. S. Mobilization of arsenite by
 911 dissimilatory reduction of adsorbed arsenate. *Environ. Sci. Technol.* 2000, *34* (22), 4747–4753
 912 DOI: 10.1021/es001068h.
- 913 (112) Hohmann, C.; Winkler, E.; Morin, G.; Kappler, A. Anaerobic Fe(II)-oxidizing bacteria show as
 914 resistance and immobilize as during Fe(III) mineral precipitation. *Environ. Sci. Technol.* 2010,
 915 44 (1), 94–101 DOI: 10.1021/es900708s.
- 916 (113) Hohmann, C.; Morin, G.; Ona-Nguema, G.; Guigner, J. M.; Brown, G. E.; Kappler, A.
 917 Molecular-level modes of As binding to Fe(III) (oxyhydr)oxides precipitated by the anaerobic
 918 nitrate-reducing Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. *Geochim. Cosmochim. Acta*

919		2011 , 75 (17), 4699–4712 DOI: 10.1016/j.gca.2011.02.044.
920	(114)	Omoregie, E. O.; Couture, R.; Cappellen, P. Van; Corkhill, C. L.; Charnock, J. M.; Polya, D.
921		A.; Vaughan, D.; Vanbroekhoven, K.; Lloyd, R. Arsenic Bioremediation by Biogenic Iron
922		Oxides and Sulfides. Appl Env. Microbiol 2013, 79 (14), 4325–4335 DOI:
923		10.1128/AEM.00683-13.
924	(115)	Nitzsche, K. S.; Weigold, P.; Lösekann-Behrens, T.; Kappler, A.; Behrens, S. Microbial
925		community composition of a household sand filter used for arsenic, iron, and manganese
926		removal from groundwater in Vietnam. Chemosphere 2015, 138, 47-59 DOI:
927		10.1016/j.chemosphere.2015.05.032.
928	(116)	Kleinert, S.; Muehe, E. M.; Posth, N. R.; Dippon, U.; Daus, B.; Kappler, A. Biogenic Fe(III)
929		minerals lower the efficiency of iron-mineral-based commercial filter systems for arsenic
930		removal. Environ. Sci. Technol. 2011, 45 (17), 7533-7541 DOI: 10.1021/es201522n.
931	(117)	Okibe, N.; Koga, M.; Morishita, S.; Tanaka, M.; Heguri, S.; Asano, S.; Sasaki, K.; Hirajima, T.
932		Microbial formation of crystalline scorodite for treatment of As(III) -bearing copper refinery
933		process solution using Acidianus brierleyi. Hydrometallurgy 2014, 143, 34-41 DOI:
934		10.1016/j.hydromet.2014.01.008.
935	(118)	Mandal, B. K.; Suzuki, K. T. Arsenic round the world : a review. Talanta 2002, 58, 201-235
936		DOI: 10.1016/S0039-9140(02)00268-0.
937	(119)	Corkhill, C. L.; Wincott, P. L.; Lloyd, J. R.; Vaughan, D. J. The oxidative dissolution of
938		arsenopyrite (FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans. Geochim.
939		Cosmochim. Acta 2008, 72 (23), 5616–5633 DOI: 10.1016/j.gca.2008.09.008.
940	(120)	O'Day, P. a; Vlassopoulos, D.; Root, R.; Rivera, N. The influence of sulfur and iron on
941		dissolved arsenic concentrations in the shallow subsurface under changing redox conditions.
942		Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (38), 13703–13708 DOI: 10.1073/pnas.0402775101.
943	(121)	Kim, M.; Nriagu, J.; Haack, S. Arsenic species and chemistry in groundwater of southeast
944		Michigan. Environ. Pollut. 2002, 120, 379-390 DOI: 10.1016/S0269-7491(02)00114-8.
945	(122)	Rochette, E. A.; Bostick, B. C.; Li, G.; Fendorf, S. Kinetics of arsenate reduction by dissolved
946		sulfide. Environ. Sci. Technol. 2000, 34 (22), 4714-4720 DOI: 10.1021/es000963y.
947	(123)	Kuhn, A.; Sigg, L.; Jul, N. Arsenic Cycling in Eutrophic Lake Greifen, Switzerland: Influence
948		of Seasonal Redox Processes. Limnol. Ocean. 1993, 38 (5), 1052-1059 DOI:
949		10.4319/lo.1993.38.5.1052.
950	(124)	Newman, D. K.; Beveridge, T. J. Precipitation of Arsenic Trisulfide by Desulfotomaculum
951		auripigmentum. Appl. Environ. Microbiol. 1997, 63 (5), 2022–2028.
952	(125)	Rittle, K. A.; Drever, J. I.; Colberg, P. J. S. Precipitation of Arsenic during Bacterial Sulfate
953		Reduction. Geomicrobiol. J. 1995, 13 (1), 1–11 DOI: 10.1080/01490459509378000.
954	(126)	Hoeft, S. E.; Kulp, T. R.; Stolz, J. F.; Hollibaugh, J. T.; Oremland, R. S. Dissimilatory Arsenate
955		Reduction with Sulfide as Electron Donor: Experiments with Mono Lake Water and Isolation
956		of Strain MLMS-1, a Chemoautotrophic Arsenate Respirer. Appl. Environ. Microbiol. 2004, 70
957		(5), 2741–2747 DOI: 10.1128/AEM.70.5.2741.
958	(127)	Hollibaugh, J. T.; Budinoff, C.; Hollibaugh, R. A.; Ransom, B.; Bano, N. Sulfide Oxidation

959		Coupled to Arsenate Reduction by a Diverse Microbial Community in a Soda Lake. Appl Env.
960		Microbiol 2006, 72 (3), 2043–2049 DOI: 10.1128/AEM.72.3.2043.
961	(128)	Hoeft, S. E.; Blum, J. S.; Stolz, J. F.; Tabita, F. R.; Witte, B.; King, G. M.; Santini, J. M.;
962		Oremland, R. S. Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic
963		gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or
964		oxygen as the electron acceptor. Int. J. Syst. Evol. Microbiol. 2007, 57 (3), 504-512 DOI:
965		10.1099/ijs.0.64576-0.
966	(129)	Rhine, E. D.; Phelps, C. D.; Young, L. Y. Anaerobic arsenite oxidation by novel denitrifying
967		isolates. Environ. Microbiol. 2006, 8 (5), 899–908 DOI: 10.1111/j.1462-2920.2005.00977.x.
968	(130)	Sun, W.; Sierra, R.; Fernandez, N.; Sanz, J. L.; Amils, R.; Legatzki, A.; Maier, R. M.; Amils,
969		R.; Field, J. A. Molecular Characterization and In Situ Quantification of Anoxic Arsenite
970		Oxidizing Denitrifying Enrichment cultures. FEMS Microbiol Ecol. 2009, 68 (1), 72-85 DOI:
971		10.1007/s12671-013-0269-8.Moving.
972	(131)	Senko, J. M.; Dewers, T. A.; Krumholz, L. R. Effect of Oxidation Rate and Fe(II) State on
973		Microbial Nitrate-Dependent Fe(III) Mineral Formation. Appl. Environ. Microbiol. 2005, 71
974		(11), 7172–7177 DOI: 10.1128/AEM.71.11.7172.
975	(132)	Weber, K. A.; Urrutia, M. M.; Churchill, P. F.; Kukkadapu, R. K.; Roden, E. E. Anaerobic
976		redox cycling of iron by freshwater sediment microorganisms. Environ. Microbiol. 2006, 8,
977		100–113 DOI: 10.1111/j.1462-2920.2005.00873.x.
978	(133)	Schippers, A.; Jorgensen, B. B. Biogeochemistry of pyrite and iron sulfide oxidation in marine
979		sediments. Geochim. Cosmochim. Acta 2002, 66 (1), 85-92 DOI:
980		10.1016/S0016-7037(01)00745-1.
981	(134)	Stevenson, F. J. Humus chemistry: genesis, composition, reactions, 2 nd.; John Wiley & Sons,
982		1994.
983	(135)	Jiang, J.; Bauer, I.; Paul, A.; Kappler, A. Arsenic redox changes by microbially and chemically
984		formed semiquinone radicals and hydroquinones in a humic substance model quinone. Environ.
985		Sci. Technol. 2009, 43 (10), 3639–3645 DOI: 10.1021/es803112a.
986	(136)	Sharma, P.; Rolle, M.; Kocar, B. D.; Fendorf, S.; Kapppler, A. Influence of Natural Organic
987		Matter on As Transport and Retention. Environ. Sci. Technol. 2010, 45 (2), 546–553 DOI:
988		10.2134/jeq2003.1393.
989	(137)	Sharma, P.; Kappler, A. Desorption of arsenic from clay and humic acid-coated clay by
990		dissolved phosphate and silicate. J. Contam. Hydrol. 2011, 126 (3-4), 216-225 DOI:
991		10.1016/j.jconhyd.2011.08.005.
992	(138)	Bauer, M.; Blodau, C. Arsenic distribution in the dissolved, colloidal and particulate size
993		fraction of experimental solutions rich in dissolved organic matter and ferric iron. Geochim.
994		Cosmochim. Acta 2009, 73 (3), 529–542 DOI: 10.1016/j.gca.2008.10.030.
995	(139)	Thomasarrigo, L. K.; Mikutta, C.; Byrne, J.; Barmettler, K.; Kappler, A.; Kretzschmar, R. Iron
996		and Arsenic Speciation and Distribution in Organic Flocs from Streambeds of an
997		Arsenic-Enriched Peatland. Environ. Sci. Technol. 2014, 48, 13218–13228 DOI:
998		10.1021/es503550g.

- 999 (140) Macalady, D. L.; Ranville, J. F. The chemistry and geochemistry of natural organic matter
 1000 (NOM). In *Perspectives in environmental chemistry*; Macalady, D. L., Ed.; Oxford University
 1001 Press: New York, 1988; pp 94–137.
- 1002 (141) Buschmann, J.; Kappeler, A.; Lindauer, U.; Kistler, D.; Berg, M.; Sigg, L. Arsenite and
 1003 arsenate binding to dissolved humic acids: Influence of pH, type of humic acid, and aluminum.
 1004 *Environ. Sci. Technol.* 2006, 40 (19), 6015–6020 DOI: 10.1021/es061057+.
- 1005 (142) Sharma, P.; Ofner, J.; Kappler, A. Formation of binary and ternary colloids and dissolved
 1006 complexes of organic matter, Fe and As. *Environ. Sci. Technol.* 2010, 44 (12), 4479–4485 DOI:
 1007 10.1021/es100066s.
- 1008 (143) Langner, P.; Mikutta, C.; Kretzschmar, R. Arsenic sequestration by organic sulphur in peat. *Nat.* 1009 *Geosci.* 2011, 5 (1), 66–73 DOI: 10.1038/ngeo1329.
- 1010 (144) Rowland, H. A. L.; Polya, D. A.; Lloyd, J. R.; Pancost, R. D. Characterisation of organic matter
 1011 in a shallow, reducing, arsenic-rich aquifer, West Bengal. *Org. Geochem.* 2006, *37*, 1101–1114
 1012 DOI: 10.1016/j.orggeochem.2006.04.011.
- 1013 (145) Rowland, H. A. L.; Pederick, R. L.; Polya, D. A.; Pancost, R. D.; Dongen, B. E. Van; Gault, A.
 1014 G.; Vaughan, D. J.; Bryant, C.; Anderson, B.; Lloyd, J. R. The control of organic matter on
 1015 microbially mediated iron reduction and arsenic release in shallow alluvial aquifers, Cambodia.
 1016 *Geobiology* 2007, *5*, 281–292 DOI: 10.1111/j.1472-4669.2007.00100.x.
- 1017 (146) Rowland, H. A. L.; Boothman, C.; Pancost, R.; Gault, A. G.; Polya, D. A.; Lloyd, J. R. The
 1018 Role of Indigenous Microorganisms in the Biodegradation of Naturally Occurring Petroleum,
 1019 the Reduction of Iron, and the Mobilization of Arsenite from West Bengal. *J. Environ. Qual.*1020 2009, *38*, 1598–1607 DOI: 10.2134/jeq2008.0223.
- 1021 (147) Bauer, M.; Blodau, C. Mobilization of arsenic by dissolved organic matter from iron oxides,
 1022 soils and sediments. *Sci. Total Environ.* 2006, *354* (2–3), 179–190 DOI:
 1023 10.1016/j.scitotenv.2005.01.027.
- 1024 (148) Huang, H.; Jia, Y.; Sun, G.-X.; Zhu, Y.-G. Arsenic speciation and volatilization from flooded
 1025 paddy soils amended with different organic matters-supporting information. *Environ. Sci.*1026 *Technol.* 2012, 46 (4), 2163–2168 DOI: 10.1021/es203635s.
- 1027 (149) Jia, Y.; Huang, H.; Chen, Z.; Zhu, Y. G. Arsenic uptake by rice is influenced by
 1028 microbe-mediated arsenic redox changes in the rhizosphere. *Environ. Sci. Technol.* 2014, 48 (2),
 1029 1001–1007 DOI: 10.1021/es403877s.
- 1030 (150) Palmer, N. E.; Freudenthal, J. H.; Wandruszka, R. Von. Reduction of Arsenates by Humic
 1031 Materials. *Environ. Chem.* 2006, *3*, 131–136 DOI: 10.1071/EN05081.
- 1032 (151) Palmer, N. E.; Wandruszka, R. Von. Humic acids as reducing agents: the involvement of
 1033 quinoid moieties in arsenate reduction. *Environ. Sci. Pollut. Res.* 2010, *17*, 1362–1370 DOI:
 1034 10.1007/s11356-010-0322-2.
- 1035 (152) Redman, A. D.; Macalady, D.; Ahmann, D. Natural organic matter affects arsenic speciation
 1036 and sorption onto hematite. *Environ. Sci. Technol.* 2002, *36* (13), 2889–2896 DOI:
 1037 10.1021/es0112801.
- 1038 (153) Niggemyer, A.; Spring, S.; Stackebrandt, E. Isolation and Characterization of a Novel As (V)

1039		-Reducing Bacterium: Implications for Arsenic Mobilization and the Genus Desulfitobacterium.
1040		Appl. Environ. Microbiol. 2001, 67 (12), 5568–5580 DOI: 10.1128/AEM.67.12.5568.
1041	(154)	Stolz, J. F.; Oremland, R. S. Bacterial respiration of arsenic and selenium. FEMS Microbiol
1042	· · /	<i>Rev</i> 1999 , <i>23</i> , 615–627 DOI: 10.1111/j.1574-6976.1999.tb00416.x.
1043	(155)	Handley, K. M.; Hery, M.; Lloyd, J. R. Redox cycling of arsenic by the hydrothermal marine
1044	()	bacterium Marinobacter santoriniensis. Env. Microbiol 2009, 11 (6), 1601–1611 DOI:
1045		10.1111/j.1462-2920.2009.01890.x.
1046	(156)	Lear, G.; Song, B.; Gault, A. G.; Polya, D. A.; Lloyd, J. R. Molecular analysis of
1047	· · /	arsenate-reducing bacteria within Cambodian sediments following amendment with acetate.
1048		Appl. Environ. Microbiol. 2007, 73 (4), 1041–1048 DOI: 10.1128/AEM.01654-06.
1049	(157)	Liu, A.; Garcia-dominguez, E.; Rhine, E. D.; Young, L. Y. A novel arsenate respiring isolate
1050	· · /	that can utilize aromatic substrates. <i>FEMS Microbiol Ecol</i> 2004 , <i>48</i> , 323–332 DOI:
1051		10.1016/j.femsec.2004.02.008.
1052	(158)	Liu, W. J.; McGrath, S. P.; Zhao, F. J. Silicon has opposite effects on the accumulation of
1053		inorganic and methylated arsenic species in rice. <i>Plant Soil</i> 2014 , <i>376</i> (1–2), 423–431 DOI:
1054		10.1007/s11104-013-1991-7.
1055	(159)	Escudero, L. V; Casamayor, E. O.; Chong, G.; Pedro, C.; Demergasso, C. Distribution of
1056		Microbial Arsenic Reduction, Oxidation and Extrusion Genes along a Wide Range of
1057		Environmental Arsenic Concentrations. PLoS One 2013, 8 (10), e78890 DOI:
1058		10.1371/journal.pone.0078890.
1059	(160)	Han, Y.; Fu, J.; Xiang, P.; Cao, Y.; Rathinasabapathi, B.; Chen, Y.; Ma, L. Q. Arsenic and
1060		phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase
1061		genes in rhizosphere of As-hyperaccumulator Pteris vittata. J. Hazard. Mater. 2017, 321,
1062		146–153 DOI: 10.1016/j.jhazmat.2016.08.079.
1063	(161)	Wang, X.; Rathinasabapathi, B.; Oliveira, L. M. de; Guilherme, L. R. G.; Ma, L. Q.
1064		Bacteria-Mediated Arsenic Oxidation and Reduction in the Growth Media of Arsenic
1065		Hyperaccumulator Pteris vittata. Env. Sci Technol 2012, 46, 11259-11266 DOI:
1066		10.1021/es300454b.
1067	(162)	Zhang, S. Y.; Zhao, F. J.; Sun, G. X.; Su, J. Q.; Yang, X. R.; Li, H.; Zhu, Y. G. Diversity and
1068		abundance of arsenic biotransformation genes in paddy soils from southern china. Environ. Sci.
1069		Technol. 2015, 49 (7), 4138–4146 DOI: 10.1021/acs.est.5b00028.
1070	(163)	Jia, Y.; Huang, H.; Sun, G. X.; Zhao, F. J.; Zhu, Y. G. Pathways and relative contributions to
1071		arsenic volatilization from rice plants and paddy soil. Environ. Sci. Technol. 2012, 46 (15),
1072		8090-8096 DOI: 10.1021/es300499a.
1073	(164)	Xiao, K. Q.; Li, L. G.; Ma, L. P.; Zhang, S. Y.; Bao, P.; Zhang, T.; Zhu, Y. G. Metagenomic
1074		analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with
1075		low-arsenic contents. Environ. Pollut. 2016, 211, 1-8 DOI: 10.1016/j.envpol.2015.12.023.
1076	(165)	Lu, K.; Mahbub, R.; Cable, P. H.; Ru, H.; Parry, N. M. A.; Bodnar, W. M.; Wishnok, J. S.;
1077		Styblo, M.; Swenberg, J. A.; Fox, J. G.; et al. Gut Microbiome Phenotypes Driven by Host
1078		Genetics Affect Arsenic Metabolism. Chem. Res. Toxicol. 2014, 27, 172-174 DOI:

1079		10.1021/tx400454z.
1080	(166)	Cai, L.; Yu, K.; Yang, Y.; Chen, B. W.; Li, X. D.; Zhang, T. Metagenomic exploration reveals
1081	(100)	high levels of microbial arsenic metabolism genes in activated sludge and coastal sediments.
1082		<i>Appl. Microbiol. Biotechnol.</i> 2013 , <i>97</i> (21), 9579–9588 DOI: 10.1007/s00253-012-4678-8.
1083	(167)	Rascovan, N.; Javier, M.; Martín P, V.; María, E. F. Metagenomic study of red biofilms from
1084	(107)	Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea Metagenomic study of red
1085		biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea. <i>ISME J</i> .
1086		2016 , <i>10</i> , 299–309 DOI: 10.1038/ismej.2015.109.
1087	(168)	Luo, J.; Bai, Y.; Liang, J.; Qu, J. Metagenomic Approach Reveals Variation of Microbes with
1088	(100)	Arsenic and Antimony Metabolism Genes from Highly Contaminated Soil. <i>PLoS One</i> 2014 , 9
1089		(10), e108185 DOI: 10.1371/journal.pone.0108185.
1090	(169)	Sangwan, N.; Lambert, C.; Sharma, A.; Gupta, V.; Khurana, P.; Khurana, J. P.; Sockett, R. E.;
1091	(10))	Gilbert, J. A.; Lal, R. Arsenic rich Himalayan hot spring metagenomics reveal genetically
1092		novel predator – prey genotypes. <i>Environ. Microbiol. Rep.</i> 2015 , <i>7</i> , 812–823 DOI:
1093		10.1111/1758-2229.12297.
1094	(170)	Aguiar-pulido, V.; Huang, W.; Suarez-ulloa, V.; Cickovski, T.; Mathee, K.; Narasimhan, G.
1095		Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis.
1096		<i>Evol. Bioinforma.</i> 2016 , <i>12</i> (S1), 5–16 DOI: 10.4137/EBO.S36436.
1097	(171)	Kour, M. Isolation and Characterization of Metal Resistance Genes by using
1098		Metatranscriptomic Approach. Master Dissertation, Thapar University, Patiala, Punjab-147004,
1099		2014.
1100	(172)	Carvalhais, L. C.; Dennis, P. G.; Tyson, G. W.; Schenk, P. M. Application of
1101		metatranscriptomics to soil environments. J. Microbiol. Methods 2012, 91 (2), 246–251 DOI:
1102		10.1016/j.mimet.2012.08.011.
1103	(173)	Gilbert, J. A.; Field, D.; Huang, Y.; Edwards, R.; Li, W.; Gilna, P.; Joint, I. Detection of Large
1104		Numbers of Novel Sequences in the Metatranscriptomes of Complex Marine Microbial
1105		Communities. PLoS One 2008, 3 (8), e3042 DOI: 10.1371/journal.pone.0003042.
1106	(174)	Lafuente, A.; Patricia, P.; Molina-s, D.; Caviedes, M. A.; Rodr, I. D. Unraveling the effect of
1107		arsenic on the model Medicago – Ensifer interaction: a transcriptomic meta-analysis. ISME J.
1108		2015 , 205, 255–272 DOI: 10.1111/nph.13009.
1109	(175)	Zhang, Y.; Chen, S.; Hao, X.; Su, J. Q.; Xue, X.; Yan, Y.; Zhu, Y. G.; Ye, J. Transcriptomic
1110		analysis reveals adaptive responses of an enterobacteriaceae strain LSJC7 to arsenic exposure.
1111		Front. Microbiol. 2016, 7, 1–12 DOI: 10.3389/fmicb.2016.00636.
1112	(176)	Moran, M. A.; Satinsky, B.; Gifford, S. M.; Luo, H.; Rivers, A.; Chan, L.; Meng, J.; Durham, B.
1113		P.; Shen, C.; Varaljay, V. A.; et al. Sizing up metatranscriptomics. 2012, 7 (2), 237–243 DOI:
1114		10.1038/ismej.2012.94.
1115	(177)	VerBerkmoes, N. C.; Denef, V. J.; Hettich, R. L.; Banfield, J. F. Functional analysis of natural
1116		microbial consortia using community proteomics. Nat Rev Microbiol 2009, 7 (3), 196–205 DOI:
1117		10.1038/nrmicro2080.
1118	(178)	Fiehn, O. Metabolomics - The link between genotypes and phenotypes. Plant Mol. Biol. 2002,

1119		48 (1–2), 155–171 DOI: 10.1023/A:1013713905833.
1120	(179)	Schneider, T.; Riedel, K. Environmental proteomics: Analysis of structure and function of
1121		microbial communities. Proteomics 2010, 10 (4), 785-798 DOI: 10.1002/pmic.200900450.
1122	(180)	Lankadurai, B. P.; Nagato, E. G.; Simpson, M. J. Environmental metabolomics: an emerging
1123		approach to study organism responses to environmental stressors. Environ. Rev. 2013, 21,
1124		180–205 DOI: 10.1139/er-2013-0011.
1125	(181)	Halter, D.; Cordi, A.; Gribaldo, S.; Gallien, S.; Goulhen-Chollet, F.; Heinrich-Salmeron, A.;
1126		Carapito, C.; Pagnout, C.; Montaut, D.; Seby, F.; et al. Taxonomic and functional prokaryote
1127		diversity in mildly arsenic-contaminated sediments. Res. Microbiol. 2011, 162 (9), 878-887
1128		DOI: 10.1016/j.resmic.2011.06.001.
1129	(182)	Shi, X.; Wei, X.; Koo, I.; Schmidt, R. H.; Yin, X.; Kim, S. H.; Vaughn, A.; Mcclain, C. J.;
1130		Arteel, G. E.; Zhang, X.; et al. Metabolomic Analysis of the Effects of Chronic Arsenic
1131		Exposure in a Mouse Model of Diet-Induced Fatty Liver Disease. J. Proteome Res. 2014, 13,
1132		547–554 DOI: 10.1021/pr400719u.
1133	(183)	Bastida, F.; Moreno, J. L.; Nicolás, C.; Hernández, T.; García, C. Soil metaproteomics: a
1134		review of an emerging environmental science. Significance, methodology and perspectives.
1135		Eur. J. Soil Sci. 2009, 60 (6), 845–859 DOI: 10.1111/j.1365-2389.2009.01184.x.
1136	(184)	Lu, K.; Abo, R. P.; Schlieper, K. A.; Michelle, E.; Levine, S.; Wishnok, J. S.; Swenberg, J. A.;
1137		Tannenbaum, S. R.; Fox, J. G. Arsenic Exposure Perturbs the Gut Microbiome and Its
1138		Metabolic Profile in Mice: An Integrated Metagenomics and Metabolomics Analysis. Environ.
1139		Health Perspect. 2014, 122, 284–291 DOI: 10.1289/ehp.1307429.
1140	(185)	Tripathi, R. D.; Tripathi, P.; Dwivedi, S.; Dubey, S.; Chatterjee, S.; Chakrabarty, D.; Trivedi, P.
1141		K. Arsenomics: Omics of arsenic metabolism in plants. Front. Physiol. 2012, 3, 1–14 DOI:
1142		10.3389/fphys.2012.00275.
1143	(186)	Sacheti, P.; Bhonsle, H.; Patil, R.; Kulkarni, M. J.; Srikanth, R.; Gade, W. Arsenomics of
1144		<i>Exiguobacterium</i> sp. PS (NCIM 5463). <i>RSC Adv.</i> 2013 , <i>3</i> , 9705–9713 DOI:
1145		10.1039/c3ra40897c.
1146	(187)	Zhang, S.; Williams, P. N.; Luo, J.; Zhu, Y. Microbial mediated arsenic biotransformation in
1147		wetlands. Front. Environ. Sci. eng. 2017, 11 (1), 1-11 DOI: 10.1007/s11783-017-0893-y.
1148	(188)	Meharg, A. A.; Williams, P. N.; Adomako, E.; Lawgali, Y. Y.; Deacon, C.; Villada, A.;
1149		Cambell, R. C. J.; Sun, G.; Zhu, Y. G.; Feldmann, J.; et al. Geographical variation in total and
1150		inorganic arsenic content of polished (white) rice. Environ. Sci. Technol. 2009, 43 (5),
1151		1612–1617 DOI: 10.1021/es802612a.
1152	(189)	Sun, G. X.; Williams, P. N.; Carey, A. M.; Zhu, Y. G.; Deacon, C.; Raab, A.; Feldmann, J.;
1153		Islam, R. M.; Meharg, A. A. Inorganic arsenic in rice bran and its products are an order of
1154		magnitude higher than in bulk grain. Environ. Sci. Technol. 2008, 42 (19), 7542–7546 DOI:
1155		10.1021/es801238p.
1156	(190)	Sun, G. X.; Williams, P. N.; Zhu, Y. G.; Deacon, C.; Carey, A. M.; Raab, A.; Feldmann, J.;
1157		Meharg, A. A. Survey of arsenic and its speciation in rice products such as breakfast cereals,
1158		rice crackers and Japanese rice condiments. Environ. Int. 2009, 35 (3), 473-475 DOI:

1159		10.1016/j.envint.2008.07.020.
1160	(191)	Norton, G. J.; Pinson, S. R. M.; Alexander, J.; Mckay, S.; Hansen, H.; Duan, G.; Islam, M. R.;
1161	(191)	Islam, S.; Stroud, J. L.; Zhao, F.; et al. Variation in grain arsenic assessed in a diverse panel of
1162		rice (<i>Oryza sativa</i>) grown in multiple sites. <i>New Phytol.</i> 2011 , <i>193</i> , 650–664 DOI:
1163		10.1111/j.1469-8137.2011.03983.x.
1164	(192)	Lomax, C.; Liu, W. J.; Wu, L.; Xue, K.; Xiong, J.; Zhou, J.; McGrath, S. P.; Meharg, A. A.;
1165	(172)	Miller, A. J.; Zhao, F. J. Methylated arsenic species in plants originate from soil
1166		microorganisms. <i>New Phytol.</i> 2012 , <i>193</i> (3), 665–672 DOI:
1167		10.1111/j.1469-8137.2011.03956.x.
1168	(193)	Oremland, R. S.; Dowdle, P. R.; Hoeft, S.; Sharp, J. O.; Schaefer, J. K.; Miller, L. G.; Blum, J.
1169	(195)	S.; Smith, R. L.; Bloom, N. S.; Wallschlager, D. Bacterial dissimilatory reduction of arsenate
1170		and sulfate in meromictic Mono Lake, California. <i>Geochim. Cosmochim. Acta</i> 2000 , <i>64</i> (18),
1171		3073–3084 DOI: 10.1016/S0016-7037(00)00422-1.
1172	(194)	Kulp, T. R.; Hoeft, S. E.; Miller, L. G.; Saltikov, C.; Murphy, J. N.; Han, S.; Lanoil, B.;
1173	()	Oremland, R. S. Dissimilatory Arsenate and Sulfate Reduction in Sediments of Two
1174		Hypersaline, Arsenic-Rich Soda Lakes: Mono and Searles Lakes, California. Appl. Environ.
1175		<i>Microbiol.</i> 2006 , <i>72</i> (10), 6514–6526 DOI: 10.1128/AEM.01066-06.
1176	(195)	Reed, D. C.; Algar, C. K.; Huber, J. A.; Dick, G. J. Gene-centric approach to integrating
1177		environmental genomics and biogeochemical models. Proc. Natl Acad. Sci. 2014, 111 (5),
1178		1879–1884 DOI: 10.1073/pnas.1313713111.
1179	(196)	Louca, S.; Hawley, A. K.; Katsev, S.; Torres-Beltran, M.; Bhatia, M. P.; Kheirandish, S.;
1180		Michiels, C. C.; Capelle, D.; Lavik, G.; Doebeli, M.; et al. Integrating biogeochemistry with
1181		multiomic sequence information in a model oxygen minimum zone. Proc. Natl. Acad. Sci.
1182		2016 , <i>113</i> (40), E5925–E5933 DOI: 10.1073/pnas.1602897113.
1183		
1184 1185	Leger	nds
1186	Figure	e 1. Proposed pathways for arsenic redox reactions and synthesis of novel
1187	organ	oarsenicals.
1188		
1189	Figure	e 2. The model of effect of Fe, N, S and natural organic matter (NOM) on
1190	micro	bes involved in arsenic biogeochemical cycling highlights proteins associated
1191	with o	elemental metabolisms. Green ovals denote arsenic transporters, yellow ovals
1192	denote	e transmembrane enzymes. Red words are enzymes, blue words are related
1193	arseni	c compounds. The full name of enzymes that were not mentioned in the text was
1194	provid	led in the follow, NarG, transmembrane nitrate reductase that drives the nitrate

1195 reduction to nitrite; Nas, cytoplasmic-assimilatory nitrate reductase that drives the 1196 nitrate reduction to nitrite; NapA, periplasmic-dissimilatory nitrate reductase; Nir /Nrf (associated with NapA), nitrite reductase that drives the nitrite reduction to nitric 1197 oxide; NorB/C, nitric oxide reductase that drives the nitric oxide reduction to nitrous 1198 oxide; NosZ, nitrous oxide reductase that drives the nitrous oxide reduction to 1199 nitrogen; Nif, nitrogenase that catalyzes the nitrogen fixation to ammonia; Hs, 1200 1201 hydrazine synthase that catalyzes the production of nitrogen from nitrous oxide and ammonia; cyt, cytochrome. 1202

1204	Table 1. The gene	s involved in	arsenic metabolisms

Gene	Protein	Protein	function	Reference
		abbreviation		
As(III) oxidation		•		·
aioA and aioB	As(III) oxidase	AioAB	Oxidate As(III)	9
arxA	As(III) oxidase	ArxAB	Oxidate As(III)	10
arxB/arxB2	[4Fe-4S] containing protein	ArxB/ ArxB2	Unknown function	11
aioX/arxX	As(III)-binding protein	AioX/ArxX	Involved in As(III)-based signaling and regulation of As(III) oxidation	12, 11
aioS/arxS	sensor histidine kinase	AioS /ArxS	One part of two-component signal transduction system	9, 11
aioR/arxR	transcriptional regulator	AioR/ArxR	Regulate the expression of <i>aio/arx</i> operon	9, 11
moeA	molybdenum cofactor biosynthesis	MoeA	Synthesize the molybdenum cofactor of	9
	protein		AioAB oxidase	
arxC	membrane anchoring and quinol oxidoreductase subunit	ArxC	Involved in As(III) oxidation	11
arxD	TorD-like molybdoenzyme chaperone	ArxD	Involved in As(III) oxidation	11
arsH	organoarsenical oxidase	ArsH	Oxidate trivalent methylated and aromatic	13, 14
			arsenicals, reduce chromium and iron	
As(V) reduction				
arrA and arrB	As(V) respiratory reductases	ArrAB	Reduce As(V)	15, 16
arrC	As(V) reductase membranous subunit	ArrC	Involved in As(V) reduction	17
arrD	As(V) reductase chaperon	ArrD	Involved in As(V) reduction	17
arrS	sensor histidine kinase	ArrS	Regulate the expression of arr operon	17
arsC	As(V) reductase	ArsC	Reduce As(V)	18
ACR2	As(V) reductase	ACR2	Reduce As(V)	19

ACR1	transcriptional regulatory protein	ACR1	Regulate the expression of <i>ACR</i> genes	19
arrR/arsR	arsenic-responsive repressor	ArrR /ArsR	Regulate the expression of <i>arr/ars</i> operon	17, 20
GstB	glutathione S-transferase B	GstB	Reduce As(V) to As(III) with reduced GSH	21
arsN	acetyltransferase	ArsN	Putative As(V) reductase	22
Arsenic methyla	tion and demethylation			
arsM	As(III) S-adenosylmethionine (SAM) methyltransferases	ArsM	Methylate arsenic	23
arsI	$\begin{array}{c} \text{A C} \cdot \text{As lyase} \\ \end{array}$	ArsI	Catalyze demethylation of trivalent organoarsenicals	24
Arsenic transport	rt			
arsB	As(III)-pump protein	ArsB	Extrude As(III) from the cell	25
arsA	As(III)-pump ATPase	ArsA	The catalytic subunit of an oxyanion-translocating ATPase	26
arsD	arsenical metallochaperone	ArsD	Transfer trivalent metalloids to ArsA	26
apqS	aquaglyceroporin	AqpS	Extrude As(III) from the cell	27
ACR3	As(III) permease	ACR3	Extrude As(III) from the cell	19
Ycflp	yeast cadmium factor protein cytosolic	Ycflp	Sequester cytosolic As(III)/glutathione complex into vacuoles	28
arsJ	organoarsenical efflux permease	ArsJ	Extrude organoarsenicals from the cell	29
arsP	efflux system specific for trivalent organoarsenicals	ArsP	Extrude trivalent organoarsenicals from the cell	30
pgpA	P-glycoprotein-related protein	PgpA	Recognize and transport thiol-metal conjugates	31
Unknown function	ons	1		
arsO	putative flavin-binding monooxygenase	ArsO	Unknown function	32
arsT	putative thioredoxin reductase	ArsT	Unknown function	32