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The problem of construction of controlled invariant polytopic sets with specified complexity, for linear
systems subject to linear state and control constraints, is investigated. First, geometric conditions for the en-
largement of a polytopic set by adding a new vertex, in order to produce a polytopic set of specified complexity,
are established. Next, conditions for such an enlargement of controlled invariant sets to preserve the controlled
invariance property are presented. The established theoretical results are used to develop methods for the con-
struction of admissible controlled invariant sets with specified complexity. Two numerical examples show how
these results can be used for the computation of monotonic sequences of admissible controlled invariant sets of
specified complexity.

Keywords: Controlled invariant sets, positively invariant sets, contractive sets, linear systems, constraints,
complexity.

1 Introduction

A problem of interest in both the analysis and the design of linear systems in the presence of
state and control constraints is the computation of the admissible domain of attraction for the
autonomous case and of the admissible stabilizability region for the case of systems with inputs.
For example, in model predictive control schemes, the computation of the controlled contractive
region determines the domain of the state space where the convergence to the target set can
be guaranteed. Also, the problem is relevant in many control applications, where the goal is to
determine whether a desired set of initial states belongs to the admissible domain of attraction.
Since controlled contractive, and as a consequence controlled invariant, subsets of the state space
provide an approximation of the admissible domain of attraction, construction of an invariant
set is one of the typical approaches to solve the aforementioned problem.
In numerous real–life applications state constraints are specified by linear inequalities that

define bounded and closed polyhedral sets containing the origin in their interior. In this setting,
several methods of construction of an admissible invariant polyhedral set for both continuous–
time and discrete–time linear systems are available. These methods can be grouped in two
categories, according to the approach used. The first category exploits the algebraic necessary
and sufficient conditions of positive invariance and existence of Lyapunov functions, developed
initially by (Molchanov and Pyatnitskii 1986a,b,c) for bounded polyhedral sets, by (Bitsoris
1988, 1991) for both bounded and unbounded polyhedral sets, by (Blanchini 1990) for polytopic
sets under vertex representation, and extended later by (Hennet 1995, Polański 1995, Lazar 2010)
and others. These conditions can be used directly to verify invariance of a given set. On the other
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hand, exploiting them in order to construct an invariant set requires the analysis of the spectral
properties of the system (Bitsoris 1988, 1991, Hennet 1995, Bobyleva and Pyatnitskii 2001), and
leads to characterization of symmetric polyhedral positively invariant sets. The second category
consists in computing convergent sequences of sets, that are mainly related to the backward
reachability map and start from specific initial conditions (Bertsekas 1972, Gutman and Cwikel
1987, Cwikel and Gutman 1986, Aubin 1991, Gilbert and Tan 1991, Kolmanovsky, I. V. and
Gilbert, E. G. 1998, Dórea and Hennet 1999, Blanchini et al. 1999, Raković and Fiacchini 2008).
These methods provide polytopic approximations of the maximal controlled invariant set with
any desired accuracy, but of non specificed complexity. Thus, although a number of works in
the control research field deals with the characterization and computation of controlled invariant
sets, there is little progress towards characterizing and constructing polytopic controlled invariant
sets of bounded complexity and non–trivial size, except the works (Cannon et al. 2003, Rohal-
Ilkiv 2004, Pluymers et al. 2005, Blanchini et al. 2008, Benlaoukli and Olaru 2009, Blanco et al.
2010, Scibilia 2010, Scibilia et al. 2011) which utilize heuristic methods combined with special
types of polytopic sets or the backward reachability map. Motivated by this lack of systematic
constructive methods and the need to compute controlled invariant sets of low complexity, the
goal of this article is to establish the theoretical foundations for developing design methods of
construction of admissible controlled contractive polytopic sets with specified complexity. These
methods can then be used for solving different kinds of constrained control problems where the
complexity of the controlled contractive sets is considered as an additional constraint that must
be respected. The main idea behind the approach consists in the addition of vertices to the
convex hull of polytopic sets, resulting in conditions that can be easily verified by solving linear
programming problems.
The paper is organized as follows. In Section 2, basic definitions and the problem statement

are given. In Section 3, the theoretical framework for enlarging polytopic sets with specified com-
plexity while preserving controlled invariance is established. In Section 4,these results are used
for establishing algebraic necessary and sufficient conditions for such an enlargement method
to produce admissible controlled invariant sets with specified complexity. Two illustrative ex-
amples of computation of monotone sequences of admissible polytopic sets are presented. The
conclusions are drawn in Section 5. For clarity of exposition, the proofs of all theoretical results
are presented in the Appendix.

2 Problem statement

Throughout the article, capital letters denote real matrices and lower case letters denote column
vectors or scalars. Rn denotes the real n-space, R+ denotes the set of nonnegative real numbers,
N+ denotes the set of nonnegative integers, N[q1,q2] denotes the set of integers belonging to the

interval [q1, q2] and Rn×m denotes the set of real n×m matrices.
The column and the row vectors of a matrix G ∈ Rs×n are denoted by gi and g⊤i respectively,

i.e. G =
[

g1 g2 · · · gn
]

=
[

g1 g2 · · · gs
]⊤

. Given two real matrices A = [aij ], B = [bij], with
A,B ∈ Rn×m, the inequality A ≤ B (A < B) is equivalent to aij ≤ bij (aij < bij). Similar
notation holds for vectors. The p-dimensional vector with all its elements equal to one is denoted
by ep , the n×m real matrix with all its elements equal to zero is denoted by 0n×m and the n×n
identity is denoted by In×n. Finally, given a subset S ⊂ Rn and a real number r, rS denotes
the set rS := {y ∈ Rn : (∃x ∈ S : y = rx)}.
The half-space representation of a convex polyhedral set having the origin as an interior point

is defined by a vector inequality Gx ≤ ep, G ∈ Rp×n and is denoted by P(G), i.e.

P(G) = {x ∈ Rn : Gx ≤ ep}.

If the set P(G) is bounded then it is a polytope and can be equivalently defined as the convex
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hull of a set of vectors v1, v2, .., vq , namely

Q(V) = conv(v1, v2, .., vq),

where V = {v1, v2, .., vq}. In such a description some of vectors v1, v2, .., vq , may be redundant.
The minimal set of vectors vi required for defining a polytope constitutes the set of its vertices.
In this paper the notation Q(V) will be used for describing polytopes having the origin as an
interior point.
The complexity of a polytopic set can be characterized by the number of its vertices, the

number of its faces or the structure of the induced face lattice (Ziegler 2007). In this article, the
complexity of a polytopic set is defined as the number of its vertices.
We consider both continuous-time and discrete-time linear systems. The continuous-time sys-

tems are described by differential equations of the form

ẋ(t) = Ax(t) +Bu(t), (1)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector, A ∈ Rn×n and B ∈ Rn×m are
the system and input matrices respectively and t ∈ Tc is the time variable where Tc = R+. The
discrete-time systems are described by difference equations of the form

x(t+ 1) = Ax(t) +Bu(t), (2)

where the time variable t ∈ Td, Td being the set of nonnegative integers N+. It will be assumed
that the pair (A,B) is stabilizable. Autonomous linear systems

ẋ(t) = Ax(t) (3)

and

x(t+ 1) = Ax(t) (4)

will also be considered as special cases of (1) and (2).
The state vector is constrained to belong to a bounded subset of the state space defined by a

vector inequality of the form

Gxx ≤ epx
, (5)

where Gx ∈ Rpx×n. This means that the trajectories x(t;x0) of the system are confined to lie
within the polyhedral set P(Gx). Constraints are also imposed on the control input which has
to satisfy linear inequalities of the form

Guu ≤ epu
, (6)

where Gu ∈ Rpu×m.

Definition 2.1: Given system (1) ((2)), a set S ⊂ Rn containing the origin as an interior
point is said to be a controlled ε−contractive set with contraction factor ε if and only if ε > 0
(0 ≤ ε < 1) and there exists a state-feedback control u = f(x), f : Rn → Rm, such that for
any initial state x0 ∈ S the corresponding trajectory x(t;x0) of the resulting closed-loop system
satisfies the relation x(t;x0) ∈ e−ε(t−t0)S for all t0 ∈ Tc and t ≥ t0 (x(t;x0) ∈ ε(t−t0)S for all
x0 ∈ S, t0 ∈ Td and t ≥ t0).

Definition 2.2: Given system (1) ((2)) and constraints (5) and (6), a set S ⊂ Rn containing
the origin as an interior point is said to be an admissible controlled ε−contractive set with
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contraction factor ε if and only if ε > 0 (0 ≤ ε < 1) and there exists a state-feedback control u =
f(x), f : Rn → Rm, such that for any initial state x0 ∈ S the corresponding trajectory x(t;x0)
of the resulting closed-loop system and the control input f(x(t;x0)) respect the constraints
(5) and (6) respectively for all t ≥ t0 and x(t;x0) ∈ e−ε(t−t0)S, for all t0 ∈ Tc and t ≥ t0
(x(t;x0) ∈ ε(t−t0)S for all x0 ∈ S, t0 ∈ Td and t ≥ t0).

If there exists an ε satisfying the conditions of the above definition then the set S is said to be
an admissible controlled contractive set. Finally, if the conditions in Definition 2.2 are satisfied
by ε = 0 for the continuous-time case and ε = 1 for the discrete-time one, then the set S is said
to be an admissible controlled invariant set.

Definition 2.3: Given the autonomous system (3) ((4)) and the state constraints (5), a set
S ⊂ Rn containing the origin as an interior point is said to be an admissible ε−contractive set
with contraction factor ε if and only if ε > 0 (0 ≤ ε < 1) and for any initial state x0 ∈ S the
corresponding trajectory x(t;x0) of the resulting closed-loop system respects the state constraints
(5) and satisfies the relation x(t;x0) ∈ e−ε(t−t0)S for all t0 ∈ Tc and t ≥ t0 ( x(t;x0) ∈ ε(t−t0)S
for all x0 ∈ S, t0 ∈ Td and t ≥ t0).

Remark 1 : Positively invariant and controlled invariant sets are special cases of contractive
and controlled contractive sets respectively with ε = 0 for the continuous–time case and ε = 1 for
the discrete–time case. Thus, the exposition is made for the general case when ε ≥ 0 (0 ≤ ε ≤ 1).

When the matrix pair (A,B) of an unconstrained system (1) or (2) is stabilizable, it is possible
to determine a controlled contractive polytope Q(V0) = conv(v01, v02, ..., v0q0) by computing
a stabilizing linear state–feedback control law (Hennet 1995, Bobyleva and Pyatnitskii 2001).
Then, by proper scaling, we can always determine a sufficiently “small” admissible controlled
contractive polytope Q(rV0) = conv(rv01, rv02, ..., rv0q0), where r ∈ R+. Moreover, when the
pair (A,B) is controllable, it is always possible to construct a contractive symmetric polytope
Q(Vo) of desired complexity q0 ≥ 2n. Generally, the so obtained admissible controlled contractive
sets cover a small volume of the maximal admissible set. On the other hand, the reachability–
based methods (Bertsekas 1972, Gutman and Cwikel 1987, Cwikel and Gutman 1986, Aubin
1991, Gilbert and Tan 1991, Kolmanovsky, I. V. and Gilbert, E. G. 1998, Dórea and Hennet
1999, Blanchini et al. 1999, Raković and Fiacchini 2008) converge (under assumptions) to the
maximal admissible controlled contractive set, however, the sets produced are usually of high
complexity.
The problem investigated in this article has a different setting since not only the volume but

also the complexity of the admissible controlled contractive set is included in the specifications.
To this end, we determine the conditions for an enlarged polytope, which is obtained by adding a
new vertex to the vertex representation of an admissible controlled contractive polytopic set, to
preserve this property and, in addition, to be of a specified complexity. These general theoretical
results are the tools that can be used for the development of methods of construction of admissible
controlled contractive polytopic sets with specified complexity.
Thus, the problem to be investigated is formulated as follows: Given the system (1) ((2)), the

state and input constraint sets (5) and (6) and an admissible controlled contractive set Q(V) of
complexity q, find a systematic method of computing admissible controlled contractive supersets
Q(V∗) of a specified complexity q∗.

3 Theoretical Foundations

Perhaps the simplest method of enlarging an admissible controlled contractive polytopic set
Q(V) = conv(v1, ..., vq) is to add a new component v∗ /∈ Q(V) in its vertex description to obtain
a new admissible controlled contractive polytopic set Q(V∗) = conv(v1, ..., vq , v∗). Then, Q(V) ⊂
Q(V∗) will hold by construction. In this subsection, we establish the necessary and sufficient
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conditions for such an enlargement approach to produce an admissible controlled contractive
polytopic set of specified complexity.

3.1 Enlargement of polytopes with specified complexity

Addition of a new vertex v∗, situated outside a polytope Q(V) = conv(v1, v2, ..., vq) will generate
an enlarged polytope Q(V) = conv(v1, ..., vq , v∗) which has not necessarily higher complexity.
The reason for this is that although Q(V∗) is defined as the convex hull of more vectors than
those used for the definition of the set Q(V), some of them may become redundant when v∗

is added. Consequently, the set Q(V∗) may have equal or even lower complexity, depending on
where the new vertex v∗ is located in the state space. In this subsection, we establish necessary
and sufficient conditions for this enlargement procedure to produce polytopic sets with specified
complexity.
Let S ⊂ Rn be a polytopic set with q vertices and p faces and with vertex and half-plane

representations

Q(V) = conv(v1, ..., vq) (7)

and

P(G) = {x ∈ Rn : Gx ≤ ep} (8)

respectively.
With each vertex vk, k ∈ N[1,q] of the polytope S = Q(V), we associate the set of indices

NS(v
k) ⊂ N[1,p], defined by the relation

NS(v
k) := {j ∈ N[1,p] : g

⊤
j v

k = 1}. (9)

The set NS(v
k) represents the set of indices j which correspond to the faces g⊤j x = 1 of the

polytope S = Q(V) that pass through the vertex vk. Moreover, with each vertex vk, k ∈ N[1,q]

of the polytope S = Q(V), we associate the set Ak, defined by the relation

Ak := {x ∈ Rn : g⊤j x ≥ 1, j ∈ N(vk)}. (10)

The sets Ak are polyhedral cones formed by the faces g⊤k = 1 of the polytope S = Q(V) and point
outside the set S. The following theorem establishes conditions for the proposed enlargement
approach not to produce a polytope of higher complexity. Recall that the complexity of the set
is defined as the number of its vertices.

Theorem 3.1 : Given a polytope S ⊂ Rn with vertex and half-space representations (7) and
(8) respectively, the polytope

Q(V∗) = conv(v1, ..., vq , v∗) (11)

satisfies the set relation

Q(V) ⊂ Q(V∗) (12)

and is of equal or lower complexity than Q(V) if and only if v∗ /∈ Q(V) and

v∗ ∈ A1 ∪ A2 ∪ ... ∪Aq. (13)
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Using this result we can establish conditions for the enlargement of a polytope by adding a
new vertex to produce a new polytope with specified lower complexity.

Theorem 3.2 : Given a polytope S ⊂ Rn of complexity q with vertex and half-space represen-
tations (7) and (8) respectively, the polytope

Q(V∗) = conv(v1, ..., vq , v∗)

satisfies the set relation

Q(V) ⊂ Q(V∗) (14)

and is of complexity lower or equal to q∗ = q − l, l ∈ N[0,q−n−1] if and only if v∗ /∈ Q(V) and
there exist at least l + 1 indices k1, k2, ..., kl+1 ∈ N[1,q] such that

Ak1
∩ Ak2

∩ ... ∩Akl+1
6= ∅, (15)

and

v∗ ∈ Ak1
∩ Ak2

∩ ... ∩Akl+1
. (16)

A direct consequence of Theorems 3.1, 3.2, which is of practical importance, follows.

Corollary 3.3: Given a polytope S ⊂ Rn of complexity q with vertex and half-space represen-
tations (7) and (8) respectively, the polytope

Q(V∗) = conv(v1, ..., vq , v∗)

satisfies the set relation

Q(V) ⊂ Q(V∗) (17)

and is of equal complexity to that of Q(V) if and only if v∗ /∈ Q(V) and there exists an index
k ∈ N[1,q] such that

v∗ ∈ Ak \ (A1 ∪ A2 ∪ ...Ak−1 ∪ Ak+1 ∪ ... ∪Aq). (18)

Example 3.4 The results established in this subsection enables one to partition the region
outside a given polytope S = Q(V) in subregions where a new vertex v∗ must be situated for
the enlarged polytope Q(V∗) to be of specified complexity.
To show this graphically, we consider a polytopic set S ⊂ R2 with eight vertices, shown in

Figure 1 in white color. We are interested in identifying the regions which correspond to different
complexities of the set Q(V∗) for the subset X ⊂ R2 of the state space, which is the square of
length 2. By calculating first the index sets NS(v

k), k ∈ N[1,8] and next the sets Ak∩X , k ∈ N[1,8],
application of Theorem 3.1, Theorem 3.2 and Corollary 3.3 yields the polytopic regions for which
the complexity of the set Q(V∗) is identified. Thus, as shown in Figure 1, the complexity of Q(V∗)
is increased by one for regions that are depicted with +1, the complexity remains the same for
the regions with 0, and is reduced by one, two and three for the regions shown with −1,−2 and
−3 respectively.

3.2 Enlargement of contractive polytopes

The results stated in the preceding subsection can be utilized to identify the regions of the
state space where a new vertex can be added such that the resulting enlarged polytope has



November 21, 2017 15:46 International Journal of Control Revised˙Manuscript

Invariant sets with specified complexity 7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

+1

+1

+1

+1

0 0

0
0

0

0 −1

−1

−1

−1

−1

−1

−2
−2

−2

−2−2

−3

X

S

x1

x
2

Figure 1. The polytopic sets S = Q(V) and X , and the partition of the set X \Q(V) in regions according to the complexity
of the resulting set when a vertex is added to the convex hull of S.

a desired complexity. In this subsection, we establish the additional conditions that must be
satisfied for the enlarged polytope Q(V∗) = conv(v1, ..., vq , v∗) generated by adding a new vertex
v∗ to a controlled ε–contractive or simply ε–contractive set Q(V) = conv(v1, ..., vq), to be also a
controlled ε–contractive or ε–contractive set (Athanasopoulos 2010, Athanasopoulos and Bitsoris
2010, Athanasopoulos et al. 2012). First, we consider the case of continuous–time systems (1).

Theorem 3.5 : Given a controlled ε−contractive set Q(V) = conv(v1, ..., vq) with respect to
the continuous–time system (1) and a vector v∗ ∈ Rn, the polytope Q(V∗) = conv(v1, ..., vq , v∗)
is a controlled ε−contractive set if and only if there exist vectors u∗ ∈ Rm, p∗ ∈ Rq and a scalar
p∗q+1, such that

Av∗ +Bu∗ = V p∗ + p∗q+1v
∗, (19)

e⊤q p
∗ + p∗q+1 ≤ −ε, (20)

p∗ ≥ 0, (21)

where V =
[

v1 v2 · · · vq
]

.

Corollary 3.6: Given an ε−contractive set Q(V) = conv(v1, ..., vq) with respect to the
continuous–time system (3) and a vector v∗ ∈ Rn, the polytope Q(V∗) = conv(v1, ..., vq , v∗)
is an ε−contractive set if and only if there exists a vector p∗ ∈ Rq and a scalar p∗q+1, such that

Av∗ = V p∗ + p∗q+1v
∗, (22)

e⊤q p
∗ + p∗q+1 ≤ −ε, (23)

p∗ ≥ 0, (24)

where V =
[

v1 v2 · · · vq
]

.

Next, we consider the case of discrete–time systems.

Theorem 3.7 : Given a controlled ε−contractive set Q(V) = conv(v1, ..., vq) with respect to
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the discrete–time system (2) and a vector v∗ ∈ Rn, the polytope Q(V∗) = conv(v1, ..., vq , v∗) is
a controlled ε–contractive set if and only if there exist vectors u∗ ∈ Rm, p∗ ∈ Rq and a scalar
p∗q+1, such that

Av∗ +Bu∗ = V p∗ + p∗q+1v
∗, (25)

e⊤q p
∗ + p∗q+1 ≤ ε, (26)

p∗ ≥ 0, (27)

p∗q+1 ≥ 0, (28)

where V =
[

v1 v2 · · · vq
]

.

Corollary 3.8: Given an ε−contractive set Q(V) = conv(v1, ..., vq) with respect to the
discrete–time system (4) and a vector v∗ ∈ Rn, the polytope Q(V∗) = conv(v1, ..., vq , v∗) is
an ε–contractive set if and only if there exists a vector p∗ ∈ Rq and a scalar p∗q+1, such that

Av∗ = V p∗ + p∗q+1v
∗, (29)

e⊤q p
∗ + p∗q+1 ≤ ε, (30)

p∗ ≥ 0, (31)

p∗q+1 ≥ 0, (32)

where V =
[

v1 v2 · · · vq
]

.

4 Admissible controlled contractive sets with specified complexity

We are now in a position to establish necessary and sufficient conditions for the enlargement of
a polytopic admissible controlled contractive set while respecting complexity specifications. Let
Q(V) = conv(v1, ..., vq) be an admissible controlled ε −contractive set of the continuous–time
system (1) with state and input constraints (5) and (6), of complexity q and with half-space
representation P(G), G ∈ Rp×n. The main result of this section for continuous–time systems (1)
follows.

Theorem 4.1 : Given a complexity q∗ and a vector v∗ ∈ Rn, the set Q(V∗) =
conv(v1, ..., vq , v∗) is an admissible controlled ε-contractive set of complexity q∗ for the
continuous–time system (1) if and only if there exist vectors u∗ ∈ Rm, p∗ ∈ Rq, a scalar p∗q+1 ∈ R
and indices i = 1, 2, ..., q − q∗ + 1 satisfying the algebraic relations

Av∗ +Bu∗ = V p∗ + v∗p∗q+1 (33)

p∗ ≥ 0 (34)

e⊤q p
∗ + p∗q+1 ≤ −ε (35)

Gxv
∗ ≤ epx

(36)

Guu
∗ ≤ epu

(37)

g⊤j v
∗ > 1, ∀j ∈ NS(v

ki), (38)

where V =
[

v1 v2 · · · vq
]

.

A similar result, established for discrete–time systems, follows.
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Theorem 4.2 : Given a complexity q∗ and a vector v∗ ∈ Rn, the set Q(V∗) =
conv(v1, ..., vq , v∗) is an admissible controlled ε-contractive set of complexity q∗ for the discrete–
time system (2) if and only if there exist vectors u∗ ∈ Rm, p∗ ∈ Rq, a scalar p∗q+1 ∈ R and
indices i = 1, 2, ..., q − q∗ + 1 satisfying the algebraic relations

Av∗ +Bu∗ = V p∗ + v∗p∗q+1 (39)

p∗q+1 ≥ 0, p∗ ≥ 0 (40)

e⊤q p
∗ + p∗q+1 ≤ ε (41)

Gxv
∗ ≤ epx

(42)

Guu
∗ ≤ epu

(43)

g⊤j v
∗ > 1 ∀j ∈ NS(v

ki), (44)

where V =
[

v1 v2 · · · vq
]

.

Remark 2 : Similar results are obtained for the autonomous case if relation (33) of Theorem 4.1
and relation (39) of Theorem 4.2 are substituted by

Av∗ = V p∗ + v∗p∗q+1. (45)

The importance of Theorems 4.1 and 4.2 and of the corresponding results for the autonomous
case lies in the fact that from a given or determined admissible controlled ε–contractive polytopic
set Q(V) = conv(v1, ..., vq), we can construct an enlarged admissible controlled ε–contractive
polytopic set Q(V∗) = conv(v1, ..., vq , v∗) with specified complexity. This is possible by solv-
ing the set of algebraic relations (33)–(38) for the continuous–time case and (39)–(44) for the
discrete–time case for different sets of integers{k1, k2, ..., kq−q∗+1}. It is worth noting that the
relations (33)–(38) and (39)–(44) are linear except the product in the right–hand side of equa-
tions (33),(39) between the sign–definite1 scalar p∗q+1 and the vector v∗. Thus, considering p∗q+1

as a scalar parameter, these algebraic relations are linear with respect to the unknown variables
v∗, u∗, p∗q .
An approach to the determination of the unknown variables v∗, u∗, p∗q is to define and solve

an optimization problem having (33)-(38) or (39)–(44) as constraints. If a linear optimization
criterion is chosen, then this optimization problem can be solved by applying any standard
scalar–parameterized mixed–integer linear programming approach (Schrijver 1998). For example,
solving the optimization problem

min
v∗,u∗,p∗

q,p
∗

q+1

{e⊤q p
∗ + p∗q+1}

under constraints (33)–(38) for the continuous–time case and under constraints (39)–(44) for
the discrete–time case, we determine a new vertex v∗ making the enlarged polytope Q(V) =
conv(v1, ..., vq , v∗) an admissible controlled ε–contractive set of complexity q∗.
Additional linear constraints and/or alternative optimization costs can be considered in order

to satisfy other design requirements. For example, if an enlargement of the polytope Q(V) =
conv(v1, ..., vq) to a specific direction of the state space is desired, this specification can be
achieved by considering an additional linear constraint which defines the regions where the new
vertex must be situated. Thus, if the new vertex v∗ is desired or required to be located in a half

1For the continuous–time case, from relations (34) and (35) it follows that p∗q+1 ≤ 0. For the discrete–time case, it follows

that p∗q+1 ≥ 0 directly from (40).
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space defined by the inequality

g⊤x ≥ 1,

where g ∈ Rn, the inequality g⊤v∗ ≥ 1 must be considered as an additional linear constraint of
the optimization problem. For this particular case, solving the constrained optimization problem
(33)–(38) for the continuous–time case or (39)–(44) for the discrete–time case with

max
v∗,u∗,p∗

q ,p
∗

q+1

{g⊤v∗} (46)

as optimization criterion, we obtain an enlarged admissible controlled ε–contractive set Q(V∗)
of complexity q∗ with the new vertex v∗ belonging to the half space defined by the inequality
g⊤v∗ ≥ 1 and located as far as possible from the boundary g⊤v = 1.

Example 4.3 The results established in Theorem 4.2 can be utilized to develop an algorithmic
procedure that produces a monotonically increasing sequence {Xi} of polytopic sets of bounded
complexity qXi

≤ qmax. Consider the discrete–time system (2) under state and input constraints
(5) and (6) respectively. Let P(Gi) = {x ∈ R2 : Gix ≤ epi

}, Gi = [gi1 gi2 . . . gipi
]⊤ and

Q(Vi) = conv(v1i , v
2
i , ..., v

qi
i ) be the half–space and the vertex representations respectively of the

polytopic set Xi. Each iteration i of the algorithm consists of the following steps: First, the index
sets NXi

(vk), k ∈ N[1,qi] as defined in (9), and the polytopic sets Ak, i ∈ N[1,qi] as defined in
(10), are calculated. Next, for every non–empty set Ak ∩P(Gx), where P(Gx) denotes the state
constraint set, the optimization problem

max
v∗,u∗,p∗

q ,p
∗

q+1

{g⊤il v
∗}

under constraints (39)–(44) is solved. In this formulation, g⊤il , l ∈ N[1,pi], is a row of the matrix

Gi, such that the set {x ∈ Rn : g⊤il x ≥ 1}∩Ak is nonempty1. If a feasible solution exists, then the
new set Xi+1 = conv(v1i , v

2
i , . . . , v

qi
i , v

∗) is computed. If no solution exists, and in addition, the
complexity of the set Xi is less than the specified complexity, i.e., qXi

≤ qmax, then the problem
(46) under constraints (39)–(43) is solved for pi instances, setting each time the direction g
to be equal to gil, l ∈ N[1,pi]. Then, if there exist l∗ solutions v∗s /∈ Xi, s ∈ N[1,l∗], a new set

Xi+1 = conv(v1i , v
2
i , . . . , v

qi
i , vs) is computed, with s := argmaxs{g

⊤
isv

∗
s : s ∈ N[1,l∗]}. If such

solutions do not exist, or the complexity of Xi is equal to the specified complexity, the algorithm
is terminated.
The procedure described above was applied to a benchmark discrete–time non–autonomous

system, namely, the constrained discretized double integrator. The system is described by the
state equation (2) with

A =

[

1 Ts

0 1

]

, B =

[

T
2
s

2
Ts

]

,

where Ts = 0.1 sec is the sampling period. The system is subject to hard state and input
constraints (5) and (6) respectively, with

Gx =







25−1 0
0 5−1

−25−1 0
0 −5−1






, Gu =

[

1
−1

]

.

The objective is to compute an admissible controlled invariant polytopic set of a non–trivial size,
but with a complexity that does not exceed a prespecified value.

1Such an index l ∈ N[1,pi]
always exists, since Xi is a full–dimensional polytopic set, thus the vectors gil span Rn.
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For comparison purposes, we applied to the same system the method described in (Gutman and
Cwikel 1987) for the computation of the largest controlled invariant set. This method is based
on the computation of a sequence {Yi} of monotonically increasing controlled invariant sets
Yi, by applying the one–step backward reachability mapping and starting from the singleton set
Y0 := {0}. In order to be able to evaluate the performance of the proposed approach, the starting
set X0 of the proposed method was chosen equal to Y2, which is an admissible controlled invariant
full–dimensional set (Cwikel and Gutman 1986). Using the proposed approach, an admissible

−25 −20 −15 −10 −5 0 5 10 15 20 25
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x
2

P(Gx)

S1

S2

S3

Figure 2. The state constraint set P(Gx), the maximal controlled invariant set Smax (106 vertices, in red) and the sets
S1 = X11 (10 vertices, in blue), S2 (18 vertices, in yellow), S3 (32 vertices, in green).

1 20 40 60 80 100 120 140
0

50

100

1 2 3 4 5 6 7 8 9 10 11

4

6

8

10

q Y
i

Iterations

Iterations

q X
i

Figure 3. Complexity of the sets produced applying the one-step backward reachability map (Gutman and Cwikel 1987)
(upper part), and the sets produced by applying the method proposed in this article (lower plot), for qmax = 10.

controlled invariant polytope of complexity q̂1 = 10 was obtained at the 11th iteration. This set,
denoted by S1 := X11, covers 92% of the surface of the maximal admissible controlled invariant
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Table 1. Complexity and set coverage for the computed sets.

Example 4.3 S1 S2 S3 Smax

Complexity 10 18 32 106
Coverage of the set Smax(%) 92 98 99.63 100

set Smax, which has complexity qSmax
= 106. The maximal admissible controlled invariant set

Smax was reached applying the algorithm in (Gutman and Cwikel 1987) after 148 iterations, i.e.,
Smax = Y148. Moreover, the proposed algorithm was also applied for specified complexities of
q̂2 = 18 and q̂3 = 32 vertices. The algorithm converged to the admissible controlled invariant
sets S2 and S3 correspondingly, which covered 98.1% and 99.63% of the surface of the maximal
admissible controlled invariant set respectively. The results are summarized in Table 1.
The resulting sets S1, S2 and S3 along with the state constraint set P(Gx) and the maximal

admissible controlled invariant set are shown in Figure 2.
In Figure 3, the complexity of the sequences {Yi}, {Xi} is shown as functions of the itera-

tion instances of the corresponding algorithmic procedures. In the lower plot, the dotted line
corresponds to the complexity constraints set by the problem specifications.

Example 4.4 We consider the benchmark example of the constrained continuous–time triple
integrator. The system matrices of system (1) are

A =

[

0 1 0
0 0 1
0 0 0

]

, B =

[

0
0
1

]

.

We consider box input and state constraints (5) and (6) respectively, with

Gx =















20−1 0 0
0 3−1 0
0 0 1

−20−1 0 0
0 −3−1 0
0 0 −1















, Gu =

[

0.5−1

−0.5−1

]

.

Similarly to Example 4.3, the objective is to construct an admissible controlled invariant poly-
topic set of a non trivial size, whose complexity does not exceed a value qmax. It is worth noticing
that for continuous–time systems, a typical method for computing admissible controlled invari-
ant and controlled ε–contractive sets is to compute an invariant approximation by computing
the maximal controlled invariant or controlled ε–contractive set of the Euler Auxiliary System,
i.e.,

x(t+ 1) = (In×n + τA)x(t) + τBu(t) (47)

(see e.g. (Blanchini and Miani 2008) and the references therein for the continuous–time case). To
this end, setting τ = 0.3 and applying the approach in (Blanchini 1994), the maximal controlled
invariant set SEAS for system (47) was computed, having a complexity of 356 vertices. The
large number of vertices is due to the fact that the maximal controlled invariant set Smax of the
continuous–time system, although convex, is not a polytope. A local description of the boundary
of the maximal controlled invariant set with curves for general continuous–time systems has been
recently established in (De Dona and Levine 2013).
The algorithmic procedure described in Example 4.3 was applied directly to the continuous–

time system, with the obvious modification of changing the optimization constraints of the
optimization problem solved to relations (33)–(38). Five sets Si, i = 1, 2, ..., 5 were constructed
by applying the algorithmic procedure, for different corresponding specified complexities of 10,
16, 24, 44, and 62. The produced sets were found to cover 38%, 45%, 73.5%, 90% and 94% of the
volume of the maximal admissible controlled invariant set SEAS of the Euler Auxiliary System
respectively. The results are summarized in Table 2. In Figure 4, the constraint set P(Gx), along
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Figure 4. The state constraint set P(Gx) (white box), the maximal controlled invariant set SEAS for system (47) setting
τ = 0.3 (356 vertices, white) and the set S4 (44 vertices, blue) that covers 90% of the volume of SEAS .

Table 2. Complexity and set coverage for the computed sets.

Example 4.4 S1 S2 S3 S4 S5 SEAS

Complexity 10 16 24 44 62 356
Coverage of the set SEAS(%) 38 45 73.5 90 94 100

with the sets SEAS and S4 are shown.

5 Concluding remarks

Different from typical existing approaches, in this article the size as well as the complexity were
considered as principal design goals for the construction of admissible controlled ε–contractive
sets. First, neglecting any invariance property, conditions for enlargement of a polytope by adding
a new vertex, such that the enlarged polytope has a prespecified complexity, have been estab-
lished. Second, conditions for this enlargement approach to preserve the properties of controlled
ε–contractiveness have been presented. Finally, by combining these algebraic necessary and suf-
ficient conditions, enlargement methods that produce admissible controlled invariant sets with
specified complexity were developed. Generally, the determination of the enlarged admissible
sets can be done by solving a series of linear programming problems. It is worth noting that
additional performance objectives or other specifications can be taken into account by appro-
priately adding linear constraints in the relevant optimization problem. The results established
here can be extended, under modifications, to the case of linear systems with multiplicative
and additive structured uncertainties. While in the two illustrative examples an algorithm for
producing convergent monotonically increasing sequences of controlled invariant sets has been
presented, it should be emphasized that the goal of this paper is not the development of design
algorithms, but merely the establishment of the theoretical background the development of such
algorithms can be based upon.
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Appendix A: Proofs

For proving Theorems 3.1 and 3.2, we first establish necessary and sufficient conditions for a set
Q(V∗) = conv(v1, ..., vq , v∗) resulting from a set Q(V0) = conv(v1, ..., vq , v0) by replacement of
one vertex v0 by v∗ to satisfy the set relation Q(V0) ⊂ Q(V∗). The following Lemma is a special
case of a more general result relative to the enlargement of polytopes (Bitsoris 2013).
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Lemma A.1: Let

Q(V0) = conv(v1, ..., vq , v0)

be a polytope with vertices v1, ..., vq ,v0 and half-space representation

P(G) = {x ∈ Rn : Gx ≤ es}.

Then, the set

Q(V∗) = conv(v1, ..., vq , v∗)

satisfies the relation

Q(V0) ⊂ Q(V∗) (A1)

if and only if the vector v∗ ∈ Rn, v∗ 6= v0, satisfies the relation

g⊤i v
∗ ≥ 1 ∀i ∈ NS(v

0). (A2)

Proof: a) Sufficiency: Let g⊤li x = 1, li ∈ NS(v
0) i = 1, 2, ..., s0 be the faces of the polytope

Q(V0) that pass through the vertex v0. Setting

G0 =











g⊤l1
g⊤l2
...

g⊤ls0











, (A3)

we get

G0v0 = es0 , (A4)

and, by hypothesis (A2), it holds that

G0v∗ = 1 + a∗, (A5)

where a∗ =
[

a∗1 a
∗
2 · · · a

∗
s0

]⊤
is a vector with nonnegative components and a∗ 6= 0s0×1.

For each face g⊤li x = 1 i = 1, 2, ..., s0 there exists at least one vertex vk situated on it, i.e.,

g⊤li v
k= 1 but not on the face g⊤li+1

x = 1, i.e., g⊤li v
k< 1. To simplify the notation, we assume that

these are the vertices vi i = 1, 2, ..., s0 of the polytope Q(V0). Then, by hypotheses,

G0vi =































g⊤l1 v
i

...
g⊤li−1

vi

g⊤li v
i

g⊤li+1
vi

g⊤li+2
vi

...
g⊤ls0

vi































=



























1− ai1
...

1− ai2
1

1− ai(i+1)

1− ai(i+2)
...

1− ais0



























i = 1, 2, ..., s0, (A6)
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with

aij ≥ 0 i, j = 1, 2, ..., s0 j 6= i, i+ 1, (A7)

ai(i+1) > 0. (A8)

We shall prove that

conv(v1, ..., vs0 , v0) ⊂ conv(v1, ..., vs0 , v∗).

To this end, it is sufficient to prove that there exist nonnegative real numbers ε∗ and εi
i = 1, 2, ..., s0 such that

∑s0
i=1 εi + ε∗ = 1, and

v0 = ε1v
1 + ε2v

2 + ...+ εs0v
s0 + ε

∗
v∗

or, equivalently,

G0v0 = ε1G
0v1 + ε2G

0v2 + ...+ εs0G
0
vs0 + ε∗G0v∗, (A9)

because rankG0 = n. Setting

ai =
[

ai1 ai2 · · · ais0
]⊤

and taking into account (A4)–(A6), the relation (A9) can be equivalently written as

es0 = ε1(es0 − a1) + ε2(es0 − a2) + ...+ εs0(es0 − as0) + ε∗(es0 + a∗).

Thus, it is sufficient to prove that there exist nonnegative real numbers ε∗ and εi i = 1, 2, ..., s0
such that

∑s0
i=1 εi + ε∗ = 1, and

0s0×1 = ε1a
1 + ε2a

2...+ εs0a
s0 + ε∗a∗.

Such numbers exist because, if

ai(i+1) > 0, i = 1, 2, ..., s0 − 1,

as01 > 0,

aij ≥ 0 i, j = 1, 2, ..., s0 j 6= i, i+ 1

a∗ > 0,

then the origin is a point of the polytope with vertices















0
−a12
−a13
...

−ais0















,















−a21
0

−a23
...

−ais0















, ...,















−as01
−as02
−as03

...
0















,















a∗1
a∗1
a∗3
...

a∗s0















.
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b) Necessity: Let vk1 , vk2 ..., vks∗ , be the vertices of the set Q(V∗) situated on its faces passing
through the vertex v∗. Then,

Q(V∗) = conv(v1, ..., vs0 , v∗) =

conv(vk1 , vk2 , ..., vks∗ , v
∗
) ∪ conv(v1, ..., vs0). (A10)

If Q(V0) ⊂ Q(V∗) is satisfied, then v0 ∈ conv(v1, v2, ..., vs0 , v∗) but v0 /∈ conv(v1, v2, ..., vs0)
because otherwise v0 would be redundant for the definition of the set Q(V0). Therefore, by
(A10), it holds that

v0 ∈ conv(vk1 , vk2 , ..., vks∗ , v
∗
). (A11)

Relation (A11) implies the existence of nonnegative real numbers εk1
, εk2

, ..., εks∗
and ε∗ such

that εk1
+ εk2

+ ...+ εks∗
+ ε∗ = 1 and

v0 = εk1
vk1 + εk2

vk2 ...,+εks∗
vks∗ + ε

∗
v∗, (A12)

or, equivalently,

G0v0 = εk1
G0vk1 + εk2

G0vk2 + ...+ εks∗
G0vks∗+ε∗G0v∗ (A13)

because the matrix G0 defined in (A3) satisfies the relation rankG0 = n. Setting

G0v∗ = es0 + a∗

and using the fact that

G0vki = es0 − aki
with aki

≥ 0,

relation (A12) is equivalently written as

es0=εk1
(es0 − ak1) + εk2

(es0 − ak2)+...+εks∗ (es0 − aks∗)+ε∗(es0 + a∗),

or

0 = −εk1
ak1 − εk2

ak2 − ...− εks∗aks∗ + ε
∗
a∗. (A14)

The last relation implies that a∗ ≥ 0. Therefore,

g⊤i v
∗ > 1, ∀i ∈ NS(v

0). (A15)

In addition, v∗ /∈ Q(V0) because otherwise Q(V0) = Q(V∗). �

A.1 Proof of Theorem 3.1

a) Sufficiency: If v∗ /∈ Q(V) and v∗ ∈ A1 ∪ A2 ∪ ... ∪ Aq then there exists an index k ∈ N[1,q]

such that v∗ ∈ Ak. By definition (10), this yields

g⊤j v
∗ ≥ 1 ∀j ∈ NS(v

k). (A16)



November 21, 2017 15:46 International Journal of Control Revised˙Manuscript

REFERENCES 19

Therefore,

Q(V) ⊂ Q(V∗). (A17)

Furthermore, by Lemma A.1, (A16) yields

conv(v1, v2, ..., vq) ⊂ conv(v1, v2, ..., vk−1, vk+1, ...vq, v∗),

which in turn implies that

conv(v1, v2, ..., vk−1, vk+1, ..., vq , v∗) = conv(v1, v2, ..., vq , v∗).

Therefore, the polytope Q(V∗) is of equal or lower complexity than Q(V).
b) Necessity: If Q(V) ⊂ Q(V∗), that is

conv(v1, v2, ..., vv
q

) ⊂ conv(v1, v2, ..., vq , v∗) (A18)

then v∗ /∈ Q(V). If, in addition, the polytope Q(V∗) is of equal or of lower complexity, then there
exists at least one index k ∈ N[1,q] such that the corresponding vertex vk is redundant for the
description of set Q(V∗). Therefore, relation (A18) can be written as

conv(v1, v2, ..., vk−1, vk, vk+1, ...vq)

⊂ conv(v1, v2, ..., vk−1, vk+1, ...vq, v∗).

According to Lemma A.1, this relation implies that

g⊤j v
∗ ≥ 1, j ∈ NS(v

k),

or, equivalently, v∗ ∈ Ak.. Consequently, v
∗ ∈ A1 ∪ A2... ∪ Aq. �

A.2 Proof of Theorem 3.2

a) Sufficiency: From (15), (16) it follows that

v∗ ∈ Aki
for i = 1, 2, ..., l + 1. (A19)

This, by Theorem 3.1, implies that

conv(v1, v2, ..., vq) ⊂

conv(v1, v2, ..., vki−1, vki+1, ...vq, v∗) = Q(V∗),

for i = 1, 2, ..., l+1. Consequently, the vectors vki i = 1, 2, ..., l+1 are redundant in the description
of Q(V∗), thus the polytope Q(V∗) is of complexity q∗ lower or equal to q∗ = q − l.
b) Necessity: If Q(V) ⊂ Q(V∗), or equivalently

conv(v1, v2, ..., vv
q

) ⊂ conv(v1, v2, ..., vq , v∗), (A20)

then v∗ /∈ Q(V). If, in addition, the polytope is of complexity q∗ lower or equal to q∗ = q− l, then
there exist at least l indices ki ∈ N[1,q] i = 1, 2, ..., l + 1, such that the corresponding vertices



November 21, 2017 15:46 International Journal of Control Revised˙Manuscript

20 REFERENCES

vki are redundant for the description of the set Q(V∗). Therefore, from relation (A20) it follows
that

conv(v1, v2, ..., vki−1, vki , vki+1, ..., vq)

⊂ conv(v1, v2, ..., vki−1, vki+1, ..., vq, v∗),

for i = 1, 2, ..., l + 1. By Lemma A.1, this relation implies that

g⊤j v
∗ ≥ 1, ∀j ∈ NS(v

ki), ∀i = 1, 2, ..., l + 1,

or, equivalently, v∗ ∈ Ak1
∩ Ak2

∩ ... ∩ Akl+1
. �

A.3 Proof of Theorem 3.5

If Q(V) is a controlled ε–contractive set, there exist (Blanchini and Miani 2008, Theorem 4.34)
a matrix1 P ∈ Rq×q, such that pij ≥ 0, for all i ∈ N[1,q],j ∈ N[1,q], i 6= j, and a matrix U ∈ Rm×q,
such that

AV +BU = V P (A21)

e⊤q P ≤ −εe⊤q , (A22)

where V = [v1 ... vq]. Let P ⋆ ∈ R(q+1)×(q+1), V ⋆ ∈ Rn×q+1, U⋆ ∈ Rm×q+1 be matrices defined
as follows

P ⋆ :=

[

P p∗

01×q p
∗
q+1

]

,

V ⋆ := [V v∗], V ⋆ := [U u∗]. Then, from relations (19)–(21), it follows that conditions
(A21),(A22) are also satisfied for Q(V∗), with P = P ⋆, V = V ⋆ and U = U⋆. Thus, Q(V)
is also a controlled ε−contractive set.
Conversely, if Q(V) is a controlled ε-contractive set, there exists a matrix P̂ ∈ R(q+1)×(q+1),

p̂ij ≥ 0, for all i ∈ N[1,q], j ∈ N[1,q], i 6= j, which satisfies conditions (A21), (A22) with V = V ⋆

and U = U⋆. Then, relations (19)–(21) are satisfied with p∗i = p̂(q+1)i, i = 1, ..., q and p∗q+1 =
p̂(q+1)(q+1). �

A.4 Proof of Theorem 3.7

If Q(V) is a controlled ε–contractive set, there exist (Blanchini and Miani 2008, Theorem 4.41)
a nonnegative matrix P ∈ Rq×q

+ and a matrix U ∈ Rm×q, such that

AV +BU = V P (A23)

e⊤q P ≤ εe⊤q , (A24)

where V = [v1 ... vq]. where V = [v1 ... vq]. Let P ⋆ ∈ R(q+1)×(q+1), V ⋆ ∈ Rn×q+1, U⋆ ∈ Rm×q+1

be matrices defined as follows

P ⋆ :=

[

P p∗

01×q p
∗
q+1

]

,

1Matrices having these properties are referred in the literature as M–matrices, Metzler matrices, or essentially nonnegative
matrices.
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V ⋆ := [V v∗], V ⋆ := [U u∗]. Then, from relations (25)–(28), it follows that conditions
(A23),(A24) are also satisfied for Q(V∗), with P = P ⋆, V = V ⋆ and U = U⋆. Thus, Q(V)
is also a controlled ε−contractive set.
Conversely, if Q(V) is a controlled ε-contractive set, there exists a nonnegative matrix P̂ ∈

R
(q+1)×(q+1)
+ satisfying conditions (A23), (A24) with V = V ⋆ and U = U⋆. Then, relations

(25)–(28) are satisfied with p∗i = p̂(q+1)i, i = 1, ..., q and p∗q+1 = p̂(q+1)(q+1).

A.5 Proof of Theorem 4.1

By virtue of Theorem 3.5, relations (33)–(35) are necessary and sufficient for the set Q(V∗) to be
controlled ε–contractive. Setting V ⋆ = [V v∗], U⋆ = [U u⋆], from the proof of Theorem 3.5,
there exists a matrix P ⋆ ∈ R(q+1)×(q+1), pij ≥ 0 for all i 6= j, such that AV ⋆ + BU⋆ = V ⋆P ⋆

and e⊤q+1P
⋆ ≤ −εe⊤q+1. Moreover, since Q(V) is an admissible controlled ε–contractive set, for

each vertex vi, i ∈ N[1,q] there exist control inputs ui ∈ Rm, i ∈ N[1,q], such that Gxv
i ≤ epx

,

Guu
i ≤ epu

. Also, from (36), it follows that Q(V∗) ⊂ P(Gx), where P(Gx) is the state constraint
set (5). Moreover, by (37) and (Blanchini and Miani 2008, Theorem 4.34) it follows that there
exists a stabilizing control law u = f(x) such that f(x(t;x0) ∈ P(Gu), for any x0 ∈ P(Gx),
where P(Gu) is the input constraint set (6). Thus, the set Q(V∗) is an admissible controlled
ε–contractive set. Finally, from Theorem 3.2 and (38), it follows that there exist indices ki,
i = 1, ..., q− q∗+1 such that v∗ ∈ Ak1

∩Ak2
∩ ...∩Akq−q∗+1

. Consequently, the complexity of the
set Q(V⋆) is q − (q − q∗) = q∗. �

A.6 Proof of Theorem 4.2

The proof of Theorem 4.2 follows the same steps as in Theorem 4.1 and is omitted. �


