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Abstract: This article considers the problem of constrained stabilization of periodically time-varying
discrete-time systems, or shortly, periodic systems. A modification of a recent result on periodic
Lyapunov functions, which are required to decrease at everyperiod rather than at every time instant, is
exploited to obtain a new stabilizing controller synthesismethod for periodic systems. We demonstrate
that for the relevant class of linear periodic systems subject to polytopic state and input constraints, the
developed synthesis method is advantageous compared to thestandard Lyapunov synthesis method. An
illustrative example demonstrates the effectiveness of the proposed method.
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1. INTRODUCTION

Periodically time-varying systems, or shortly,periodic systems,
represent an important system class for both control theoryand
applications. Some of the most relevant real-life problemsare
magnetic satellite control problems (Wisniewski, 1996; Psiaki,
2001) and the control of helicopter rotors (Arcara et al., 2000).
Furthermore, as it was pointed out by (Colaneri et al., 1992;
Longhi, 1994; Sågfors et al., 2000), time-invariant systems that
are controlled by multirate synchronous inputs can be modeled
by periodically time-varying systems as well.

The importance of periodic systems is also evident from the
number of the relevant works in the literature. Existing con-
trol synthesis approaches concern output feedback schemes
(De Souza and Trofino, 2000),H2 synthesis for the case of
linear periodic systems with polytopic uncertainties (Farges
et al., 2007), eigenvalue assignment (Brunovský, 1970; Varga,
2000), exploitation of controllability concepts (Longhi and
Zulli, 1995), model matching (Colaneri and Kucera, 1997), and
more recently, predictive control (Böhm, 2011). In the recent
monograph by Bittanti and Colaneri (2009), Chapter13, a thor-
ough exposition of existing results on stabilization techniques
is presented.

In this article, we focus on constrained synthesis techniques
based on Lyapunov functions. Under the assumption of con-
tinuity of the system dynamics, Massera (1949) and Jiang and
Wang (2002) proved that a periodically time-varying nonlinear
system is (uniformly globally) asymptotically stable if and only
if it admits a periodically time-varying Lyapunov function(LF).
Analogously for the linear case, the well-known Periodic Lya-
punov Lemma (PLL) (see for example (Bittanti and Colaneri,
2009)), establishes existence of a quadratic periodicallytime-
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varying LF for asymptotically stable periodic systems. More
recently, in (Böhm et al., 2012), the introduction ofperiodic
Lyapunov functionsoffered a useful relaxation for the prob-
lem of estimating the region of attraction for state constrained
autonomous periodic systems; the Lyapunov function was not
required to decrease at each sampling instant, as in (Jiang and
Wang, 2002) or in (Bittanti and Colaneri, 2009) for the linear
case, but at each period. The benefit of this approach was
demonstrated for linear periodic autonomous systems under
state constraints.

For the case of non–autonomous periodic systems, however,
applying the relaxed periodic Lyapunov conditions of Böhm
et al. (2012) is not practical, even for the linear periodic case,
since the set of conditions that needs to be solved in the
control synthesis approach is nonlinear and nonconvex. To
tackle the problem, we first propose a reformulation of the
periodic Lyapunov conditions for the general nonlinear case.
Moreover, by choosing quadratic periodic Lyapunov functions,
we show how the constrained synthesis problem for the linear
case with linear periodic state feedback can be solved by
decomposing the original nonconvex optimization problem in a
finite set of linear matrix inequalities (LMIs). The effectiveness
of the result is demonstrated in an illustrative example in which
the new approach is compared with the stabilization technique
stemming from direct application of the Periodic Lyapunov
Lemma to synthesis.

The remainder of this paper is structured as follows. Notation
and the description of the dynamics under study is provided
in Section 2, along with the exposition of existing results on
Lyapunov stability and a preliminary result. The main result
concerning the constrained control synthesis for linear periodic
systems with linear periodic state feedback is presented in
Section 3. An illustrative example showing the effectiveness
of the proposed synthesis technique is presented in Section4,
while conclusions are drawn in Section 5.



2. PROBLEM SETTING AND PRELIMINARY RESULT

Let R, R+, Z andZ+ denote the field of real numbers, the set
of non-negative reals, the set of integer numbers and the setof
non-negative integers, respectively. For everyc ∈ R andΠ ⊆ R

we defineΠ≥c := {x ∈ Π | x ≥ c}, and similarlyΠ≤c,
RΠ := Π andZΠ := Z∩Π. ForN ∈ Z≥1,ΠN := Π× . . .×Π.
For a vectorx ∈ R

n, [x]i denotes thei-th element ofx and‖x‖
denotes its2-norm, i.e.,‖x‖ :=

√

∑n

i=1 |[x]i|2. The transpose
of a matrixX ∈ Rn×m is denoted byX⊤. For a symmetric
matrix Z ∈ Rn×n let Z ≻ 0(� 0) denote thatZ is positive
definite (semi-definite). For a positive definite matrixZ ∈
Rn×n let λmin(max)(Z) denote its smallest (largest) eigenvalue.
Moreover, for a block symmetric matrixZ =

[

a b⊤

b c

]

, where
a, b, c are matrices of appropriate dimensions, the symbol⋆

is used to denote the symmetric part, i.e.,
[

a b⊤

b c

]

= [ a ⋆
b c ]. A

functionϕ : R+ → R+ belongs to classK if it is continuous,
strictly increasing andϕ(0) = 0. A functionϕ : R+ → R+

belongs to classK∞ if ϕ ∈ K and lims→∞ ϕ(s) = ∞. A
functionβ : R+ × R+ → R+ belongs to classKL if for each
fixedk ∈ R+, β(·, k) ∈ K and for each fixeds ∈ R+, β(s, ·) is
decreasing andlimk→∞ β(s, k) = 0.

2.1 System description

Let n,m ∈ Z+ be integers and letX : Z+ → R
n and

U : Z+ → Rm be maps that assign to eachk ∈ Z+ a subset of
Rn and a subset ofRm respectively, which contain the origin in
their interior. We consider time–varying nonlinear systems of
the form

x(k + 1) = f(k, x(k), u(k)), k ∈ Z+, (1)

wheref : Z+ ×Rn ×Rm → Rn is an arbitrary nonlinear map
such thatf(k, 0, 0) = 0, for all k ∈ Z+. The vectorx(k) ∈
X(k) is the system state at timek ∈ Z+ andu(k) ∈ U(k) is
the system input at timek ∈ Z+. In this article, we focus on the
subclass of periodically time–varying nonlinear systems which
are defined as follows.

Definition 1. The system (1) is calledperiodic if there exists
anN ∈ Z≥1 such that for allk ∈ Z+ it holds
(i) X(k) = X(k +N);
(ii) U(k) = U(k +N);
(iii) f(k, x, u) = f(k + N, x, u) for all x ∈ X(k), for all
u ∈ U(k).
Furthermore, the smallest suchN ∈ Z≥1 is called theperiod
of system (1).

We consider a periodically time–varying state feedback control
law g : Z+ × Rn → Rm such thatg(k, 0) = 0, for all k ∈ Z+,
g(k, x) = g(k+N, x), for all k ∈ Z+, andg(k, x(k)) ∈ U(k),
for all k ∈ Z+ and for all x(k) ∈ X(k). We assume, for
simplicity, that the period of the control law is equal to the
period of system (1). The corresponding closed–loop system
is

x(k + 1) = f(k, x(k), g(k, x(k))), k ∈ Z+. (2)
System (2) is periodic with periodN , sincef(k +N, x, g(k +
N, x)) = f(k, x, g(k, x)).

In what follows, letX0 := X(0) and defineX :=
⋃N−1

k=0 X(k).
As such, all state trajectories of system (2) withx(0) ∈
X0 satisfy x(k) ∈ X, for all k ∈ Z+. Allowing for a
different state-space domain for each period is beneficial not
only to allow for periodically time-varying constraints, but

also to accommodate periodic systems with a time-varying
state dimension, see, e.g., (Sågfors et al., 2000). The classical
time-invariant unconstrained state-space and input domain is
recovered by settingX(k) = Rn, U(k) = Rm, for all k ∈ Z+.

We consider also the subclass of non-autonomous linear peri-
odic systems of the form

x(k + 1) = A(k)x(k) +B(k)u(k), (3)

whereA(k) ∈ Rn×n, B(k) ∈ Rn×m, andA(k) = A(k +N),
B(k) = B(k + N), for all k ∈ Z+. Equivalently to the
nonlinear case, choosing a linear periodic state feedback control
law with periodN , i.e.,

u(k) = g(k, x(k)) := K(k)x(k), (4)

with K(k) = K(k +N), the closed-loop system is

x(k + 1) = (A(k) +B(k)K(k))x(k). (5)

2.2 Stability of periodic systems

The notions of asymptotic stability, exponential stability and
region of attraction for system (2) are recalled next.

Definition 2. System (2) is asymptotically stable inX0, or
shortly, AS(X0), if there exists aKL-functionβ(·, ·) such that,
for eachx(0) ∈ X0 the corresponding state trajectory of (2)
satisfies

‖x(k)‖ ≤ β(‖x(0)‖, k), ∀k ∈ Z+. (6)

System (2) is called exponentially stable inX0, or shortly,
ES(X0), if β(s, k) := θµks for someθ ∈ R≥1, µ ∈ R[0,1).

Definition 3. Suppose that system (2) is AS(X0). Then, the
region of attraction (ROA) of (2) inX0 is given by the following
set of initial conditions:

R(X0) :=
{

ξ ∈ X0 | x(k) ∈ X(k), ∀k ∈ Z+, x(0) = ξ,

lim
k→∞

x(k) = 0
}

. (7)

Next, the notion of aperiodically positively invariant(PPI)
sequence of sets, introduced by Böhm et al. (2012), is recalled.
It is worth to mention that a similar concept was also considered
by Lee and Kouvaritakis (2006). Let{D(π)}π∈Z[0,N−1]

denote
a sequence of sets withD(π) ⊆ X(π) for all π ∈ Z[0,N−1].

Definition 4. The sequence{D(π)}π∈Z[0,N−1]
is called peri-

odically positively invariant for system (2) if for eachπ ∈
Z[0,N−1], eachk ∈ {iN + π}i∈Z+ andx(k) ∈ D(π), it holds
that x(k + N) ∈ D(π) and x(k + j) ∈ X(k + j), for all
j ∈ Z[1,N−1].

Note that this definition implies also satisfaction of the con-
straintsx(k) ∈ X(k) andu(k) ∈ U(k), for all k ∈ Z+.

Assumption 5.The sequence{X(k)}k∈Z[0,N−1]
is periodically

positively invariant for system (2).

Necessary and sufficient conditions for stability have beenfor-
mulated for the nonlinear periodic case, see for example (Jiang
and Wang, 2002). Therein, it was established that a periodically
time-varying nonlinear system is (uniformly globally) asymp-
totically stable if and only if it admits a periodically time-
varying Lyapunov function (LF).

Theorem 6.(Jiang and Wang, 2002). Letα1, α2 ∈ K∞, ρ(k) ∈
R[0,1), k ∈ Z, and letx(·) be a solution to (2) withx(0) :=

ξ ∈ X(0). Let V : Z+ × X → R+ be a function, such that



V (k, x) = V (k + N, x), for all k ∈ Z+, and moreover, for all
k ∈ Z+ it holds that

α1(‖ξ‖) ≤ V (k, ξ) ≤α2(‖ξ‖), ∀ξ ∈ X(k) (8a)
V (k + 1, f(k, x(k), g(k, x(k)))) ≤ρ(k)V (k, x(k)), (8b)

for all ξ ∈ X(0). Then, system (2) is AS(X0).

Relation (8b) is equivalent to the following condition

V (k+1, f(k, x(k), g(k, x(k))))−V (k, x(k)) ≤ −α3(‖x(k)‖),
whereα3 ∈ K∞, see (Jiang and Wang, 2002). Using (8b) al-
lows comparison with the other relevant results in the literature.

The following relaxation regarding the Lyapunov function was
proposed in (Böhm et al., 2012).

Theorem 7.(Böhm et al., 2012). Letα1, α2 ᾱj , j ∈ Z[1,N−1]

beK∞ functions,η ∈ R[0,1) andx(·) be a solution to (2) with
x(0) := ξ ∈ X(0). Let V : Z+ × X → R+ be a function, such
thatV (k, x) = V (k+N, x), for all k ∈ Z+, and moreover, for
all k ∈ Z+, for all j ∈ Z[1,N−1], it holds that

‖x(j)‖ ≤ ᾱj(‖x(j − 1)‖), ∀ξ ∈ X(0) (9a)
α1(‖ξ‖) ≤ V (k, ξ) ≤ α2(‖ξ‖), ∀ξ ∈ X(k) (9b)

V (k +N, x(k +N)) ≤ ηV (k, x(k)), ∀ξ ∈ X(0). (9c)

Then, system (2) is AS(X0).

For linear periodic systems under linear periodic state feed-
back control law (5) and quadratic periodically time–varying
Lyapunov functions, Theorem 6 is equivalent to an application
of the periodic Lyapunov lemma (PLL) for the closed–loop
system, as formally stated next.

Lemma 8.(Bittanti and Colaneri, 2009). Consider system (5).
Let ρ(k) ∈ R[0,1), k ∈ Z[0,N−1], andP (k) ∈ Sn++, k ∈ Z[0,N ]

be positive definite matrices, withP (N) := P (0), which
define setsE(k) = {x ∈ R

n : x⊤P (k)x ≤ 1} such that
E(k) ⊆ X(k), for all k ∈ Z[0,N−1]. If the following matrix
inequalities hold, for allk ∈ Z[0,N−1]

(A(k) +B(k)K(k))⊤P (k + 1)(A(k) +B(k)K(k))

−ρ(k)P (k) � 0, (10)

then system (5) is ES(E(0)).

Analogously, Theorem 7 can also be applied in a straightfor-
ward manner to the the closed-loop periodic linear system (5).
To this end, we first define the monodromy matricesΦ(k) ∈
Rn×n, k ∈ Z[0,N−1] (Bittanti and Colaneri, 2009):

Φ(k) :=

N−1
∏

i=0

(A(k + i) +B(k + i)K(k + i)), ∀k ∈ Z[0,N−1].

The following result is the equivalent of Theorem 7 for the
linear case:

Lemma 9.(Böhm et al. (2012)). Consider system (5). Letη ∈
R[0,1), and P (k) ∈ Sn++, k ∈ Z[0,N ] be positive definite
matrices, withP (N) := P (0), which define setsE(k) =
{x ∈ Rn : x⊤P (k)x ≤ 1} such thatE(k) ⊆ X(k), for all
k ∈ Z[0,N−1]. If the following matrix inequalities hold, for all
k ∈ Z[0,N−1]

Φ(k)⊤P (k)Φ(k)− ηP (k) � 0, (11a)

(A(k) +B(k)K(k))⊤P (k + 1)(A(k) +B(k)K(k))

−P (k) � 0, (11b)

then system (5) is AS(E(0)).

Lemma 8 and Lemma 9 guarantee asymptotic stability for the
closed–loop system (5). However, Lemma 9 is a strict relax-
ation of the result stated in Lemma 8; A feasible set of matrices
P (k), k ∈ N[0,N−1], and periodic state feedback gainsK(k),
k ∈ N[0,N−1], that verifies (10), verifies relations (11) as well,
while the converse is not true. This is a highly relevant obser-
vation for the case of constrained stabilization, where, besides
finding a stabilizing linear periodic state-feedback control law,
an estimation of the region of attraction is important. On the
other hand, regarding the computational complexity of the in-
duced synthesis methods, the calculations involved in Lemma 8
require the solution of LMIs, while, in stark contrast, finding a
feasible solution that verifies Lemma 9 requires the solution of
a non–convex problem.

Thus, our main focus is to establish a trade–off between the
strict relaxation of Lemma 9 and tractability of Lemma 8
for constrained synthesis. As a first step, the following result
provides conditions of asymptotic stability for general periodic
discrete–time systems.
Theorem 10.Let α1, α2 ∈ K∞, scalarsρ(j) ∈ R+, j ∈
N[0,N−1], andx(·) be a solution to (2) withx(0) := ξ ∈ X(0).
LetV : Z×X̄ → R+ be a function, such thatV (k, x) = V (k+
N, x), for all k ∈ Z+, and moreover, for allj ∈ Z[0,N−1], it
holds that

V (j + 1, x(j + 1)) ≤ ρ(j)V (j, x(j)), ∀ξ ∈ X(0) (12a)
α1(‖ξ‖) ≤ V (k, ξ) ≤ α2(‖ξ‖), ∀ξ ∈ X(k) (12b)

0 ≤
N−1
∏

i=0

ρ(i) < 1. (12c)

Then, system (2) is AS(X0).

Proof. From (12a) and (12b), for anyj ∈ Z[1,N ], it holds that

α1(‖x(j)‖) ≤ V (j, x(j)) ≤ ρ(j − 1)V (j − 1, x(j − 1))

≤ ρ(j − 1)α2(‖x(j − 1)‖),
or

‖x(j)‖ ≤ α−1
1 (ρ(j − 1)α2(‖x(j − 1)‖)).

Thus, relation (9a) of Theorem 7 is satisfied with
ᾱj(s) := α−1

1 (ρ(j − 1)α2(s)), ∀j ∈ Z[1,N−1].

Moreover, under Assumption 5, from (12a), for anyk ∈ Z+

and for anyx(k) ∈ X(k), it holds that
V (k+N, x(j+N)) ≤ ρ(N − 1)V (j+N − 1, x(j+N − 1)).

Applying the previous inequality successively, it holds that
V (k +N, x(j +N)) ≤
ρ(N − 1)ρ(N − 2)V (k +N − 2, x(k +N − 2)) ≤

≤ ... ≤
N−1
∏

i=0

ρ(i)V (k, x(k)).

Taking into account (12c), relation (9c) of Theorem 7 is sat-
isfied with η :=

∏N−1
i=0 ρ(i) ∈ R[0,1). Thus, by Theorem 7,

system (2) is AS(X0). �

It will be shown in the next section that, for the linear case,
this result allows for a constructive control synthesis based on
convex optimization, while still providing a strict relaxation in
terms of the conditions of Lemma 8.

3. CONTROLLER SYNTHESIS

We consider linear periodic systems (3) that are subject to
polytopic state periodic constraints



X(k) := {x ∈ R
n : ci(k)x ≤ 1, ∀(i, k) ∈ Z[1,p(k)] × Z+},

(13)
where p(k) ∈ Z≥1, for all k ∈ Z+, is the number of
hyperplanes that define setX(k), andci(k+N) = ci(k), for all
(i, k) ∈ Z[1,p(k)] × Z+. Similarly, we consider polytopic input
constraints
U(k) := {u ∈ R

m : di(k)u ≤ 1, ∀(i, k) ∈ Z[1,q(k)] × Z+},
(14)

whereq(k) ∈ Z≥1, for all k ∈ Z+, anddi(k + N) = di(k) ∈
R1×n for all (i, k) ∈ Z[1,q(k)] × Z+. In the case of state
and input constraints, the simultaneous computation of a state
feedback control law and a region of attraction of the closed–
loop system is a challenging problem, even for the case of linear
time-invariant systems with a linear state–feedback control law.
In what follows, a systematic method of computing a linear
periodic state feedback control law and an estimation of the
region of attraction via a sequence of ellipsoidal sets willbe
presented.

Throughout this section, Assumption 5 is not required to hold.
On the contrary, finding a periodically positively invariant se-
quence of sets for the closed–loop system is a synthesis objec-
tive. The problem is formally stated next:
Problem 11.Given system (3), state and input constraints
X(k) (13) andU(k) (14) respectively, determine a stabilizing
linear periodic state–feedback control law (4) and a correspond-
ing PPI sequence of sets{E(k)}k∈Z[0,N−1]

with respect to the
closed–loop system (5).

We consider quadratic periodic Lyapunov function candidates

V (k, x) = x⊤P (k)x, (15)
whereP (k) ∈ Sn++, with P (k + N) = P (k) for all k ∈
Z+. First, we recall the necessary and sufficient conditions for
inclusion of an ellipsoid within a given polytope.
Lemma 12.Let E ∈ S

n
++ andψi ∈ R

1×n, for all i ∈ Z[1,p]

with p ∈ Z≥1. The ellipsoidE := {x ∈ Rn : x⊤Ex ≤ 1}
is contained in the polytopeX := {x ∈ Rn : ψix ≤ 1, i ∈
Z[1,p]} if and only if ψiE

−1ψ⊤
i ≤ 1, ∀i ∈ Z[1,p].

The proof of the above result can be found in Boyd et al.
(1994). The conditions of Lemma 12 allow for the calculation
of an ellipsoidE that must be contained within a specified
polytopeX .
Theorem 13.Consider system (3) and constraintsX(k) (13),
U(k) (14). Letρ(k) ∈ R[0,1], X(k) ∈ Sn++, Y (k) ∈ Sn++ , for
all k ∈ Z[0,N−1], whereX(N) := X(0), Y (N) := Y (0), be a
feasible solution to the following set of matrix inequalities, for
all k ∈ Z[0,N−1], for all i ∈ Z[1,p(k)] and allj ∈ Z[1,q(k)]:

[

ρ(k)X(k) ⋆
A(k)X(k) +B(k)Y (k) X(k + 1)

]

� 0, (16a)

0 ≤
N−1
∑

l=0

ρ(l) < N, (16b)

[

1 ⋆

X(k)ci(k)
⊤ X(k)

]

� 0, (16c)

[

1 ⋆

Y (k)⊤dj(k)
⊤ X(k)

]

� 0. (16d)

Then, the sequence{E(k)}k∈Z[0,N−1]
, whereE(k) := {x ∈

Rn : x⊤X(k)−1x ≤ 1}, k ∈ Z[0,N−1], is PPI for the closed-
loop system (5) with linear periodic state feedback controllaw

u(k, x) = Y (k)X(k)−1x, whereu(k+N, x) = u(k, x) for all
k ∈ Z+. Moreover, system (5) is AS(E(0)).

Proof. First, we show that the setsE(k), k ∈ Z[0,N−1], are
contained inX(k) andUx(k) for all k ∈ Z[0,N−1], where

Ux(k) := {x ∈ R
n : di(k)Y (k)X(k)−1x ≤ 1,

∀(i, k) ∈ Z[1,q(k)] × Z+},
for all k ∈ Z[0,N−1]. Applying the Schur complement in (16c)
and exploiting the periodicity ofX(k) we obtain

ci(k)
⊤X(k)ci(k) ≤ 1, ∀(i, k) ∈ Z[1,p(k)] × Z+. (17)

From Lemma 12, inequality (17) impliesE(k) ⊂ X(k), for all
k ∈ Z+. Equivalently, applying the Schur complement in (16d)
we obtain

dj(k)Y (k)X(k)−1Y (k)⊤dj(k)
⊤ ≤

(dj(k)Y (k)X(k)−1)X(k)(X(k)−1Y (k)⊤dj(k)
⊤) ≤ 1,

(18)

for all (j, k) ∈ Z[1,q(k)]×Z+. From Lemma 12, inequality (18)
impliesE(k) ⊂ Ux(k), for all k ∈ Z+.

Next, we show thatV (k, x) = x⊤X(k)−1x is a periodic
Lyapunov function that satisfies Theorem 10 for the closed–
loop system (5). The matrix inequality (16a) is equivalent to

(A(k)X(k) +B(k)Y (k))⊤X(k + 1)−1(A(k)X(k)

+B(k)Y (k))− ρ(k)X(k) � 0.

Pre–multiplying and post–multiplying byX(k)−1, the previous
inequality becomes

(A(k) +B(k)Y (k)X(k)−1)⊤X(k + 1)−1(A(k)

+B(k)Y (k)X(k)−1)− ρ(k)X(k)−1 � 0. (19)
Thus, condition (12a) of Theorem 10 is satisfied withV (k, x) =
x⊤X(k)−1x. Also, condition (12b) holds with

α1(s) = min
i∈Z[0,N−1]

{λmin(X(i)−1)}s2 (20)

α2(s) = max
i∈Z[0,N−1]

{λmax(X(i)−1)}s2. (21)

Lastly, sinceρ(k) ∈ R[0,1], from (16b) it necessarily holds that

0 ≤
N−1
∏

l=0

ρ(l) < 1, (22)

thus, condition (12c) of Theorem 10 is also satisfied. Thus, from
(19)–(22), Theorem 10 is satisfied, system (5) is AS(E(0)) and
{E(k)}k∈Z[0,N−1]

is a PPI sequence of sets w.r.t. system (5).�

Still, conditions (16) of Theorem 13 cannot be used directly
to form a tractable synthesis method that solves Problem 11,
since (16a) consists ofN bilinear matrix inequalities (BMIs)
due to the product of the scalarsρ(k) and matricesX(k), k ∈
N[0,N−1]. Althoughρ(k) is a scalar for eachk ∈ N[0,N−1], find-
ing a solution to theN joint BMI conditions corresponding to
(16a) is challenging, since the bisection method cannot be used.
A possible approach is to grid the space of(ρ(1), ..., ρ(N)) ∈
RN

[0,1) and solve the resulting LMI corresponding to (16a) for
each point in the grid. Still, no convergence to a feasible solu-
tion can be guaranteed.

The next result provides a tractable way for solving Problem11.
First, consider the following problem.
Problem 14.Given system (3), constraintsX(k) (13),U(k) (14),
and a fixed̄k ∈ Z[0,N−1], solve the feasibility problem

min
X(k),Y (k),ρ,X(k),Y (k),k∈Z[0,N−1]\{k}

0 (23)



subject to
[

X(k) ⋆
A(k)X(k) +B(k)Y (k) X(k + 1)

]

� 0, (24a)

[

ρX(k) ⋆

A(k)X(k) +B(k)Y (k) X(k + 1)

]

� 0, (24b)

0 ≤ ρ < 1, (24c)
[

1 ⋆

X(l)ci(l)
⊤ X(l)

]

� 0, (24d)
[

1 ⋆

Y (l)⊤dj(l)
⊤ X(l)

]

� 0, (24e)

with X(N) := X(0), for all k ∈ Z[0,N−1] \ {k}, l ∈ Z[0,N−1],
i ∈ Z[1,p(l)], j ∈ Z[1,q(l)].

Lemma 15.Consider system (3), constraintsX(k) (13) and
U(k) (14). Then, the matrix inequalities (16) define a nonempty
feasible solution set if and only if there exists an indexk̄⋆ ∈
Z[0,N−1] such that Problem 14 is feasible withk = k

⋆
.

Proof. Suppose Problem 14 is feasible for ak = k
⋆ ∈

Z[0,N−1]. Then, relations (16) are also feasible settingρ(k) =

1, for all k ∈ Z[0,N−1] \ {k
⋆}, ρ(k

⋆
) := ρ, andX(k̄⋆), Y (k̄⋆),

X(k), Y (k), k ∈ Z[0,N−1], the solutions to Problem 14. Con-
versely, suppose that conditions (16) have a nonempty feasible
solution set. Then, there exists at least onek

⋆ ∈ Z[0,N−1]

such thatρ(k
⋆
) < 1. Setting k̄ := k̄⋆ andρ := ρ(k

⋆
) the

corresponding matrix inequalities (24b)–(24e) in Problem14
are satisfied. Moreover, for anŷk ∈ Z[0,N−1] \ {k̄⋆} such that

ρ(k̂) < 1, relation (16a) implies
[

X(k̂) ⋆

A(k̂)X(k̂) +B(k̂)Y (k̂) X(k̂ + 1)

]

�

(1− ρ(k̂))X(k̂) � 0.

Thus, (24a) is also satisfied, and consequently, Problem 14 has
a solution fork = k

⋆
. �

Remark 16.Comparison of conditions (16a) of Theorem 13
with condition (24b) in Problem 14, reveals the significanceof
the previous result. In specific, Lemma 15 shows that existence
of a feasible solution to the constraint set (16), which involves
N BMIs, is equivalent to existence of solution in (at least) one
of theN feasibility problems (23)–(24), which involve a single
bilinear term, i.e. the product of the scalarρ and the matrix
X(k) in (24b). Furthermore, since the single bilinear term in
(24b) consists of a matrix and the constrained nonnegative
scalarρ ∈ R[0,1), solution of Problem 14 is equivalent to
solving a series of LMIs via bisection, which is guaranteed to
converge to a feasible solution, if a feasible solution exists.
Remark 17.In constrained synthesis problems, together with
computing a stabilizing control law, it is extremely relevant
to aim for a large basin of attractionE(0) ⊆ R(X0), where
E(0) = {x ∈ Rn : x⊤X(0)−1x ≤ 1}. To this end, we exploit
the tractability of problem 14 to formulate a semi–definite
optimization problem that is solved for everȳk ∈ Z[0,N−1],
maximizes the volume ofE(0) and solves Problem 11, i.e.,

min
X(k),Y (k),ρ,X(k),Y (k),k∈Z[0,N−1]\{k}

−trace(X(0)) (25)

subject to (24).

Alternative optimization criteria that describe the size of E(0)
can be chosen as well (for more details see (Boyd et al., 1994)).

Remark 18.Quantities
∏N−1

l=0 ρ(l), whereρ(k), k ∈ N[0,N−1],
obtained from Theorem 13, and̄ρ, obtained from Problem 14,
represent the exponential decrease of the corresponding peri-
odic Lyapunov functions at each period, and consequently the
speed of convergence of the closed–loop system trajectories.
Thus, an additional benefit of the proposed method is the pos-
sibility of embedding in the synthesis procedure performance
specifications. To this end, in order to achieve a desired de-
creasêρ ∈ R[0,1) at each period for the closed–loop system, it
is sufficient to replace (24d) with0 ≤ ρ ≤ ρ̂. Similarly, in The-
orem 13, relation (16b) can be replaced by0 ≤ ∑N−1

l=0 ρ(l) ≤
N N

√
ρ̂.

4. ILLUSTRATIVE EXAMPLE

We consider a linear periodic system (3) with periodN = 2

and system matricesA(0) =

[

0.9 0.9
0.3 0.9

]

, A(1) =

[

1.5 −0.4
0.3 0.4

]

,

B(0) =

[

1
0.1

]

, B(1) =

[

0.5
1

]

. Also, we consider time invari-

ant periodic polytopic state and input constraints of the form
(13) and (14) respectively, such thatX(0) = X(1) = X,
U(0) = U(1) = U, wherec1 = [1 0], c2 = [0 0.33],
c3 = −c1, c4 = −c2, d1 = −d2 = 0.95.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−3
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0

1

2

3

x
1

x 2

E(0)
E(1)

EPLL(0)EPLL(1)

x(0)

X

Fig. 1. The constraint setX, the PPI sequence{E(i)}i∈Z[0,l]

computed applying the method presented (black) and the
trajectory of the closed–loop system starting fromx(0) =
[−0.9713 2.9531]⊤ (dashed black), and the PPI sequence
{EPLL(i)}i∈Z[0,l]

computed applying the PLL (blue).

The synthesis objectives concern the calculation of a stabilizing
linear periodic state feedback control lawu(k) = K(k)x(k),
withK(k+2) = K(k) for all k ∈ Z+, and an estimation of the
region of attractionR(X) with a performance guarantee on the
speed of convergence to the origin. For comparison, we applied
both the synthesis method presented in Section 3 and the
method based on the PLL Lemma (i.e. application of Lemma 8
for the closed–loop system, forming an optimization problem
similar to (25), see for example (Böhm, 2011) for details).The
desired performance of the closed–loop system is quantified
settingρ = 0.5 in problem (25) andρ(k) =

√
0.5 , k ∈ Z[0,1]

in (10) respectively. Problem (25) was solved for two instances
of k = 0, 1. The chosen solution was obtained fork = 0, which
yielded the largest estimation of the region of attraction.For the
method proposed here, the computed linear periodic feedback



gains were found to beK(0) = [−0.4207 − 0.4357], and
K(1) = [−1.3445 0.2281].
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Fig. 2. The Lyapunov functions (V ) obtained from the synthesis
method presented (dashed black) and from application of
the PLL (dashed blue), evaluated along the trajectory of
the initial conditionx(0) = [−0.9713 2.9531]⊤. The
worst–case decrease of the Lyapunov functions (w–V ) is
shown in black and blue line respectively.

Application of the two methods led to two different PPI se-
quences of ellipsoids, namely{E(k)}k∈Z[0,1]

for the synthesis
method presented in Section 3, and{EPLL(k)}k∈Z[0,1]

when
the PLL Lemma was applied, with corresponding estimates
of the ROA of the closed–loop system̂R(X) := E(0) and
R̂PLL(X) := EPLL(0) respectively. As seen from Figure 1,
the estimate of the ROAR̂(X) is significantly larger than
R̂PLL(X). It is worth reminding that in both synthesis meth-
ods the same objective function is minimized, implying that
{EPLL(k)}k∈Z[0,1]

can be generated from a feasible solution
to problem (25), while there does not exist a feasible solution
that can generate{E(k)}k∈Z[0,1]

by applying the PLL synthesis
approach. In the same figure, the trajectories of the closed–
loop system corresponding to the synthesis method presented
in this article can be seen, with initial conditionx(0) =
[−0.9713 2.9531]. It is observed that the state constraints
are satisfied at all times. Lastly, in Figure 2, the values of the
Lyapunov functions for the two synthesis methods are shown
in dashed line, together with the upper bounds on their values
at each instant, posed by the Lyapunov conditions (solid lines).
It can be seen that the Lyapunov function for the method pro-
posed is not required to decrease at each instant as in the PLL
synthesis case, but at each period.

5. CONCLUSIONS

A systematic method for obtaining simultaneously a stabilizing
linear periodic state feedback law and an estimation of the
region of attraction of the closed–loop system was proposed.
The synthesis method concerns the relevant class of linear
periodic systems that are subject to state and input constraints.
An illustrative example demonstrated the effectiveness ofthe
approach compared to the PLL synthesis method.
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Böhm, C. (2011).Predictive Control using Semi-definite Pro-
gramming - Efficient Approaches for Periodic Systems and
Lur’e Systems. Ph.D. thesis, University of Stuttgart.
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