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Abstract: This article considers the problem of constrained stedtilin of periodically time-varying
discrete-time systems, or shortly, periodic systems. A ifitadion of a recent result on periodic
Lyapunov functions, which are required to decrease at gveripd rather than at every time instant, is
exploited to obtain a new stabilizing controller synthesisthod for periodic systems. We demonstrate
that for the relevant class of linear periodic systems sultfepolytopic state and input constraints, the
developed synthesis method is advantageous comparedstatigard Lyapunov synthesis method. An
illustrative example demonstrates the effectivenesseptbposed method.

Keywords:Periodic systems, periodic control laws, constrainedrodrityapunov methods

1. INTRODUCTION varying LF for asymptotically stable periodic systems. ®lor
recently, in (Bohm et al., 2012), the introduction périodic

Periodically time-varying systems, or shorgdgriodic systems Lyapunov function®ffered a useful relaxation for the prob-
represent an important system class for both control thaedy lem of estimating the region of attraction for state constd
applications. Some of the most relevant real-life problaemes autonomous periodic systems; the Lyapunov function was not
magnetic satellite control problems (Wisniewski, 199Gakis required to decrease at each sampling instant, as in (Jrahg a
2001) and the control of helicopter rotors (Arcara et alQ@®0 Wang, 2002) or in (Bittanti and Colaneri, 2009) for the linea
Furthermore, as it was pointed out by (Colaneri et al., 1992ase, but at each period. The benefit of this approach was
Longhi, 1994; Sagfors et al., 2000), time-invariant sysehat demonstrated for linear periodic autonomous systems under
are controlled by multirate synchronous inputs can be neatlel state constraints.

by periodically time-varying systems as well. For the case of non—autonomous periodic systems, however,

The importance of periodic systems is also evident from thapplying the relaxed periodic Lyapunov conditions of Bohm
number of the relevant works in the literature. Existing conet al. (2012) is not practical, even for the linear periodise;,

trol synthesis approaches concern output feedback schensétce the set of conditions that needs to be solved in the
(De Souza and Trofino, 2000}, synthesis for the case of control synthesis approach is nonlinear and nonconvex. To
linear periodic systems with polytopic uncertainties (fesr tackle the problem, we first propose a reformulation of the
et al., 2007), eigenvalue assignment (Brunovsky, 197€ga/a periodic Lyapunov conditions for the general nonlinearecas
2000), exploitation of controllability concepts (Longhnch Moreover, by choosing quadratic periodic Lyapunov funtsio
Zulli, 1995), model matching (Colaneri and Kucera, 1997} a we show how the constrained synthesis problem for the linear
more recently, predictive control (Bohm, 2011). In theenaic case with linear periodic state feedback can be solved by
monograph by Bittanti and Colaneri (2009), Chagtgra thor-  decomposing the original nonconvex optimization problera i
ough exposition of existing results on stabilization teghies finite set of linear matrix inequalities (LMIs). The effecness

is presented. of the result is demonstrated in an illustrative example o

the new approach is compared with the stabilization tecleiq

In this article, we focus on constrained synthesis tect®8qugiemming from direct application of the Periodic Lyapunov
based on Lyapunov functions. Under the assumption of cop

tinuity of the system dynamics, Massera (1949) and Jiang angmma to synthesis.

Wang (2002) proved that a periodically time-varying noeéin  The remainder of this paper is structured as follows. Notati
system is (uniformly globally) asymptotically stable ifdhonly ~ and the description of the dynamics under study is provided
if it admits a periodically time-varying Lyapunov functignF).  in Section 2, along with the exposition of existing results o
Analogously for the linear case, the well-known PeriodialLy Lyapunov stability and a preliminary result. The main résul
punov Lemma (PLL) (see for example (Bittanti and Colanergoncerning the constrained control synthesis for lineaoge
2009)), establishes existence of a quadratic perioditiatlg- Systems with linear periodic state feedback is presented in
Section 3. An illustrative example showing the effectivene
of the proposed synthesis technique is presented in Segtion
while conclusions are drawn in Section 5.

* Supported by the People Programme (Marie Curie ActionsheBuropean
Union’s Seventh Framework Programme (FP7/2007-2013) uR&A grant
agreement 302345



2. PROBLEM SETTING AND PRELIMINARY RESULT

also to accommodate periodic systems with a time-varying
state dimension, see, e.g., (Sagfors et al., 2000). Tissickl

LetR, R,, Z andZ, denote the field of real numbers, the setime-invariant unc_:onstrained state-space and input donsai
of non-negative reals, the set of integer numbers and thef setrecovered by setting (k) = R", U(k) = R™, forall k € Z,..

non-negative integers, respectively. For eveeyR andIl C R
we definells. := {z € II | © > ¢}, and similarlyIl<,,
Ry := Il andZy := ZNIL. ForN € Zsy, TV :=TIx... xIL
For avector: € R, [z]; denotes the-th element ofr and||z||
denotes it2-norm, i.e. ||z|| := />, |[z]:|?>. The transpose
of a matrix X € R™™ is denoted byX ". For a symmetric
matrix Z € R"*" let Z > 0(> 0) denote thatZ is positive
definite (semi-definite). For a positive definite matiix €

R™ ™ let Aminimax) (Z) denote its smallest (largest) eigenvalue.

Moreover, for a block symmetric matriX = [g bh ] where

a,b,c are matrices of appropriate dimensions, the symbol

is used to denote the symmetric part, i. bcT] =[§2]. A
functiony : R, — R, belongs to clasg if it is continuous,
strictly increasing ang(0) = 0. A functiony : Ry — Ry
belongs to clas¥C, if ¢ € K andlim,_o ¢(s) = oco. A
functiong : Ry x Ry — Ry belongs to clas& L if for each
fixedk € Ry, (-, k) € K and for each fixed € R, 3(s, ) is
decreasing antmy_, -, A(s, k) = 0.

2.1 System description

Let n,m € Z, be integers and leK : Z, — R" and
U:Z4+ — R™ be maps that assign to eakte Z, a subset of

We consider also the subclass of non-autonomous linear peri
odic systems of the form

x(k+1) = A(k)x(k) + B(k)u(k), 3
whereA(k) € R™*", B(k) € R™*™, andA(k) = A(k + N),
B(k) B(k + N), for all £ € Z.. Equivalently to the
nonlinear case, choosing a linear periodic state feedbmutkal
law with periodN, i.e.,

u(k) = g(k, z(k)) := K (k)x(k), (4)
with K (k) = K(k + N), the closed-loop system is
xz(k+1) = (A(k) + B(k)K (k))z(k). (5)

2.2 Stability of periodic systems

The notions of asymptotic stability, exponential stapind
region of attraction for system (2) are recalled next.
Definition 2. System (2) is asymptotically stable ¥,, or
shortly, ASKy), if there exists a L-function (-, -) such that,
for eachz(0) € X, the corresponding state trajectory of (2)
satisfies

(k)| < B(z(0)l], k), VEk € Zy. (6)
System (2) is called exponentially stable i, or shortly,

R™ and a subset &™ respectively, which contain the origin in ESo), if 3(s, k) := 0p*s for somed € R>q, p € Rio,1)-

their interior. We consider time—varying nonlinear sysseof
the form
.I'(k + 1) = f(k’ ‘T(k)a u(k))v

ke Z+7 (1)

wheref : Z, x R" x R™ — R" is an arbitrary nonlinear map

such thatf(k,0,0) = 0, for all k € Z,. The vectorz(k) €
X(k) is the system state at timec Z, andu(k) € U(k) is
the system input attime € Z... In this article, we focus on the
subclass of periodically time—varying nonlinear systerhgctv
are defined as follows.

Definition 1. The system (1) is callegeriodic if there exists
anN € Z>; such that for alk € Z it holds

(i) X(k) =X(k + N);

(i) U(k) =U(k + N);

(i) f(k,z,u) = f(k+ N,z,u) for all z € X(k), for all

u € U(k).

Furthermore, the smallest suéh € Z-, is called theperiod

of system (1).

We consider a periodically time—varying state feedbackrobn
law g : Z+ x R™ — R™ such thay(k,0) = 0, forall k € Z,
g(k,z) = g(k+ N,x),forallk € Z,, andg(k, z(k)) € U(k),
for all £ € Z; and for allz(k) € X(k). We assume, for

Definition 3. Suppose that system (2) is AS§{). Then, the
region of attraction (ROA) of (2) iiX is given by the following
set of initial conditions:

R(Xo) = {g € Xo | 2(k) € X(k), Vk € Zy,2(0) = €,

lim z(k) = o}. @)

k—o00
Next, the notion of gperiodically positively invariant(PPI)
sequence of sets, introduced by Bohm et al. (2012), isleztal
Itis worth to mention that a similar conceptwas also conside
by Lee and Kouvaritakis (2006). L§D(7)} rez, »_,, denote
a sequence of sets will(r) C X(r) for all m € Zy n—_1)-
Definition 4. The sequencgD(7)} ez, v_,, IS called peri-
odically positively invariant for system (25 if for each €
Zjg,N—1]» €achk € {iN + m}icz, andz(k) € D(x), it holds
thatz(k + N) € D(x) andz(k + j) € X(k + j), for all
JE€Zp,N-1-

Note that this definition implies also satisfaction of thenco
straintsz(k) € X(k) andu(k) € U(k), forall k € Z.

simplicity, that the period of the control law is equal to theAssumption 5The sequenc¢X(k)}rez, _,, is periodically
period of system (1). The corresponding closed—loop systeP@sitively invariant for system (2).

is
System (2) is periodic with period¥, sincef(k + N, z, g(k +
N,z)) = f(k,z,g(k, z)).

In what follows, letX, := X(0) and defineX := [J1_," X(k).
As such, all state trajectories of system (2) withi0) €
Xo satisfy z(k) € X, for all & € Z,. Allowing for a

Necessary and sufficient conditions for stability have een
mulated for the nonlinear periodic case, see for exampd@gJi
and Wang, 2002). Therein, it was established that a peatidic
time-varying nonlinear system is (uniformly globally) asy-
totically stable if and only if it admits a periodically time
varying Lyapunov function (LF).

Theorem 6.(Jiang and Wang, 2002). Let, as € Koo, p(k) €

different state-space domain for each period is benefigtl nRpo.1), ¥ € Z, and letz(-) be a solution to (2) withe(0) :=

only to allow for periodically time-varying constraintsuto

¢ € X(0). LetV : Z, x X — R, be a function, such that



V(k,z) =V(k+ N,z), forall k € Z,, and moreover, for all Lemma 8 and Lemma 9 guarantee asymptotic stability for the
k € Z, it holds that closed—loop system (5). However, Lemma 9 is a strict relax-
ar([|€]) < V(k, €) <as(|€]), ¥ € X(k) (8a) ation of the result stated in Lemma 8; A feasible set of magric

P(k), k € Njg,ny—1}, and periodic state feedback gaiigk),
V(k+1, f(k,x(k), g(k,z(k)))) <p(k)V(k,z(k)),  (8b) . Npo.v_1], that verifies (10), verifies relations (11) as well,

for all ¢ € X(0). Then, system (2) is A(). while the converse is not true. This is a highly relevant obse
_ _ _ ) - vation for the case of constrained stabilization, whersjdss
Relation (8b) is equivalent to the following condition finding a stabilizing linear periodic state-feedback cohtaw,

V(k+1, f(k,2(k), g(k, 2(k)) =V (k, z(k)) < —as(||z(k)|]), an estimation of the region of attraction is important. Oa th
whereas € K., see (Jiang and Wang, 2002). Using (8b) alother hand, regarding the computational complexity of the i

I ) ith the oth I i Its in thedi duced synthesis methods, the calculations involved in La®m
OWS comparison wi e otherrelevantresultsin the " require the solution of LMIs, while, in stark contrast, findia

The following relaxation regarding the Lyapunov functioasv feasible solution that verifies Lemma 9 requires the satudib
proposed in (Bohm et al., 2012). a non—convex problem.

Theorem 7.(Bohm et al., 2012). Leti, a2 &;,j € Zp,n—1)  Thus, our main focus is to establish a trade—off between the
be K functions,n € Ryp,;) andz(-) be a solution to (2) with strict relaxation of Lemma 9 and tractability of Lemma 8
z(0) := € € X(0). LetV : Z, x X — R, be a function, such for cpnstraineq_synthesis. As a first step, the foIIowi_ngJ_ltes
thatV (k,x) = V(k+ N,z), forall k € Z,, and moreover, for provides conditions of asymptotic stability for generafipeic

all k € Z, forall j € Z; y_qj, it holds that discrete—time systems.

. _ . Theorem 10Let ay, 2 € Ko, scalarsp(j) € Ry, j €
lz()I < a;(ll2(G = D)), ¥ € X(0) (9a) Njo,n—1), andz(-) be a solution to (2) with:(0) := ¢ € X(0).

ar([l€]) < V(K €) < ax([l]), V¢ € X(k)  (9b) 3 -
LetV : ZxX — R, be afunction, such thaf(k,z) = V(k+
V(k+N,a(k+N)) < nV(ka(k), vE€€X(0). (9€) N 2 forallk € Z,, and moreover, for alf € Zip,n—1) it
Then, system (2) is AX(). holds that
For linear periodic systems under linear periodic statel-fee Z%Z';’z({/&lg i Z(]()|‘g|(;7xy§)2 vak)e X(0) 8_’:2;
1 = ) =~ 2 ’

back control law (5) and quadratic periodically time—varyi
Lyapunov functions, Theorem 6 is equivalent to an applicati N1
of the periodic Lyapunov lemma (PLL) for the closed—loop 0< JJ o) < 1. (12c)
system, as formally stated next. i=0

Lemma 8.(Bittanti and Colaneri, 2009). Consider system (5)] N€n, system (2) is AS{).

Letp(k) € Rio,1), k € Zjo,v 1), @ndP(k) € ST, k € ZjoN)  proof. From (12a) and (12b), for anjye Zp1,n), it holds that
be positive definite matrices, witl?(N) := P(0), which i o _ - _
define setsi(k) — {z € R" : «' P(k)z < 1} such that 1z <V (G, 2(1) < p(j =DV = L2(j — 1))

E(k) € X(k), for all k € Zjy ny_q). If the following matrix < p(j = Dea(llz(G = DI,
inequalities hold, for alk € Zy n_1 or
T lz()Il < i (p(j = Daz(lla(j = )I))-
(A(k) + B(R)K (k)" P(k + 1)(A(k) Tkigzif{(k%) (10) Thus, relation (9a) of Theorem 7 is satisfied with
—p Y

aj(s) =y (p(j — Daa(s)), Vi€ Zpn-1)-
Moreover, under Assum_ption 5, from (12a), for ahye Z.
Analogously, Theorem 7 can also be applied in a straightfod for anyz(k) € X(k), it holds that
ward manner to the the closed-loop periodic linear system (53 (k+ N, z(j + N)) < p(N =1)V(j + N = 1,z(j + N - 1)).
To this end, we first define the monodromy matridgg) €  Applying the previous inequality successively, it holdatth

then system (5) is EE(0)).

R™ ", k € Zp,n—1) (Bittanti and Colaneri, 2009): V(k+ N,z(j + N)) <
N-1 p(N=1)p(N =2)V(k+ N —2,z2(k+ N —2)) <
O(k) = [] (Atk +i) + Bk + 1)K (k +)),Vk € Zo n—1)- N-1
i=0 < < ] p)V (ks 2(k)).
The following result is the equivalent of Theorem 7 for the i=0
linear case: Taking into account (12c), relation (9c) of Theorem 7 is sat-

Lemma 9.(Bohm et al. (2012)). Consider system (5). et isfied withn = Hf;‘ol p(i) € Rp,1). Thus, by Theorem 7,
Rjo,1), and P(k) € S%,, k € Zj N be positive definite system (2)is AS(,). B

matrices, withP(N) := P(0), which define setE(k) = . . . .

{z € R" : 2T P(k)x < 1} such thatZ(k) C X(k), for all It _W|II be shown in the next section that, for the Ilnear case,
k € Zj_n_1). If the following matrix inequalities hold, for all this result allows for a constructive control synthesiseobsn

k€ Zpo N convex optimization, while still providing a strict relai@n in
[0.N =1 terms of the conditions of Lemma 8.
(k)" P(k)2(k) —nP(k) 20, (11a)
(A(k) + BR)K(K))T P(k + 1)(A(k) + B(k)K (k) 3. CONTROLLER SYNTHESIS

—P(k) 20, (11b)  we consider linear periodic systems (3) that are subject to
then system (5) is AS{(0)). polytopic state periodic constraints



X(k) :=={z e R" : ¢s(k)x < 1,Y(i, k) € Zpy piry) X L}, u(k,z) =Y (k)X (k) 'z, whereu(k + N, z) = u(k, z) for all
(13) k€ Z.. Moreover, system (5) is AB(0)).
where p(k) € Zsi, for all k € Z,, is the number of )
hyperplanes that define s&tk), andc;(k+N) = ¢;(k), forall  Proof. First, we show that the sets(k), k € Zj 1), are
(i,k) € Zpy p(ry) % Z+. Similarly, we consider polytopic input contained inX(k) andU, (k) for all k € Z 1), where
constraints _ U, (k) = {z e R" : dy(k)Y (k)X (k) 'z < 1,

U(k) = {u cR™: dz(k)u < LV(Z, k) S Z[l,q(k)] X Z+}74) V(L ]C) S Z[l,q(k)] X Z+}7
whereq(k) € Zsy, forall k € Z,, andd; (k + N) = di(k) ¢ forall k& E_Z[QN_H. Applylr_wg the Schur complement in (16c)
R for all (i, k) € Zir ) * Zs- In the case of state and exploiting the periodicity aX(%) we obtain
and input constraints, the simultaneous computation oh@st ¢ (k)" X (k)ci(k) < 1, V(i k) € Zpy py) X Zy. (A7)
feedback control law and a region of attraction of the clesedrrom Lemma 12, inequality (17) implié&(k) ¢ X(k), for all

loop system is a challenging problem, even for the case @éfin i ¢ 7. . Equivalently, applying the Schur complement in (16d)
time-invariant systems with a linear state—feedback cbfgw. e obtain

In what follows, a systematic method of computing a linear _ —1 Tg. (1T <
periodic state feedback control law and an estimation of the fjl(k)Y(k:)X(k:)_l Y(k)T 4 (k)T -
region of attraction via a sequence of ellipsoidal sets ball  (d;(k)Y (k)X (k)™ )X (k) (X (k)Y (k) d;(k) ) <1

presented. (18)

Throughout this section, Assumption 5 is not required talhol forall (j, k) € Zjy q(k)) X Z+ . From Lemma 12, inequality (18)

On the contrary, finding a periodically positively invariae- MPIESE(K) C U (k), forallk € Z..

quence of sets for the closed—loop system is a synthesis-obj@lext, we show that/(k,z) = z'X(k)"'z is a periodic
tive. The problem is formally stated next: Lyapunov function that satisfies Theorem 10 for the closed—
Problem 11.Given system (3), state and input constraintfoop system (5). The matrix inequality (16a) is equivalent t

X(k) (13) andU(k) (14) respectively, determine a stabilizing (A(k)x (k) + B(k)Y (k)T X (k + 1)~ (A(k) X (k)

linear periodic state—feedback control law (4) and a cpwes- B
ing PPI sequence of sef&(k)}rez, ,_,; With respect to the o +B(_I€)Y.(k)) pk)X (k) = Oj
closed—loop system (5). ' Pre—multiplying and post-multiplying b¥ (k) ~*, the previous

inequality becomes
We consider quadratic periodic Lyapunov function candidat (A(k) + B(k)Y (k)X (k)™ T X (k + 1)1 (A(k)

V(k,z) = z" P(k), (15) +B(k)Y (k)X (k)" — p(k) X (k)" < 0. (19)

where P(k) € S%., with P(k + N) = P(k) forall k € tpyg condition (12a) of Theorem 10 is satisfied Witfk, ) =
7. . First, we recall the necessary and sufficient conditions fch(k)flz_ Also, condition (12b) holds with

inclusion of an ellipsoid within a given polytope.

: N =1\ 2
Lemmal2.Llet E € S, andy; € R'™™", foralli € Zj (s) _iezrfj,ﬁ,u“m'“(X(’) )} (20)
with p € Z>;. The ellipsoid€ := {z € R* : 2T Ex < 1} as(s) = max {Amad(X())"1)}s% (1)
is contained in the polytop& := {z € R" : ¢z < 1, i € 1€Zjo, N —1)
Zpp}ifand only if v, E= 1y <1, Vi € Zpy ). Lastly, sincep(k) € Ry 1), from (16b) it necessarily holds that
The proof of the above result can be found in Boyd et al. Nt
(1994?). The conditions of Lemma 12 allow for the ca?/culation 0= H p(l) <1, (22)
of an ellipsoid€ that must be contained within a specified » 1=0 . o
polytopeX’. thus, condition (12c) of Theorem 10 is also satisfied. Thasyf

(19)—(22), Theorem 10 is satisfied, system (5) isIN®() and

Theorem 13.Consider system (3) and constraid$k) (13), {E(k)}rez, is a PPI sequence of sets w.r.t. system i)
0,N—1 I L .

U(k) (14). Letp(k) € Ry 11, X (k) € S, Y (k) € ST, for
all k € Z,n—1), whereX (N) := X (0), Y(N) := Y (0), be a  still, conditions (16) of Theorem 13 cannot be used directly
feasible solution to the following set of matrix inequagi for  to form a tractable synthesis method that solves Problem 11,

allk € Zj,n—qy, foralli € Zp py and allj € Zpy o) since (16a) consists a¥ bilinear matrix inequalities (BMIs)
due to the product of the scalasgk) and matricesX (k), k €
p(k)X (k) * “ 0 (16a) Nio,n—1- Althoughp(k) is a scalar for each € Ny n_yj, find-
AK)X (k) 4+ B(k)Y (k) X(k+1) | =" ing a solution to theV joint BMI conditions corresponding to
N1 (16a) is challenging, since the bisection method cannosbd.u
0< Z p(l) < N, (16b) A possible approach is to grid the spacepfl), ..., p(N)) €
=0

ng_l) and solve the resulting LMI corresponding to (16a) for

each point in the grid. Still, no convergence to a feasibla-so
] =0, (16c) tion can be guaranteed.

o~

*
[X(kmw X(k)
1 N The next result provides a tractable way for solving Prokldm
[Y(k)Td-(k)T X(k)] =0. (16d) First, consider the following problem.

! Problem 14.Given system (3), constraintg k) (13),U(k) (14),

Then, the sequencl(k)}rez, x> WhereE(k) := {z €  gnd afixed: e Zjo,n -1 Solve the feasibility problem
R" : 2" X(k) "'z < 1}, k € Zjg,n—1), is PPI for the closed- min 0 (23)

loop system (5) with linear periodic state feedback corawl X(k),Y (k) 5,X (k),Y (k),k€Zo, 1)\ [k}



subject to Remark 18.Quantities]_[fi51 p(l), wherep(k), k € Nig n_1),
X (k) . . obtained from Theorem 13, and obtained from Problem 14,
=0 24a) represent the exponential decrease of the correspondiirg pe
[A(k)X(k) +B(R)Y (k) X(k+1) ] =7 (242) odic Lyapunov functions at each period, and consequendly th
X (k) % 1 speed of convergence of.the closed—loop system t(ajestorie
{A(E)X(E) +BRY®) X(E+1) =0, (24b) Thus, an additional benefit of the proposed method is the pos-
_ - sibility of embedding in the synthesis procedure perforogan
0<p<l (24c) specifications. To this end, in order to achieve a desired de-

1 * | “ 0 (24d) crease € Ry 1) at each period for the closed-loop system, it
X(e()" X)) =7 is sufficient to replace (24d) with < 5 < p. Similarly, in The-
1 < ] - ol oremA13, relation (16b) can be replaced(by Zl]igl p(l) <
y()Ta0T x@m) =0 24 NVR

with X (N) := X(0), forall k € Zj n—1 \ {k}, 1 € Zjo,n—1), 4. ILLUSTRATIVE EXAMPLE

L€ Zppwy)s J € Liiq)-

Lemma 15.Consider system (3), constrainik) (13) and We consider a linear periodic system (3) with perivd= 2

U(k) (14). Then, the matrix inequalities (16) define a nonempty, 4 svst, trices(o) — | 09 09 a(q) — [15 —04

feasible solution set if and only if there exists an indéxe na system matrices(o) [0-3 0-9} W [0-3 0.4 }
1

Zjo.n 1) Such that Problem 14 is feasible with=% . B(0) = [0 1} , B(1) = [Oﬂ . Also, we consider time invari-

. . - —* ant periodic polytopic state and input constraints of thenfo

Proof. Suppose Pro_blem 14 is feasible f_orka =k € (13)pand (14F)) r)e/sppectively, such t?th(O) — X(1) = X,

Zpp,n—1)- Then, relations (16) are also feasible settig) = U(0) = U(1) = U, wheree; — [1 0], c» = [0 0.33]
—% —% _ - T % 1 1 . 1]

L, forallk € Z[O,Nfl] \ {k }v p(k ) =P andX(k*)aY(k )1 3 = —C1,C4 = —Co,d; = —dy = 0.95.

X(k),Y(k), k € Zjo,y—1, the solutions to Problem 14. Con-

versely, suppose that conditions (16) have a nonemptytfieasi

solution set. Then, there exists at least dne ¢ Z[ON 1 O "~ === --o e __

such thatp(k") < 1. Settingk := k* andp = p(k") the Z>
corresponding matrix mequalltles (24b)—(24e€) in Probledn

are satisfied. Moreover, for ary e Zio,n—11 \ {k*} such that
p(k) < 1, relation (16a) implies X o
X AX(IAC) o * . S0

AKX (k) + B(k)Y (k) X(k+1) | — E(1)

(1 - p(k)X (k) = 0. .

Thus, (24a) is also*satisfied, and consequently, Problenag4 t Epy (1) Ep (0
a solutionfork =k . 1

Remark 16.Comparison of conditions (16a) of Theorem 12
with condition (24b) in Problem 14, reveals the significante 1 -08 -06 -04 -02 0 02 04 06 08 1
the previous result. In specific, Lemma 15 shows that exigten Xy
of a feasible solution to the constraint set (16), which lnge
N BMs, is equivalent to existence of solution in (at leastgonFig. 1. The constraint sef, the PPI sequencgE(i }zezm
of the N feasibility problems (23)—(24), which involve a single computed applying the method presented (black) and the
bilinear term, i.e. the product of the scalarand the matrix trajectory of the closed—loop system starting frofQ) =
X (k) in (24b). Furthermore, since the single bilinear term in ~ [—0.9713 2.9531] " (dashed black), and the PPI sequence
(24b) consists of a matrix and the constrained nonnegative {Epi()}icz, , computed applying the PLL (blue).
scalarp € Rio,1), solution of Problem 14 is equivalent to
solving a series of LMIs via bisection, which is guarantesd t The synthesis objectives concern the calculation of alstaty
converge to a feasible solution, if a feasible solutiontsxis  linear periodic state feedback control lak) = K (k)xz(k),
Remark 17.In constrained synthesis problems, together with/ith £ (k+2) = K (k >f°f3” k € Z, and an estimation of the
computing a stabilizing control law, it is extremely relaya '€9ion of attractioriR (X) with a performance guarantee on the
to aim for a large basin of attractid(0) C R(X,), where speed of convergence to the origin. For comparison, weegpli
E(0) = {z € R" : 2T X(0)~'z < 1}. To this end, we exploit both the synthesis method presented in Section 3 and the
the tractability of problem 14 to formulate a semi—definitdnethod based on the PLL Lemma (i.e. application of Lemma 8
optimization problem that is solved for eveky Zio N—1, or Fhe closed—loop system, formlpg an optimization prable
maximizes the volume dE(0) and solves Problem 11, i.e., similar to (25), see for example (Bohm, 2011) for detailf)e |
. _trace X (0)) (25) des!red performance of the closed-loop system is quantified
X(E),Y(E),p,x(k)l,rxlfl(lilg),kez[w,”\{E} settingp = 0.5 in problem (25) angh(k) = V0.5, k € Zj
subject to (24) in (10) respectively. Problem_ (25) was soI_ved for two mgﬁxn
' of k = 0, 1. The chosen solution was obtained fo& 0, which
Alternative optimization criteria that describe the siZefg0) yielded the largest estimation of the region of attractfeor.the
can be chosen as well (for more details see (Boyd et al., }994nethod proposed here, the computed linear periodic fe&dbac




gains were found to bé& (0) = [-0.4207 — 0.4357], and flight. IEEE Transactions on Control Systems Technology
K(1) =[-1.3445 0.2281]. 8(6), 883-894.
Bittanti, S. and Colaneri, P. (200®eriodic Systems: Filtering

and Control Springer-Verlag. ] o
Bohm, C. (2011§).Pred|ct|ve Control using Semi-definite Pro-

gramming - Efficient Approaches for Periodic Systems and
Lur'e SystemsPh.D. thesis, University of Stuttgart.

Bohm, C., Lazar, M., and Allgower, F. (2012). Stability
of periodically time-varying systems: Periodic Lyapunov
functions.Automatica 48, 2663—2669.

Boyd, S., El Ghaoui, L., Feron, E., and Balakishnan, V. (994
Linear Matrix Inequalities in System and Control Theory
Society for Industrial and Applied Mathematics.

Brunovsky, P. (1970). A classification of linear controlia

Fig. 2. The Lyapunov function$/) obtained from the synthesis _ SystemsKybernetika6(3), 173-188. _

method presented (dashed black) and from application &Planeri, P. and Kucera, V. (1997). The Model Matching Prob-
the PLL (dashed blue), evaluated along the trajectory of lem for Periodic Discrete—Time SysteMEEE Transactions

1q
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>| 06
= 0.4

0.2

the initial conditionz(0) = [-0.9713 2.9531]T. The _ onAutomatic Contrql42, 1472-1476.
worst—case decrease of the Lyapunov functionsi{jvis Colan_erl, P., Scattolini, R., and Schiavoni, N. (1992). LQG
shown in black and blue line respectively. optimal control of multirate sampled-data system&EE

o ) Transactions on Automatic Contr@7(5), 675—682.
Application of the two methods led to two different PPl sepe souza, C.E. and Trofino, A. (2000). An LMI approach to
quences of ellipsoids, name{¥E (k) ez, ,, for the synthesis  gtapjlization of linear discrete-time systemsternational
method presented in Section 3, afllp..(k)}rez,,, When  Journal of Contro) 73, 696-703.
the PLL Lemma was applied, with corresponding estimatesarges, C., Peaucelle, D., Arzelier, D., and Daafouz, D{RO0
of the ROA of the closed—loop syste®(X) := E(0) and Robust_?-[g _performance a_nal_ysis and sy_nthesis of linear
RpL(X) := EpL(0) respectively. As seen from Figure 1, Polytopic discrete-time periodic systems via LMBSystems
the estimate of the ROAR(X) is significantly larger than _ & Control Letters 56(2), 159-166.

- . o . . Jiang, Z. and Wang, Y. (2002). A converse Lyapunov theorem
ReuL(X). Itis worth reminding that in both synthesis meth-" "o ote_time systems with disturbanc&ystem & Con-
ods the same objective function is minimized, implying that trol Letters 45(1), 49-58

{EpuL(k)}kez,,,, can be generated from a feasible solution oo "y~ kouvaritakis, B (2006). Constrained robust alod
to problem (25), while there does not exist a feasible solut predictive control based on periodic invarianéeitomatica

that can generatgi (k) }rez, ,, by applying the PLL synthesis 42(12), 2175-2181.

approach. In the same figure, the trajectories of the Closefjnghi, S. (1994). Structural properties of multirate stedp
loop system corresponding to the synthesis method preten € data systems. IEEE Transactions on Automatic Contyol

in this article can be seen, with initial condition0) = 39(3), 692696

[-0.9713 2.9531]. It is observed that the state constraint:?_onghi S. and Zulli, R. (1995). A Robust Periodic Pole

are satisfied at _aII times. Lastly, in Figure 2, the valueghef t Algorithm. IEEE Transactions on Automatic ContratO,
Lyapunov functions for the two synthesis methods are shown 890-894

in dashed line, together with the upper bounds on their 8alug, <023 (1949). On Liapounoff's condition of stabilife
at each instant, posed by the Lyapunov conditions (sol&s)n Annals of Mathematics, Second Ser&@(3), 705-721.

Itocsaendt_): r?gterr:athart(atg?oLéZE;Jen:svef;?gg?:ﬂ fg;ttgr?t gset.?ﬁ[ﬂepr I: iaki, M. (2001). Magnetic torquer attitude control vigrap-
b : qui ! ! otic periodic linear quadratic regulatiodournal of Guid-

synthesis case, but at each period. ance, Control, and Dynamic24(2), 386—394.

5. CONCLUSIONS Sagfors, M., Toivonen, H., and Lennartson, B. (2000). estat
space solution to the periodic mu!tiréﬁ(—go control problem.
A systematic method for obtaining simultaneously a staibidj IEEE Transactions on Automatic Contyod5(12), 2345—

linear periodic state feedback law and an estimation of the 2350. o .
region of attraction of the closed—loop system was proposedrga, A. (2000). Robust and Minimum Norm Pole Assign-
The synthesis method concerns the relevant class of linearment with Periodic State FeedbackEEE Transactions on
periodic systems that are subject to state and input comistra  Automatic Contral45, 1017-1022. _

An illustrative example demonstrated the effectivenesthef Wisniewski, R. (1996).Satellite Attitude Control Using Only
approach compared to the PLL synthesis method. Electromagnetic Actuation Ph.D. thesis, Department of

Control Engineering, Aalborg University, Denmark.
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