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Safety and Invariance for Constrained Switching Systems

Nikolaos Athanasopoulos, Konstantinos Smpoukis, Raphaël M. Jungers

Abstract— We study discrete time linear switching systems
subject to additive disturbances. We consider two types of
constraints, namely on the states and on the switching signal.
A switching sequence is admissible if it is accepted by an
automaton. Contrary to the arbitrary switching case, stability
does not imply the existence of an invariant1 set. In this
article, we propose a generalization of a bounded invariant
set, namely, the notion of an invariant multi-set and show its
significance in terms of dynamical systems. Under standard
assumptions, we provide an iterative algorithm to approximate
the minimal invariant multi-set with a guarantee of accuracy
and an algorithm to compute the maximal invariant multi-set.
Application of the established framework to switching systems
with minimum dwell time reveals potential computational
benefits and allows formulations of more refined notions.

I. I NTRODUCTION

Switching systems are being extensively studied in the
context of stability analysis and control [1], [2], [3]. Apart
from the theoretical challenges they pose, these systems
appear often in practice since they accurately model real-
world systems from different fields and provide close ap-
proximations of complex hybrid or non-linear systems. In
several settings in control applications, the switching signal
is not arbitrary. For example, constrained switching appears
when there are different controllers to choose from, each one
achieving a different performance (with a different cost),or,
when a fault occurs in feedback control and the process is in
open-loop for a small period of time. Additionally, several
theoretical challenges require more refined tools for studying
their stability properties than the arbitrary case [4], [5], [6].
In this article, we express the switching constraints with a
labelled, strongly connected directed graph. In specific, a
switching sequence is an admissible switching sequence if
there exists a path such that it can be realized by the labels
of the edges involved.

The notion of invariance used here, namely positive invari-
ance, is important as it implies that all trajectories starting
from a set will remain there forever. Since almost every
system in practice is subject to some type of constraints
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1Throughout the paper and for simplicity of exposition, by stability
we mean asymptotic stability and by invariance we mean robust positive
invariance.

on its states or outputs, the notion of invariance becomes
extremely relevant in control applications [7]. Specifically,
problems related to safety and viability [8] can be addressed
by computing sets which possess the invariance property or
a variant of it. Although the stability and stabilizabilityare
currently addressed in the literature, see e.g., [6], thereis
little work available on safety and invariance properties of
switching systems, mainly concerning important subclasses
[9], [10], [11].

In this article, to study invariance, we first provide an
appropriate generalization, namely the invariance of a multi-
set. By multi-set we refer to a collection of sets in one-to-
one correspondence with the nodes of the graph that defines
the admissible switching sequences. Roughly, amulti-set is
invariant if the system trajectory visits at each time instant the
member set which corresponds to the node reached in order
the admissible switching signal to be realized. By extending
standard results in the literature that concern systems under
arbitrary switching, we show that the forward reachability
multi-set sequence converges to the minimal invariant multi-
set. This sequence might not converge to the minimal in-
variant multi-set in finite-time, thus, we approximate it with
a guaranteed accuracy. Moreover, we propose a constructive
approach for computing the maximal admissible invariant
multi-set with respect to a state constraint set and conse-
quently for computing the maximal safe set. Finally, to show
the relevance of the results, we focus on the case of systems
under minimum dwell-time requirement, see e.g., [10], [12],
[13]. In specific, we show that our proposed technique offers
computational benefits and allows for a better understanding
of the behavior of these dynamical systems.

Notation: We write vectorsx, y with small letters and sets
S,X ,V with capital letters in italics. The ball of radiusα of
an arbitrary norm inRn is denoted byB(α). The distance
between a vectorx ∈ Rn and a compact setS ⊂ Rn is
denoted by d(x,S), while the Hausdorff distance between
two compact setsS1 ⊂ Rn, S2 ⊂ Rn is denoted by
haus(S1,S2) The Minkowski sum between two setsS1 and
S2 is denoted byS1 ⊕ S2, the set difference is denoted by
S1 \ S2 and the interior of a setS is denoted byint(S).

II. PRELIMINARIES

A. System description and basic assumptions

We are interested in studying invariance and safety for
systems whose switching patterns are constrained by a set
of rules. In our case, these rules are induced by a connected
labelled directed graph. To this purpose, we consider a set
of matricesA := {A1, ..., AN} ⊂ Rn×n and a set of
disturbance setsW = {W1, ...,WN}, where Wi ⊂ Rn,



i ∈ [1, N ]. Moreover, we consider a set of nodesV :=
{1, 2, ...,M} and a set of edgesE = {(s, d, σ) : s ∈
V , d ∈ V , σ ∈ [1, N ]}, wheres is the source node,d is the
destination node andσ the label of the edge. We denote the
graph with a set of nodesV and a set of edgesE asG(V , E).
We also consider a state constraint setX ⊂ Rn. The set of
outgoing edges of a nodes ∈ V in G(V , E) is denoted by
out(s) := {d ∈ V : (∃σ ∈ [1, N ] : (s, d, σ) ∈ E)}. We
consider the System

x(t+ 1) = Aσ(t)x(t) + w(t) (II.1)

y(t+ 1) ∈ out(y(t)) (II.2)

(x(0), y(0)) ∈ Rn × V (II.3)

with w(t) ∈ Wσ(t), subject to the constraints

σ(t) ∈ {σ : (y(t), y(t+ 1), σ) ∈ E}, ∀t ≥ 0, (II.4)

x(t) ∈ X , ∀t ≥ 0. (II.5)

We take into account the following assumptions throughout
the paper.

Assumption 1:The constraint setX ⊂ Rn is compact,
convex and contains the origin in its interior.

Assumption 2:The disturbance setsWi, i ∈ [1, N ], are
compact, convex and contain the origin in their interior.
The stability of the disturbance-free system has been studied
and characterized by the introduction of the constrained joint
spectral radius [4], which is a generalization of the joint
spectral radius [3].

Definition 1 ([4]): The constrained joint spectral radius
(CJSR) of the disturbance-free System is

ρ(A,G) := lim
k→∞

ρk(A,G),

whereρk(A,G) := max{|
k
∏

j=1

Aij |
1/k : (∃sj ∈ [1,M ], j ∈

[0, k] : (sj , sj+1, ij) ∈ E)} is the maximum growth rate up
to time k.
It has been shown [4, Corollary 2.8], that the nominal system
(II.1)-(II.3) under constraints (II.4) is asymptoticallystable
if and only if ρ(A,G) < 1. Moreover, asymptotic stability is
equivalent to exponential stability.

Assumption 3:ρ(A,G) < 1.
Assumption 3 is necessary in the context of this article
sinceρ(A,G) > 1 excludes existence of invariant multi-sets
or safe sets. The study of the limiting caseρ(A,G) = 1,
although interesting, is outside the scope of this study. See
[5] for techniques allowing to guarantee that Assumption 3
holds. The following assumption concerns the structure of the
constraints in the switching signal and holds true for many
interesting cases in stability analysis of control systems.

Assumption 4:The graphG(V , E) is strongly connected,
i.e., there is a path connecting any nodes ∈ V to any node
d ∈ V .

B. Invariant multi-sets

We first recall the notion of invariant set, and then gener-
alize it to multi-sets.

Definition 2 (Invariance):A setS ⊂ Rn is calledinvari-
ant with respect to the System (II.1)-(II.3) ifx(0) ∈ S
implies x(t) ∈ S, for any initial condition y(0) ∈ V
and any switching signalσ(t), t ≥ 0, satisfying (II.4). If
additionallyS ⊆ X , the setS is calledadmissible invariant
with respect to the System (II.1)-(II.3) and the constraints
(II.5). Moreover, if for any admissible invariant setM ⊆ X
it holds thatM ⊆ S, S is called themaximal admissible
invariant set.

Definition 3 (Multi-set invariance):The collection of sets
{Si}i∈[1,M ] is called aninvariant multi-setwith respect to
the System (II.1)-(II.3) ifx(0) ∈ Sy(0) impliesx(t) ∈ Sy(t),
for all t ≥ 0, for any initial conditiony(0) ∈ V and for any
switching signalσ(t), t ≥ 0, satisfying (II.4). If additionally
Si ⊆ X , for all i ∈ [1,M ], the multi-set{Si}i∈[1,M ]

is called anadmissible invariant multi-setwith respect to
the System (II.1)-(II.2) and the constraints (II.5). Moreover,
an admissible invariant multi-set{Si

M}i∈[1,M ] is called the
maximal admissible invariant multi-setif for any admissible
invariant multi-set{Si}i∈[1,M ] it holds thatSi ⊆ Si

M , for all
i ∈ [1,M ]. Last, an invariant multi-set{Si

m}i∈[1,M ] is called
the minimal invariant multi-setif for any invariant multi-set
{Si}i∈[1,M ] it holds thatSi

m ⊆ Si, for all i ∈ [1,M ].
Definition 4 (Safety):A set S ⊂ Rn is called safe with

respect to the System (II.1)-(II.3), the constraints (II.4), (II.5)
and with respect to a set of nodesY ⊆ V if (x(0), y(0)) ∈
S ×Y, impliesx(t) ∈ X , for any initial conditiony(0) ∈ Y
and for any switching signalσ(t), t ≥ 0, satisfying (II.4). A
safe setS⋆ is called themaximal safe setif for any other
safe setM ⊂ X it holds thatS ⊂ S⋆.

Definition 5 (m-returnability): Given an integerm ≥ 1,
a setS ⊂ Rn is calledm-returnable with respect to (i) a set
S0, (ii) a set of nodesY ⊆ V , (iii) the system (II.1)–(II.3)
and (iv) the constraints (II.4), (II.5) if(x(0), y(0)) ∈ S0×Y
implies that for any two time instantst1 ≥ 0, t2 ≥ m − 1
such thatt2 − t1 ≥ m there exists at least one time instant
t⋆ ∈ [t1, t2] such thatx(t⋆) ∈ S.

While it is not necessary for the System (II.1)-(II.2) to
possess an invariant set, we show that under the Assumptions
1-3 there always exist minimal and maximal invariant multi-
sets. These particularities are highlighted below.

Running Example Part 1:We consider a scalar system
(II.1)-(II.3). The graphG(V , E) where the switching con-
straints are defined is shown in Figure 1. In specific,V =
{1, 2}, E = {(1, 1, 2), (1, 2, 1), (2, 1, 2)}. There is one un-
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Fig. 1. The graphG(V , E) for the Running Example.

stable mode, while we do not consider any disturbances,
i.e., A := {A1, A2} = {−2, 14} and W1 = W2 = {0}.
We observe that apart from the trivial setS = {0}, no



invariant set exists. Indeed, for any setS, picking x(0) =
argmaxx∈S |x|, y(0) = 1 and σ(0) = 1, it holds that
x(1) /∈ S. Nevertheless, it is possible to find an invariant
multi-set. For example, an invariant multi-set is{S1,S2},
with S1 = [−0.5, 0.5], S2 = [−1, 1].

III. M AIN RESULTS

We define the sequence of multi sets{N j
l }j∈[1,M ], i ≥

0 generated by the following set of initial conditions and
iterations

N j
0 :=

⋃

(s,j,σ)∈E

Wσ, j ∈ [1,M ], (III.1)

N j
l+1 :=

⋃

(s,j,σ)∈E

AσN
s
l , j ∈ [1,M ] (III.2)

The elements of the multi-set sequence{N j
l }j∈[1,M ] can

be seen as thel-step forward reachability multi-setsof the
disturbance-free System (II.1)-(II.3), i.e., whenw(t) = 0,
starting fromN j

0 and for all t ≥ 0. Lemma 1 is a conse-
quence of [5, Theorem 1] and stems from Assumption 3, i.e.,
the exponential stability of the System (II.1)–(II.3), expressed
with set inclusions. The metricsε, Γ can be computed
in practice, e.g., using reachability-based methods [5] or
Lyapunov functions [6].

Lemma 1:Consider the graphG(V , E), the setsWi ⊂ Rn,
i ∈ [1, N ] and the set of matricesA ⊂ Rn×n. Under
Assumptions 2, 3, there exist scalarsε ∈ (0, 1), Γ ≥ 1 such
that

N j
t ⊆ ΓεtN j

0 , (III.3)

for all t ≥ 0 and for allj ∈ [1,M ].

A. The minimal invariant multi-set

Let us consider the sequence of multi-sets{F j
l }j∈[1,M ],

l ≥ 0, with

F j
0 := {0}, j ∈ [1,M ], (III.4)

F j
l+1 :=

⋃

(s,j,σ)∈E

(AσF
s
l ⊕Wσ) , j ∈ [1,M ]. (III.5)

The multi-set sequence{F j
l }j∈[1,M ] has as elements the

l-step forward reachability multi-setsof the System (II.1)-
(II.3), starting from the zero singleton. Next, we show that
the set sequence (III.4)-(III.5) converges to the minimal
invariant multi-set. First, a few technical results are required.

Fact 1: Consider the multi-set sequence (III.4), (III.5).
Under Assumption 2, for alll ≥ 0 it holds

F j
l =

⋃

i∈[0,l]

F j
i , j ∈ [1,M ]. (III.6)

Proposition 1: Consider the multi-set sequence (III.4),
(III.5). Under Assumptions 2 and 3, there exist scalarsε ∈
(0, 1), Γ ≥ 1 such that for anyl ≥ 0, it holds

F j
l ⊆ F j

l+1 ⊆ F j
l ⊕



Γεl
⋃

i∈[1,N ]

Wi



 . (III.7)

Proof: The left inclusion holds from Fact 1. To prove
the right inclusion, we first recall that from Lemma 1 there
exist scalarsΓ, ε ∈ (0, 1) such that (III.3) holds. Setting

Zl := εlΓ





⋃

i∈[1,N ]

Wi



 ,

it follows that

F j
l+1 =

⋃

(sl,j,σl)∈E

Aσl



...





⋃

(s1,s2,σ1)∈E

Aσ1
(

⋃

(s0,s1,σ0)∈E

(Aσ0
Fs0

0 ⊕Wσ0
)



⊕Wσ1



 ...



⊕Wσl

=
⋃

(sl,j,σl)∈E



...





⋃

(s1,s2,σ1)∈E

Aσl
...Aσ1

N s1
0 ⊕

Aσl
...A2Wσ1

) ...)⊕Aσl
Wσl−1

)

⊕Wσl

⊆
⋃

(sl,j,σl)∈E



...





⋃

(s1,s2,σ1)∈E

Zl ⊕Aσl
...A2Wσ1





...)⊕Aσl
Wσl−1

)

⊕Wσl

= Zl ⊕
⋃

(sl,j,σl)∈E



...





⋃

(s1,s2,σ1)∈E

Aσl
...A2Wσ1





= F j
l ⊕Zl,

thus, the right inclusion in (III.7) holds.
Theorem 1:Consider the multi-set sequence (III.4),

(III.5). Under Assumptions 1-4, the following hold.

(i) The multi-set sequence is convergent, in the metric
space of compact sets having as metric the Hausdorff
distance, i.e., there are setsF j

∞, j ∈ [1,M ], such that
lim
l→∞

F j
l = F j

∞.

(ii) Let α := min
{

α :
⋃

i∈[1,N ]Wi ⊆ αB(1)
}

and letΓ ≥

1, ε ∈ (0, 1) be scalars satisfying (III.3). For anyǫ > 0

and l ≥
⌈

logε

(

ǫ(1−ε)
αΓ

)⌉

the relation

F j
∞ ⊆ F j

l ⊕ B(ǫ) (III.8)

holds, for allj ∈ [1,M ].
(iii) The multi-set sequence converges to the minimal com-

pact invariant multi-set with respect to the System (II.1)-
(II.3) and constraints (II.5), i.e.,Sj

m = F j
∞, j ∈ [1,M ].

Proof: (i) By Proposition 1, the set sequence{F j
i }i≥0,

for eachj ∈ [1,M ], is monotonically non-decreasing and is a
Cauchy sequence. Thus, a limitF j

∞ exists, for allj ∈ [1,M ].
(ii) From Proposition 1, it holds thathaus(F j

l ,F
j
l+1) ≤

Γαεl, for any l ≥ 0, j ∈ [1,M ]. Consequently, for any
j ∈ [1,M ], m ≥ 1, l ≥ 0 we haveF j

l+m ⊆ Γα 1−εm

1−ε B(1)⊕
F j

l . Taking the limit asm → ∞, it follows that F j
∞ ⊆

Γαεk

1−ε B(1) ⊕ Fl. Thus, relation (III.8) is satisfied for any

l ≥
⌈

logε

(

ǫ(1−ε)
αΓ

)⌉

.



(iii) Invariance of the multi-set{F j
∞}j∈[1,M ] follows from

Fact 1. To show minimality, we follow a similar reasoning as
in [14, Lemma 3.1]. To this end, let us assume there exists
a compact invariant multi-set{Sj}j∈[1,M ] for which there
exists an indexj⋆ ∈ [1,M ] such thatF j⋆

∞ * Sj⋆ . Then, for
anyx(0) ∈ Rn, for anyy(0) ∈ V and under Assumptions 2,
4, we pickw(t) = 0, for all t ≥ 0. Additionally, we study
the solution(x(t), y(t)), t ≥ 0, for which there exists a
time sequence{ti}i≥0 such thaty(ti) = j⋆, i ≥ 0. From
Assumption 1,x(t) → 0 ast → ∞. SinceSj⋆ is a compact
set,x(ti) ∈ Sj⋆ and{x(ti)}i≥0 converges to0, it necessarily
holds that0 ∈ Sj⋆ . However, sinceSj⋆ is a member of
the invariant multi-set{Sj}j∈[1,M ], it necessarily holds from
Fact 1 thatF j⋆

∞ ⊆ Sj⋆ , which is a contradiction. Thus,
F j⋆

∞ ⊆ Sj⋆ .
As it can be observed from Theorem 1 and Proposition 1,
if there exists an integerk such thatF j

k
= F j

k+1
, for all

j ∈ [1,M ], then the multi-set series converges in finite time
with Sj

m = F j

k
, j ∈ [1,M ]. However, since only asymptotic

convergence can be guaranteed, we can use Theorem 1(ii)
to provide ǫ-inner approximations. Nevertheless, it is still
hard to compute the set sequence (III.4), (III.5) as the
members of the multi-set might not be convex. To alleviate
this computational burden and in the same spirit as in [15],
[16] we propose to compute the minimalconvexinvariant
multi-set. We consider the multi-set sequence

F
j

0 := {0}, j ∈ [1,M ] (III.9)

F
j

l+1 :=
⋃

(s,j,σ)∈E

conv(AσF
s

l ⊕Wσ), j ∈ [1,M ]. (III.10)

Theorem 2:Consider the multi-set sequences (III.4),
(III.5) and (III.4), (III.5). Under Assumptions 1-3, the fol-
lowing hold.

(i) conv(F j
l ) = conv(F

j

l ), ∀l ≥ 0, ∀j ∈ [1,M ].
(ii) Let α := min {α : W⋆ ⊆ αB(1)}. Then, For anyǫ >

0 and l ≥
⌈

logε

(

ǫ(1−ε)
αΓ

)⌉

the relationconv(F
j

l ) ⊆

conv(F
j

∞) ⊆ conv(F
j

l )⊕B(ǫ) holds, for allj ∈ [1,M ].
(iii) The multi-set{conv(F

j

∞)}j∈[1,M ] is the minimal con-
vex invariant multi-set with respect to the System (II.1)-
(II.3) and the constraints (II.5).

The proofs are omitted for brevity: Theorem 2(i) follows
similar steps as in [16, Section 3], [5, Proposition 1], while
Theorem 2(ii), (iii) can be shown using the same arguments
as in Theorem 1(ii), (iii) and the fact that the Minkowski
sum and convex hull operations commute.

Running Example Part 2:We compute anǫ– approxima-
tion of the minimal invariant multi-set{F

1

m,F
2

m}, when
W1 = [−0.1, 0.5] and W2 = [−0.5, 0.1] and by setting
ǫ = 10−3. Assumptions 2 and 3 hold and relation (III.3)
of Lemma 1 is satisfied withΓ = 32.49, ε = 0.8123. From
Theorem 1(ii), we obtainl ≥ 55, thus, we compute the10−3–
approximation{F55

1 ,F55
2 } = {[−0.85, 0.65], [−1.4, 2.2]}.

B. The maximal invariant multi-set

First, we show that all trajectories of the System (II.1)-
(II.3) converge exponentially to the minimal invariant multi-

set{Sj
m}j∈[1,M ]

Lemma 2:Let (x(·), y(·)) be any solution of the System
(II.1)-(II.3) subject to the constraints (II.5). Under Assump-
tions 2, 3, for any initial condition(x(0), y(0)) and any given
ǫ > 0, there exists an integerl⋆ such that

d(x(t),Sy(t)
m ) ≤ ǫ, (III.11)

for any t ≥ l⋆, where{Sj
m}j∈[1,M ] is the minimal invariant

multi-set.
The proof of Lemma 2 is based on decomposing the trajec-
tory of the system in two parts, one of which is vanishing
exponentially and the other is included in the minimal
invariant multi-set. It is omitted due to space limitations.

Given an integerσ ∈ [1, N ] and a setS ⊂ Rn, we define
the mapping

C(σ,S) := {x : Aσx+ w ∈ S, w ∈ Wσ}. (III.12)

Consider the state constraint setX ⊂ Rn. We define the
sequence of multi-sets{Sj

l }j∈[1,M ], l ≥ 0 as follows

Sj
0 = X , j ∈ [1,M ] (III.13)

Sj
l+1 =





⋂

(j,d,σ)∈E

C(σ,Sd
l )





⋂

Sj
0 , j ∈ [1,M ]

(III.14)

Theorem 3:Consider the System (II.1)-(II.3) subject to
the constraints (II.4), (II.5). Suppose that Assumptions 1-
3 hold, and moreover,Sj

m ⊆ int(X ), j ∈ [1,M ], where
{Sj

m}j∈[1,M ] is the minimal invariant multi-set. Consider the
sequence of multi-sets (III.13), (III.14). Then, there exists an
integerk ≥ 0 such that
(i) Sj

k+1
= Sj

k
, for all j ∈ [1,M ].

(ii) The multi-set {Sj

k
}j∈[1,M ] is the maximal admissible

invariant multi-set with respect to the System (II.1)-
(II.3) subject to the constraints (II.4), (II.5).
Proof: (i) The proof uses Lemma 2. In specific, under

Assumption 3 and [4, Corollary 2.8], there exist scalars
Γ ≥ 1, ε ∈ [0, 1) such that|x(t)| ≤ Γεt|x(0)|. Under
Assumption 1, there exist scalarsR, r such thatR :=
min{R : X ⊆ B(R)}, r := max{r : B(r) ⊆ X}. Then,
setting k = ⌈logε

r
RΓ⌉, it follows that x(0) ∈ X implies

x(t) ∈ X , for all t ≥ k, for all y(0) ∈ V . Let us assume that
x(0) ∈ S

y(0)

k
but x(0) /∈ S

y(0)

k+1
. Then,x(k + 1) /∈ X which

is a contradiction. Thus,Sy(0)

k+1
⊇ S

y(0)

k̂
. Taking into account

that Sj
l+1 ⊆ Sj

l holds by construction for allj ∈ [1,M ],
l ≥ 0, the result follows.
(ii) We can take similar steps as in the proofs of standard
results concerning the linear case or the case of arbitrary
switching, e.g., [17]: From (i), it follows that{Sj

k
}j∈[1,M ] is

an admissible invariant multi-set. Let us suppose that there
exists an admissible invariant multi-set{Mj}j∈[1,M ] and an
index j⋆ for whichMj⋆ * Sj⋆

k
. Then, for allx(0) ∈ Mj⋆ \

Sj⋆

k
, y(0) = j⋆, it follows thatx(k) /∈ X and{Mj⋆}j∈[1,M ]

is not admissible, which is a contradiction. Thus,Mj⋆ ⊆
Sj⋆

k
and {Sj

k
}j∈[1,M ] is the maximal admissible invariant



multi-set with respect to the System (II.1)-(II.3) subjectto
the constraints (II.4), (II.5).
It is worth noting for Theorem 3 that for the disturbance-
free linear system under constrained switching, Assumption
1 can be weakened by replacing convexity with basic semi-
alegbraicity. For more details we refer to [18]. The following
is a direct consequence of Theorem 3.

Corollary 1: Consider the System (II.1)-(II.3) subject to
the constraints (II.4), (II.5). Let{Sj

M}j∈[1,M ] be the maximal
admissible invariant multi-set andY ⊆ V be a set of nodes
of the graphG(V , E). Then, the maximal safe setSY with
respect to the System (II.1)-(II.3), the constraints (II.4), (II.5)
and with respect toY ⊆ V is SY =

⋂

j∈Y

Sj
M .

Running Example Part 3:We compute the maximal in-
variant multi-set{S1

M ,S2
M} whenW1 = [−0.1, 0.5], W2 =

[−0.5, 1] and the constraint set isX = [−2.5, 2.5]. Since
all Assumptions 1-3 hold, and moreover,Sj

m ⊆ int(X ),
j = 1, 2, from Theorem 3 the set sequence (III.13), (III.14)
converges in finite time. Indeed, the maximal invariant multi-
set is retrieved after three iterations (i.e.,k = 3), with
S1
M = [−1, 0.95], S2

M := [−2, 2.5].

IV. CASE STUDY: M INIMUM DWELL TIME

Let us consider the system in the first example of [12,
Section 4] that concerns a linear system which switches
between two modes with minimum dwell timeτ = 15. The
corresponding graphG(V , E) that captures such constraints
is in Figure 2 and the corresponding constrained switching
system is of the form (II.1)–(II.3) with the additional con-
straint y(0) ∈ {1, 16}. Although one can utilize directly
Theorems 1 and 2 in Section III to compute the minimal
and maximal invariant multi-sets, in this section we further

1

2 · · · 15

16

17· · ·30

1

1 1

1

2

22

2

2
1

Fig. 2. Example from [12, Section 4], the corresponding graph G(V , E)
describing the admissible switching sequences constrained by the dwell time
requirements.

refine the obtained results by observing that the computation
of the aforementioned multi-sets can be done using a reduced
graph. In detail, this graph consists only of a subset of the
initial nodes, namely the set of unavoidable nodes.

Definition 6: Given a graphG(V , E) and an integerm ≥
1, the set of nodesY ⊆ V is calledm-unavoidableif any
path of lengthm passes through a nodev ∈ Y at least once.
If m ≥ V , whereV is the number of nodes ofG(V , E), the
setY is simply calledunavoidable.
In the setting studied here, the number of unavoidable nodes
is equal to the number of modes. Thus, we can define the

1 16

1τ

2τ

21

Fig. 3. Example from [12, Section 4], the reduced graphG(Y , Ê), with
Y = {1, 16} being the set of15-unavoidable nodes ofG(V , E). The labels
1τ and 2τ correspond to the dynamics produced by composition of the
dynamics of mode1 and2 of the original systemτ times consecutively.

Reduced System, which is a system of the form (II.1)–(II.3),
with the set of matriceŝA = A∪{Aτ

i }i∈[1,N ] and the set of
disturbance setŝW = W ∪ {⊕τ−1

j=0A
j
iWi}i∈[1,N ]. We define

also the set of labelsΣ = {1, ..., N}∪{1τ , ..., Nτ}, whereiτ
corresponds to the mapping generated by the composition of
the i-mode dynamics forτ times. Accordingly, theReduced
Graph related to the Reduced system is a fully connected
graphG(Y, Ê), where each nodeyi ∈ Y corresponding to
mode i of the original system has a self-loop with labeli
and is connected to all other nodes with the labeliτ .

When studying the nominal part of the System (II.1)-
(II.3), it is known, see e.g., [6], that the stability prop-
erties of any two systems whose related graphs produce
the same admissible switching sequences of infinite length
coincide. Motivated by the above, we extend this reasoning
by firstly computing the maximal and minimal invariant
multi-set of the Reduced system and secondly by associating
it with the corresponding notions of the original system via
a simple transformation. We denote byR

(

{σi}i∈[0,p],S
)

the (p + 1)-step forward map from the setS under the
switching sequence{σi}i∈[0,p], i.e., R

(

{σi}i∈[0,p],S
)

=
p−1
⊕

j=0

(
∏p−1−j

i=0 Aσp−1−i
Wσj

)⊕(
∏p

i=0 Aσp−i
S)⊕Wσp

. Analo-

gously, we denote byC({σi}i∈[0,p]) the(p+1)-step backward
map to the setS. To further simplify notation, given a source
node s ∈ V and a destination noded ∈ V of the graph
G(V , E), we denote the ordered sequence of the labels of the
path froms to d asσ(s, d) and the ordered sequence of the
nodes present in the path froms to d asm(s, d).

Let {Ŝi
m}i∈Y be the minimal invariant multi-set for the

Reduced system. Then, the minimal invariant multi-set for
the System is{Si

m}i∈[M ], whereSj
m = Ŝj

m, for all j ∈ Y

andSj
m =

⋃

s∈Y

R(σ(s, j), Ŝs
m), for all j ∈ V \ Y.

Similarly, let {Ŝi
M}i∈Y be the maximal invariant multi-

set for the Reduced system. Then, the maximal invariant
multi-set for the System is{Si

M}i∈[M ], where Sj
M =

⋂

d∈Y

((

⋂

{i∈m(j,d)}

C(σ(j, i),X )

)

∩ C(σ(j, d),Sd
M )

)

∩ Sj
M ,

for all j ∈ Y and

Sj
M =

⋂

d∈Y

((

⋂

{i∈m(j,d)}

C(σ(j, i),X )

)

∩ C(σ(j, d),Sd
M )

)

∩

X , for all j ∈ V \ Y.
It is worth observing that in the general case the reduced

graphG(Y, Ê) consists ofN nodes andN2 edges, which are
significantly less than theN(N − 1)(τ − 1) +N nodes and



N(N − 1)τ +N edges of the original graphG(V , E).
Example 1:We consider the first example in [12, Section

4] that concerns a switching system with two modes, i.e.,
A := {A1, A2}, with A1 =

[

1 0.1
−0.2 0.9

]

, A2 =
[

1 0.1
−0.9 0.9

]

,
W1 = W2 = {0}, under minimum dwell time constraints
with τ = 15 and state constraints the unit boxX = B∞(1).
The reduced graphG(Y, Ê) is shown in Figure 3, where
Y = {1, 16}. Using the results of Section IV, we compute the
maximal invariant multi-set{Si

M}i∈V in 0.07 seconds. The
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Fig. 4. Example 1, the setsS⋆ = ∪i∈VS
i

M
(grey), the maximal safe w.r.t.

the set of unavoidable nodesY (blue), the setsS1

M
,S16

M
(white) and the

constraint setX (dark grey).

maximal safe setSY = ∩i∈YSi
M with respect to the nodes

Y = {1, 16} recovers the maximal Dwell Time invariant set
of [12].

Additionally, in the proposed framework, more refined
notions of invariance can be formulated; for example, the
maximal safe set is a15-returnable set with respect to itself
and the setY, while S1

M ∪ S16
M is a 1-returnable set with

respect toS1
M ∩ S16

M and the setY.

V. CONCLUSIONS AND FUTURE WORK

Invariance and constraint satisfaction for switching sys-
tems have attracted much attention in the literature. One
reason is that, even though these systems are extremely hard
to study, classical results show that invariant sets and safe
sets are algorithmically computable (under the assumption
of stability for the nominal system). In this work, we have
generalized these notions to constrained switching systems.
We showed that the invariance notion must be replaced
by a finer notion, namely an invariant multi-set, while the
maximal safe set is given by the union of the individual sets
in the maximal invariant multiset. As an application of our

results, we showed that they can be translated into efficient
algorithms for dwell time specifications.
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