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On the Construction of Invariant Proper C—polytopic Sets
for Continuous-time Linear Systems

Nikolaos Athanasopoulos, Mircea Lazar, and George Basori

Abstract— This paper presents a method for iteratively reachability) sets [13], [14]. Moreover, this approach can
enlarging a given invariant (contractive) proper C—polytopic  pe translated t@ontinuous—timdinear systemsia discrete
set for continuoustime linear systems. It is proven that the 555 0ximations such as the exponential discretized system
proposed algorithm generates a monotonic sequence of invar . .
ant (contractive) proper C—polytopic sets. The distinguishing [12] or the Euler approximating system [6_]' To the be_St of .the
feature of the algorithm is a novel, geometric approach to authors’ knowledge, a method for enlarging a given invarian
the set expansion problem. Several examples demonstrateeth (contractive) prope€—polytopic set, which does not involve
effectiveness of the proposed method. discrete approximations, is not available for continudinse-

linear systems.

Therefore, this paper proposes a novel, geometric ap-

A problem of interest in stability analysis of linear system proach to the set expansion problem for continuous-time
in the presence of hard state constraints is the computatithear dynamics. Given an invariant (contractive) proger
of the admissible, with respect to constraints, domain djolytopic subset of a desired set of initial conditions, we
attraction. This problem is relevant in several appliaasio provide an iterative algorithm that generates a monotoni-
which include determining whether a desired set of initia¢ally increasing (with respect to set inclusion) sequerfce o
conditions belongs to the admissible domain of attraction.admissible invariant (contractive) prop€rpolytopic sets.

It is well known [1] that invariant (contractive) subsets ofEssentially, for each hyperplane of a previously computed
the admissible state—space provide an approximation of tHevariant properC—polytopic set, the algorithm returns a
admissible domain of attraction. As such, constructionrof avector which is not in the interior of the set. Moreover,
invariant set is the typica| approach to So|\/ing the abovéhe convex hull of the new vector and the vertices of the
mentioned problem. In numerous real—life applicatiorstest Set is preserving the invariance (contractivity) propefty
constraints are specified by bounded polyhedral sets, whidAvolved operations come down to solving a sequence of
in the linear case, can be equivalently formulatéaiproper low—complexity linear programs, which makes the developed
C—polytopic sets, i.e., bounded and closed polyhedral sedgorithm computationally efficient.
that contain the origin in their interior. Several methods Remark 1:The proposed geometric approach to the set
are available in this case to construct an admissible invag@xpansion problem is also valid for discrete—time linear
ant properC—polytopic set for both continuous—time andsystems. Improved results in terms of the expansion rate,
discrete—time linear systems [1]. Most of these methods c&@mpared to the classical controllable sets approach, were
be related to the algebraic necessary and sufficient conditi reported in [15], [16].
originally proposed by the authors of [2] in 1986, see, for ex The remainder of the paper is structured as follows.
ample, [3]-[8]. Recently, alternative algebraic necessand Notation and basic definitions are introduced in Section I
sufficient conditions for construction of invariant proggs along with the problem formulation. Section Il presents
polytopic setsvia proper conic partitions [9] and polyhedral preliminary technical results that will be instrumental in
Lyapunov functions [10] were proposed. establishing the properties of the proposed method. Tha mai

However, these methods typically generate invariarlgorithm along with the properties of the resulting seqeen
properc_po|ytopic sets of an arbitrary Shape’ which ma}ﬂf sets are described in Section IV. Several examples illus-
result in a conservative approximation of the admissiblate the effectiveness of the proposed approach in Seetion
domain of attraction, with respect to a given pror{e.r while conclusions are summarized in Section VI.
polytopic set of initial conditions of interest. That is why
in light of the considered problem, it is of further interést
monotonically enlarge a given, invariant (contractive)ger

|. INTRODUCTION

II. NOTATION, BASIC DEFINITIONS AND
PROBLEM FORMULATION

C—polytopic set. This is possible fodiscrete-timelinear ¢ The field of reals and the sets of non-negative reals
systems by means of iterative computation of (forward) ~and non-negative integers are denotedrhyR ,, and
reachability sets [11], [12], or controllability (backvear N respectively. _
o For everyc € R andII C R we definells. := {k €
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the i—th row and[A].; € R™ denotes thg—th column. Moreover, we study the case when the state vector is
For matricesA, B € R"*™, by A < B we denote the confined in a prope€—polytopic setS,:

corresponding set of componentwise scalar inequalities

[A];; < [B];; for all (4,5) € Njjo) X Nppp- Sy ={r € R": Gox <1, } = convh({[Vi]ei }ien,,.,,,)

The vector with all its elements equal to one is denoted (2

by 1,, € R”, then x m real matrix with all its elements for some suitable matrices, € RP=*" andV, € R"*%.

equal to zero is denoted Ity, ..., and then x n identity Definition 1: Given system (1), a prop€rpolytopic con-
matrix is denoted by, . straint setS, and a scalae € Rx, the setS is called

A matrix A € R*"*" js called aMetzler matrix if its admissible contractive with contraction facteior simply e-
non-diagonal elements are nonnegative, {.4];; > 0, contractiveif and only if zo € S implies z(t;z¢) € e ets,

for all 7 # j. for all t € R>,. When the previous relation holds with
Given a setS C R™ and a real matrixA of compatible ¢ =0, the setS is calledpositively invariant

dimensions (possibly a scalar), the imageSofinder A Next, we formally state the problem addressed in this
is denoted byAS := {Ax :z € S}. paper.

A setS C R" is called a prope€-set if it is convex, Problem 1: Given system (1), a propé&l—polytopic con-

compact and contains the origin in its interior.p8ly-  straint setS, ¢ R™ and a propef—polytopice—contractive
hedronis the (convex) intersection of a finite numberset S, c S,, compute a sequence of prop@rpolytopic
of open and/or closed half-spaces angadytopeis a  sets{S, };cn., such that the following relations hdidor all

closed and bounded polyhedron. 1€ N: -

LetP C R" denote the set of all prop€r-polytopic sets. We 1) S; C S;,1;
consider both the half-space and the vertex representation 2) s, C S, ;

properC—polytopic sets. More specifically: 3) S; is a properC—polytopic set;
The half—space representation of an arbitrary praper 4) S; is ane—contractive set.
polytopic set is given by A sequence of set§S; }ien., that satisfies propertiely—
4) specified in Problem 1 is called admissible sequence
S={zeR": Gz <1,}, of sets for system (1)

We

described by linear differential equations

where G € RP*" is a full column—rank matrix
€ p e IIl. PRELIMINARY RESULTS

N2n+l-
Given a prope€—polytopic setS, the mapping’ : P = In this section we present some results that are necessary
R™, with V(S) = {vi}ieny,,,, gives the vertices of.  for the development of the algorithmic procedure that solve
The vertex—representation 6fis given by Problem 1. The following theorem presents necessary and
sufficient conditions for a prop&f—polytopic set to be—
S := convh({vi}ien; ), contractive with respect to (1) and it is important for the
for someq € Nons1. LetV iz [ur, v, . .., vg] € RPX4 ](cjoeunr:/;tilrc])rfl?'f the main results. All relevant details can be

and note thal” has full row—rank.

Given any two arbitrary setS§;, S; C R", the relation
Sy C & holds if z € S implies z € S; and there
exists at least on¢ € S; such thatf ¢ Ss.

The convex hull of a propef—polytopic setS and a
vector¢ € R™ is denoted byS¢ := convh({V(S), £}).
Observe thatS¢ is also a prope€—polytopic set and, AV = VP (3a)
moreover,S C S¢ for all £ ¢ S.

- - N it intarior i 17'p < —c1?. (3b)
Given an arbitrary se$ C R", its interior is denoted by e q ) ! )
interior(S) and its closure is denoted hjosure(S). The next result will provide the mechanism for the iterative

i ; i i i ‘ enlargement of am—contractive set.
consicer: autonomous finear. continuous-imeé Systems) emma 1: Consider ane—contractive prope€—polytopic
setS with respect to system (1) and constraints (2), and a
#(t) = Ax(t), (1) vectorv € S,. Then, the setS” = _convh({V(S),v}) is
e—contractive if and only if there exist a real scajaand a

Theorem 1: [1] Consider system (1) subject to the state
constraints (2). LetS C S, be an arbitrary prope€—
polytopic set and let € R>. Then,S is ane—contractive
set if and only if there exists a Metzler matrix € R9*4¢
such that

wherez € R is the state vectord € R"*" and¢ € honnegative vectop € R? such that
R, denotes the continuous time. Given an initial condition

x(to) = x0, to € Ry, let x(t;20), t € Rpy,.o0) denote the

Av=Vp+pv (4a)

solution of system (1). The standing assumption throughout 1'p+p<—e (4b)
this paper is the following:
Assumption 1:System (1) is asymptotically stable. 1The case wheré = oo is excluded.



Proof: SinceS is e-contractive, there exists a Metzler The next straightforward Fact will be used to obtain the
matrix P € R"*? such that relations (3a) and (3b) hold. Letmain result.

P* ¢ RlatD)x(a+1), Fact 1: Consider a propef—polytopic setS and a vector
p x ¢ interior(S). Let a; := [Gliex, for all i € N1,y Then,
P = [ 0 g } there exists at least one indéxe N|;.;, such thaty;-> 1.
1xgq

Moreover, if z ¢ closure(S), there exists at least an index
andV* := [V v]. Taking into account relations (4a) and (4b),i* € Nj;.,; such thato;. > 1.

it follows that conditions (3) of Theorem 1 are also satisfied
for SV, with P = P*, V = V*. Moreover,S* C S, since
veS,andS C S,. Thus,S” is also ans—contractive In this section we utilize the results of Section IlI in

set. Conversely, ifS” is e-contractive, there exists a matrix order to provide an algorithm which returns an admissible
P € R+Dx@+1) satisfying conditions (3) with/ = Vv*.  Sequence of sets for system (1). First, we formulate the

Then, relations (4) are satisfied with= [P](,,1). and 5 = following problem: .
[p]( et Problem 2: Given system (1), a propé&l—polytopic con-
q q+1)- ; :
The next result concerns the enlargement procedure grjfaint Set_S”' a scalarg < fRzg',a properC—poIIytopAc
will be performed at each iteration of the algorithm: e-contractive sebtf, and a fixedj < Ny, solve the
Lemma 2:Let S; C S,, for all i € Nyj.p, M € N>y, optimization problem

IV. MAIN ALGORITHM

be ane;,—contractive prope€—polytopic set for system (1), max {[G]jev"}
wheree; € Ry, for all i € Nj;.pz). Then, the set v7.Pj:Pj
subject to
S = COth({V(Si)}iGN[I:]\/I]) A’U'j — ij +]3jvj (5a)
is an s—con.tractwe propec—polytopic set for system (1), 1quj +p; < — (5b)
with & := min {&;}. .
Proof: By definition, S = convh({V(S:) }ieny,.,y) = Gov? <1, (5¢)
convh({v} }ien,.p,jen.,,,)- THUS,S is @ polytopic set. pj > 0,. (5d)
Moreover,S contains the origin in its interior sincg; C
S, for all i € Npy.,, and eachsS; is a properC—set. Also, Lemma 3:There exists a vectaf € S, \ S such thatS*

S C 8, since relation{v} }ieny,.,.jeny.,,, S Se implies is ane—contractive set if and only if there exists an index

convh({v} }ien, u)jeNng,) C Se- Next, let the matrices & € Ny, such that{Glrev™ > 1, wherev’*, for all j €

Vie R4, § ¢ Nii:a7 be defined by[Vie; := v; i € Np,y, denotes the optimal solution of Problem 2.

Niias § € Njpg,p and letV = [V V2.V Proof: Suppose the vector** € R™ is the solution
In order to prove the contractivity property, we show thadf Problem 2 satisfyindG]i,v** > 1, for an indexk €

for the matrix/ € R™*4 there exist a matri> € R?7*¢ and Ny Since (5¢) is satisfied with = vF*, it follows that

a scalare € R such that the relations (3a) are satisfiedv** € S.. Moreover, according to Fact 1, sin@@]..v"* >

Indeed, since each; is ¢;—contractive, there exist Metzler 1, k € Ny, it follows thatv** ¢ S. Thus,v™ € S, \ S.

matricesP? € R%*%, i € Ny, such thatdV? = VP’ Since relations (5a), (5b) and (5d) are satisfied, theset

and 1£Pi < —5i1qTi. Consequently, it follows that is an e-contractive set according to Lemma 1. Conversely,
N v consider a vecto€ € S, \ S such thatS¢ is e—contractive.
AV =A[V VELVE According to Fact 1, there exists an indexc Nj;.,,) such
=[AV' AVZ .. AVM] that [G]re¢ > 1. Next, consider the set of constraints (5)
—[Vipl v2p? | yMpM)_yp, and Ietj_ = k. Accor.ding to Lemma 1, sipc§f is ane—
contractive set, relations (5a),(5b) are satisfied with= €.
where P is the block diagonal matrix Also, since¢ € S,, relation (5c¢) is satisfied. Hence, the
p 0 vector ¢ is a feasible solution of the constraints (5). Thus,
Tt Taixau the optimization problem (3) has an optimal solutiofr
P = : : : such thatlG)rev" > [G]re& > 1. ]
Ogprxqn --- PM The significance of Lemma 3 lies in the fact that existence

of a nontrivial solution of Problem 2 is necessary and

By construction,P is a Metzler matrix. Moreover, sufficient for the expansion of a-contractive set by adding

17p =17 pt 1% p? . 1T PM) a vertex to its convex hull. . _
- 1T 1T 17 The iterative method producing the sequence of sets is
<[-e1ly —ealg, ... —enly,,] presented in an algorithmic structure Agorithm 1
< —min {ei}1]. Remark 2:Problem 2 is feasible for alj € N, and

_ ) _ _ forall i € N>;. In fact, for eachj € Ny, the set
Thus, according to Theorem 1§ is e—contractive with {z € S; : [Gi];ex = 1} belongs to the feasible solution

contraction factoe = min {e;}. B set. Also, it is worth noticing that the optimization critam



Algorithm 1 Input : System (1), state constraint sét, (o the problem considered. We examine the following two
scalare RZO' properC—pOIytOpIC e—contractive setSy. frequent|y encountered cases:

Output: sequence of set§S; }ien., - a) Approximation of the domain of attractiot is well
10+ 0 known that the domain of attraction coincides with the
2 f+1 maximal positively invariant set for linear continuousié
3: while f =1 do systems. Thus, to obtain an approximation of the domain of
4. forall j €Ny, do attraction, one can apply Algorithm 1 starting from a given
5: v7* « solution of Problem 2 properC—polytopic positively invariant set and settiag= 0.

6: end for In this case, the finite termination is not guaranteed. Thus,
7. Sip1 < convh({V(S;), {vﬂ'*}jeN[l:pi] b maximum number of iteration¥,,,, as an additional termi-

8 if S;41 = S; then nation criterion can be introduced. Alternatively, Algarm

9 f«0 1 can be terminated when a distance function between two

10: else consecutive sets of the sequence is less than a prespecified
11: 1 1+1 valued € R.. We propose the Hausdorff distance, denoted
12:  end if asdistH(S;, Si+1), ¢ € N>q. For each paifS;, S;+1) of the
13: end while sequence, it is easy to show that

distH(S;, Si+1) _JEHNlﬁ)z | keI\IIEl£+]] 1[Viles — [Vig1lorll o

as well as the optimization constraints (5b),(5c) and (%d) a

linear. Nevertheless, the equality constraint (5a) ineslthe :Jen&lﬁf ] kelﬁyl[m H
product of the scalap;, < 0 and the vecton’. However,
Problem 2 can be reduced to a sequence of linear progra
by fixing the variables’: Initially, a feasible solution can be
found by settingy’ to be sufficiently small. The cost function
is increased iteratively using a standard line search glfgor
by changing the value g# and solving the corresponding
linear program.

Theorem 2:Consider system (1), a propérpolytopic
constraint setS,, a scalare € R, and a properC—
polytopic e—contractive seS,. Then, Algorithm 1 produces
an admissible sequence of sgi$; };cn., for system (1).

Proof: By definition of the convex hull, the following
holds, for alli € N:

’Uk*H

fpe all i € N, wherev*™, k € Ni1.p,), are the corresponding
solutions of Problem 2. Thus, checking the termination
criterion distH(S;,S;+1) < d is equivalent to solving a
single linear program.

b) Stability analysis of an assigned set of initial con-
ditions This case can be considered as the autonomous
continuous-time version of the problem studied in [17]:
Given a continuous-time linear system (1), a proger
polytopic constraint sef, and a propef—polytopic initial
condition setSy, the problem consists in determining if
Sz, belongs to the admissible domain of attraction. For
the case of linear continuous-time systems and taking into
account Assumption 1, it follows tha$,, belongs to the

Sit1 =convh({V(S;), {v"* }jeny, P admissible domain of attraction if and only if there exists
:Coth({V(Si)avj*}jeN1:;,.]) a positively invariant prope€—setS that satisfies the set
x relationS,, € S C S,. Thus, one can employ Algorithm
=convh({V(8/" )}jen,,, ) (6) 1 with the additional inputSy and stop wherS, C S,. For

By definition of Sa* for all j € Ny, it follows that properC—polytopic sets, checking this termination criterion
S; C Sis1, for all i € N. Thus, propertyl) holds. Moreover, is equivalent to solving a linear program by directly apptyi

due to (5¢c), it follows thathv{* < 1, for all i € N, the extended Farkas’ Lemma [18]. _
j € Npi.p,1. SinceS, C S, we obtainS; C S, foralli € N Remark 3:The developed results and algorithm can be
D = T (2 T .

Thus, bfopertﬂ) holds. SinceS, is a properC—polytopic extended to polytopic differential inclusions of the form

set, propertyl) further yields that) € interior(S;), for all i(t) € ®(x(t)), @)

1 € N. Furthermore, by (6)S; is a polytopic set, hence a

properC-polytopic set for ali € N. Thus, propertg) holds. Where® : R" = R™,

Lastly, note thatS, is ane-contractive set and supposg is L ) LY

e-contractive also. Observing that the s&i§, j € Ny, (e) = {4z : A € convh({Ai})ienian}

are propeC—polytopice-contractive sets and combining (6) A; € R"*", for all i € N5, M € N>;. Notice that an
and Lemma 2, it follows thaf;,; is also anc—contractive admissible sequence of sets for system (7) is also adnéssibl
set. Hence, it follows by induction that propedy holds. for the corresponding continuous-time switched systerh wit
Thus, the set sequenéé, };cn., is an admissible sequencearbitrary switching. Equivalently to Assumptioh system

of sets for system (1). - m (7) is considered to be asymptotically stable.

The algorithm terminates if there exists &he N> such It has been shown (see e.g. [1]) that a propepolytopic
thatSy11 = Sy. Nevertheless, artificial termination criteriaset ise—contractive for system (7) if and only if the con-
can be introduced in order to ensure finite terminatiorditions of Theorem 1 are satisfied for each vertéx i €
Employment of different criteria can be made according;. s, of the matrix polytopeonvh({A;})ien,.,,- Taking



this into account and modifying Lemma 1 and Lemma 2 1
mutatis mutandisit is straightforward to obtain the corre-
spondent of Lemma 3. We state the following problem:

Problem 3: Given system (7), a propé&l—polytopic con-
straint setS,, a scalare € R>(, a properC—polytopic e—
contractive sef, and a fixedj € Ny;.,;, compute the solution
of the optimization problem

0.8

. max {[G]jev7} -04

vd,ph, Pk IEN. M) 06

subject to -08
A =Vl +pjv’, VI € Njwg e '

1qu§- +Z7§- < —¢, VI €N

Gl <1 Fig. 1. State constraint s& (grey), starting positively invariant sely
rr = TPz (blue), and the last element of the admissible sequencet &¥sge(yellow).

ps > 04, VI €Ny

Lemma 4:There exists a vectdr € S, \ S such thatS¢ is
ane—contractive set for system (7) if and only if there exists
an indexk € Nj;,,; such that{G]rev** > 1, wherev?*, for
all j € Njp,,, denotes the optimal solution of Problem 3.
For brevity, the proof of Lemma is 4 omitted. An immediate o
consequence of this result is that Algorithm 1 can be used 02
for system (7) with a single modification concerning the &
computation of the new vecto(s;j*}ieN[l:pi], which in this
case is given by the optimal solution of Problem 3 instead
of Problem 2.

Remark 4:The developed results and algorithm can be
also modified in a straightforward manner to deal with o
continuous-time non autonomous linear systems with addi- e
tive disturbances.

V. ILLUSTRATIVE EXAMPLES
. . . . Fig. 2. Trajectories of the system (Example 1) starting fritve vertices
Example 1We consider the linear continuous-time systen@,fgsetsgo_ : Y ( ple 1) 9

(1) with system matrix

-0.1 1.0 . . .
A= { _90 —04 ] ) Moreover, we consider a non symmetric constraint Set

described by
with eigenvalues —0.25 + 1.4062¢. Also, we assume

the properC—polytopic constraint setS,, where G, = V, = -1 -1 11 .
[IQ—IQ]T.Theinitial propelC—polytopic positively invariant -1 2 11

setSy is computed applyingthe resul.ts from [1(?]' resulting iNThe initial positively invariant setS; was taken from [10]
a symmetric propef—polytopic set with 26 vertices. Setting 3nd is shown in Figure 3 in blue. Applying Algorithm 1

¢ = 0, we aim to approximate the admissible domain 0fng setting as termination criterion the Hausdorff distanc
attraction. As artificial termination criterion, the maxim distH(S;, Si41) to be less thanl = 0.001, the algorithm

number of iterations was chosen to be equalfoApplying  terminates afters iterations. In Figure 3, the sefas is
Algorithm 1, an admissible sequence of sets is produceghown in yellow, the initial propec—polytopic positively
The last element of the sequengg has128 vertices and is  jyariant setS, is shown in blue, and the constraint s&t
shown in Figure 1 in yellow. In the same figure, the initialis shown in grey. Finally, in Figure 4 and Figure 5, the
setSy is shown in blue and the constraint s&t is shown  trajectories of initial conditions starting from the verts

in grey. _ _ of the setS,s; are shown for systems(t) = A;x(t) and
In Figure 2, the trajectories of the system are shown qu(t) = Ayx(t) respectively.

initial conditions starting from the vertices of s84.
Example 2We consider the switched linear system under VI. CONCLUSIONS

arbitrary switching, also studied in [9], [10], with matis A method for iteratively enlarging a given invariant (con-

A — 0.3 0.7 A — -1.8 1.0 tractive) properC—polytopic set forcontinuous-timdinear
7] 23 —23 72| —0.8 01 |- systems was presented. It was proven that the proposed



—05-

Fig. 3. State constraint sél, (grey), initial condition setS;, (blue), and
the positively invariant sef25 (yellow).

Sas.

(5]

(6]
(7]

(8]
El

[10]

[11]

[12]
Fig. 4. State constraint sef, (grey), the positively invariant sefs
(yellow), and trajectories for thel; dynamics starting from the vertices of

So5. [13]

algorithmic procedure generates a monotonic sequence of
invariant (contractive) prope€—polytopic sets. A formal (14]
characterization of the limit of thadmissible sequence of

setsmakes the object of future research work. 5]
15
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