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On the Construction of Invariant Proper C–polytopic Sets
for Continuous-time Linear Systems

Nikolaos Athanasopoulos, Mircea Lazar, and George Bitsoris

Abstract— This paper presents a method for iteratively
enlarging a given invariant (contractive) proper C–polytopic
set for continuous-time linear systems. It is proven that the
proposed algorithm generates a monotonic sequence of invari-
ant (contractive) proper C–polytopic sets. The distinguishing
feature of the algorithm is a novel, geometric approach to
the set expansion problem. Several examples demonstrate the
effectiveness of the proposed method.

I. I NTRODUCTION

A problem of interest in stability analysis of linear systems
in the presence of hard state constraints is the computation
of the admissible, with respect to constraints, domain of
attraction. This problem is relevant in several applications,
which include determining whether a desired set of initial
conditions belongs to the admissible domain of attraction.

It is well known [1] that invariant (contractive) subsets of
the admissible state–space provide an approximation of the
admissible domain of attraction. As such, construction of an
invariant set is the typical approach to solving the above-
mentioned problem. In numerous real–life applications, state
constraints are specified by bounded polyhedral sets, which,
in the linear case, can be equivalently formulatedvia proper
C–polytopic sets, i.e., bounded and closed polyhedral sets
that contain the origin in their interior. Several methods
are available in this case to construct an admissible invari-
ant properC–polytopic set for both continuous–time and
discrete–time linear systems [1]. Most of these methods can
be related to the algebraic necessary and sufficient conditions
originally proposed by the authors of [2] in 1986, see, for ex-
ample, [3]–[8]. Recently, alternative algebraic necessary and
sufficient conditions for construction of invariant properC–
polytopic setsvia proper conic partitions [9] and polyhedral
Lyapunov functions [10] were proposed.

However, these methods typically generate invariant
properC–polytopic sets of an arbitrary shape, which may
result in a conservative approximation of the admissible
domain of attraction, with respect to a given properC–
polytopic set of initial conditions of interest. That is why,
in light of the considered problem, it is of further interestto
monotonically enlarge a given, invariant (contractive) proper
C–polytopic set. This is possible fordiscrete–timelinear
systems by means of iterative computation of (forward)
reachability sets [11], [12], or controllability (backward
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reachability) sets [13], [14]. Moreover, this approach can
be translated tocontinuous–timelinear systemsvia discrete
approximations such as the exponential discretized system
[12] or the Euler approximating system [6]. To the best of the
authors’ knowledge, a method for enlarging a given invariant
(contractive) properC–polytopic set, which does not involve
discrete approximations, is not available for continuous–time
linear systems.

Therefore, this paper proposes a novel, geometric ap-
proach to the set expansion problem for continuous–time
linear dynamics. Given an invariant (contractive) properC–
polytopic subset of a desired set of initial conditions, we
provide an iterative algorithm that generates a monotoni-
cally increasing (with respect to set inclusion) sequence of
admissible invariant (contractive) properC–polytopic sets.
Essentially, for each hyperplane of a previously computed
invariant properC–polytopic set, the algorithm returns a
vector which is not in the interior of the set. Moreover,
the convex hull of the new vector and the vertices of the
set is preserving the invariance (contractivity) property. All
involved operations come down to solving a sequence of
low–complexity linear programs, which makes the developed
algorithm computationally efficient.

Remark 1:The proposed geometric approach to the set
expansion problem is also valid for discrete–time linear
systems. Improved results in terms of the expansion rate,
compared to the classical controllable sets approach, were
reported in [15], [16].

The remainder of the paper is structured as follows.
Notation and basic definitions are introduced in Section II
along with the problem formulation. Section III presents
preliminary technical results that will be instrumental in
establishing the properties of the proposed method. The main
algorithm along with the properties of the resulting sequence
of sets are described in Section IV. Several examples illus-
trate the effectiveness of the proposed approach in SectionV,
while conclusions are summarized in Section VI.

II. N OTATION, BASIC DEFINITIONS AND

PROBLEM FORMULATION

• The field of reals and the sets of non–negative reals
and non–negative integers are denoted byR, R+, and
N respectively.

• For everyc ∈ R andΠ ⊆ R we defineΠ≥c := {k ∈
Π : k ≥ c} and similarlyΠ≤c. Given two arbitrary sets
P ,S ⊆ R, let PS := P ∩ S.

• For a matrixA ∈ R
n×m, [A]ij denotes the element

in the i–th row andj–th column,[A]i• ∈ R
m denotes



the i–th row and[A]•j ∈ R
n denotes thej–th column.

For matricesA,B ∈ R
n×m, by A ≤ B we denote the

corresponding set of componentwise scalar inequalities
[A]ij ≤ [B]ij for all (i, j) ∈ N[1:n] × N[1:m].

• The vector with all its elements equal to one is denoted
by 1n ∈ R

n, then×m real matrix with all its elements
equal to zero is denoted by0n×m and then×n identity
matrix is denoted byIn.

• A matrix A ∈ R
n×n is called aMetzler matrix if its

non-diagonal elements are nonnegative, i.e.,[A]ij ≥ 0,
for all i 6= j.

• Given a setS ⊂ R
n and a real matrixA of compatible

dimensions (possibly a scalar), the image ofS underA
is denoted byAS := {Ax : x ∈ S}.

• A set S ⊂ R
n is called a properC–set if it is convex,

compact and contains the origin in its interior. Apoly-
hedron is the (convex) intersection of a finite number
of open and/or closed half-spaces and apolytopeis a
closed and bounded polyhedron.

Let P ⊆ R
n denote the set of all properC–polytopic sets. We

consider both the half–space and the vertex representationof
properC–polytopic sets. More specifically:

• The half–space representation of an arbitrary properC–
polytopic set is given by

S := {x ∈ R
n : Gx ≤ 1p},

whereG ∈ R
p×n is a full column–rank matrix,p ∈

N≥n+1.
• Given a properC–polytopic setS, the mappingV : P ⇉

R
n, with V(S) = {vi}i∈N[1:q]

, gives the vertices ofS.
The vertex–representation ofS is given by

S := convh({vi}i∈N[1:q]
),

for someq ∈ N≥n+1. Let V := [v1, v2, . . . , vq] ∈ R
n×q

and note thatV has full row–rank.
• Given any two arbitrary setsS1,S2 ⊂ R

n, the relation
S2 ⊂ S1 holds if x ∈ S2 implies x ∈ S1 and there
exists at least oneξ ∈ S1 such thatξ 6∈ S2.

• The convex hull of a properC–polytopic setS and a
vectorξ ∈ R

n is denoted bySξ := convh({V(S), ξ}).
Observe thatSξ is also a properC–polytopic set and,
moreover,S ⊂ Sξ for all ξ 6∈ S.

• Given an arbitrary setS ⊂ R
n, its interior is denoted by

interior(S) and its closure is denoted byclosure(S).

We consider autonomous linear continuous-time systems
described by linear differential equations

ẋ(t) = Ax(t), (1)

where x ∈ R
n is the state vector,A ∈ R

n×n, and t ∈
R+ denotes the continuous time. Given an initial condition
x(t0) = x0, t0 ∈ R+, let x(t;x0), t ∈ R[t0:∞) denote the
solution of system (1). The standing assumption throughout
this paper is the following:

Assumption 1:System (1) is asymptotically stable.

Moreover, we study the case when the state vector is
confined in a properC–polytopic setSx:

Sx = {x ∈ R
n : Gxx ≤ 1px

} = convh({[Vx]•i}i∈N[1:qx]
)
(2)

for some suitable matricesGx ∈ R
px×n andVx ∈ R

n×qx .
Definition 1: Given system (1), a properC–polytopic con-

straint setSx and a scalarε ∈ R≥0, the setS is called
admissible contractive with contraction factorε or simplyε-
contractiveif and only if x0 ∈ S implies x(t;x0) ∈ e−εtS,
for all t ∈ R≥t0 . When the previous relation holds with
ε = 0, the setS is calledpositively invariant.

Next, we formally state the problem addressed in this
paper.

Problem 1: Given system (1), a properC–polytopic con-
straint setSx ⊂ R

n and a properC–polytopicε–contractive
set S0 ⊂ Sx, compute a sequence of properC–polytopic
sets{Si}i∈N≥1

such that the following relations hold1 for all
i ∈ N:

1) Si ⊂ Si+1;
2) Si ⊆ Sx;
3) Si is a properC–polytopic set;
4) Si is anε–contractive set.
A sequence of sets{Si}i∈N≥1

that satisfies properties1)–
4) specified in Problem 1 is called anadmissible sequence
of sets for system (1).

III. PRELIMINARY RESULTS

In this section we present some results that are necessary
for the development of the algorithmic procedure that solves
Problem 1. The following theorem presents necessary and
sufficient conditions for a properC–polytopic set to beε–
contractive with respect to (1) and it is important for the
derivation of the main results. All relevant details can be
found in [1].

Theorem 1: [1] Consider system (1) subject to the state
constraints (2). LetS ⊆ Sx be an arbitrary properC–
polytopic set and letε ∈ R≥0. Then,S is anε−contractive
set if and only if there exists a Metzler matrixP ∈ R

q×q

such that

AV = V P (3a)

1
T
q P ≤ −ε1

T
q . (3b)

The next result will provide the mechanism for the iterative
enlargement of anε−contractive set.

Lemma 1:Consider anε–contractive properC–polytopic
setS with respect to system (1) and constraints (2), and a
vector v ∈ Sx. Then, the setSv = convh({V(S), v}) is
ε−contractive if and only if there exist a real scalarp̄ and a
nonnegative vectorp ∈ R

q such that

Av = V p+ p̄v (4a)

1
T
q p+ p̄ ≤ −ε. (4b)

1The case wherei = ∞ is excluded.



Proof: SinceS is ε-contractive, there exists a Metzler
matrix P ∈ R

n×q such that relations (3a) and (3b) hold. Let
P ⋆ ∈ R

(q+1)×(q+1),

P ⋆ :=

[

P p
01×q p̄

]

andV ⋆ := [V v]. Taking into account relations (4a) and (4b),
it follows that conditions (3) of Theorem 1 are also satisfied
for Sv, with P = P ⋆, V = V ⋆. Moreover,Sv ⊆ Sx since
v ∈ Sx and S ⊆ Sx. Thus, Sv is also anε−contractive
set. Conversely, ifSv is ε-contractive, there exists a matrix
P̂ ∈ R

(q+1)×(q+1) satisfying conditions (3) withV = V ⋆.
Then, relations (4) are satisfied withp = [P̂ ](q+1)• and p̄ =

[P̂ ](q+1)(q+1).
The next result concerns the enlargement procedure that

will be performed at each iteration of the algorithm:
Lemma 2:Let Si ⊆ Sx, for all i ∈ N[1:M ], M ∈ N≥1,

be anεi–contractive properC–polytopic set for system (1),
whereεi ∈ R+, for all i ∈ N[1:M ]. Then, the set

S := convh({V(Si)}i∈N[1:M]
)

is an ε–contractive properC–polytopic set for system (1),
with ε := min

i
{εi}.

Proof: By definition, S = convh({V(Si)}i∈N[1:M]
) =

convh({vij}i∈N[1:M],j∈N[1:qi]
). Thus,S is a polytopic set.

Moreover,S contains the origin in its interior sinceSi ⊆
S, for all i ∈ N[1:M ], and eachSi is a properC–set. Also,
S ⊆ Sx since relation{vij}i∈N[1:M],j∈N[1:qi]

⊆ Sx implies
convh({vij}i∈N[1:M],j∈N[1:qi]

) ⊆ Sx. Next, let the matrices
V i ∈ R

n×qi , i ∈ N[1:M ] be defined by[V i]•j := vij , i ∈
N[1:M ], j ∈ N[1:qi] and letV = [V 1 V 2...V M ].

In order to prove the contractivity property, we show that
for the matrixV ∈ R

n×q there exist a matrixP ∈ R
q×q and

a scalarε ∈ R≥0 such that the relations (3a) are satisfied.
Indeed, since eachSi is εi−contractive, there exist Metzler
matricesP i ∈ R

qi×qi , i ∈ N[1:M ], such thatAV i = V iP i

and1T
qi
P i ≤ −εi1

T
qi

. Consequently, it follows that

AV =A[V 1 V 2...V M ]

=[AV 1 AV 2 ... AV M ]

=[V 1P 1 V 2P 2 ... V MPM ] = V P,

whereP is the block diagonal matrix

P =







P 1 . . . 0q1×qM

...
. . .

...
0qM×q1 . . . PM






.

By construction,P is a Metzler matrix. Moreover,

1
T
q P =[1T

q1
P 1

1
T
q2
P 2 ... 1T

qM
PM ]

≤[−ε11
T
q1
− ε21

T
q2
. . .− εM1

T
qM

]

≤−min
i
{εi}1

T
q .

Thus, according to Theorem 1,S is ε–contractive with
contraction factorε = min

i
{εi}.

The next straightforward Fact will be used to obtain the
main result.

Fact 1: Consider a properC–polytopic setS and a vector
x /∈ interior(S). Let αi := [G]i•x, for all i ∈ N[1:p]. Then,
there exists at least one indexi⋆ ∈ N[1:p], such thatαi⋆≥ 1.
Moreover, if x /∈ closure(S), there exists at least an index
i⋆ ∈ N[1:p] such thatαi⋆> 1.

IV. M AIN ALGORITHM

In this section we utilize the results of Section III in
order to provide an algorithm which returns an admissible
sequence of sets for system (1). First, we formulate the
following problem:

Problem 2: Given system (1), a properC–polytopic con-
straint setSx, a scalarε ∈ R≥0, a properC–polytopic
ε–contractive setS, and a fixedj ∈ N[1:p], solve the
optimization problem

max
vj ,pj ,p̄j

{[G]j•v
j}

subject to
Avj = V pj + p̄jv

j (5a)

1
T
q pj + p̄j ≤ −ε (5b)

Gxv
j ≤ 1px

(5c)

pj ≥ 0q. (5d)

Lemma 3:There exists a vectorξ ∈ Sx \ S such thatSξ

is an ε–contractive set if and only if there exists an index
k ∈ N[1:p] such that[G]k•v

k⋆ > 1, wherevj⋆, for all j ∈
N[1:p], denotes the optimal solution of Problem 2.

Proof: Suppose the vectorvk⋆ ∈ R
n is the solution

of Problem 2 satisfying[G]k•v
k⋆ > 1, for an indexk ∈

N[1:p]. Since (5c) is satisfied withv = vk⋆, it follows that
vk⋆ ∈ Sx. Moreover, according to Fact 1, since[G]k•v

k⋆ >
1, k ∈ N[1:p], it follows that vk⋆ /∈ S. Thus,vk⋆ ∈ Sx \ S.
Since relations (5a), (5b) and (5d) are satisfied, the setSv

k⋆

is an ε-contractive set according to Lemma 1. Conversely,
consider a vectorξ ∈ Sx \ S such thatSξ is ε–contractive.
According to Fact 1, there exists an indexk ∈ N[1:p] such
that [G]k•ξ > 1. Next, consider the set of constraints (5)
and let j = k. According to Lemma 1, sinceSξ is an ε–
contractive set, relations (5a),(5b) are satisfied withvi = ξ.
Also, sinceξ ∈ Sx, relation (5c) is satisfied. Hence, the
vector ξ is a feasible solution of the constraints (5). Thus,
the optimization problem (3) has an optimal solutionvk⋆

such that[G]k•v
k⋆ ≥ [G]k•ξ > 1.

The significance of Lemma 3 lies in the fact that existence
of a nontrivial solution of Problem 2 is necessary and
sufficient for the expansion of anε–contractive set by adding
a vertex to its convex hull.

The iterative method producing the sequence of sets is
presented in an algorithmic structure inAlgorithm 1.

Remark 2:Problem 2 is feasible for allj ∈ N[1:pi] and
for all i ∈ N≥1. In fact, for eachj ∈ N[1:pi], the set
{x ∈ Si : [Gi]j•x = 1} belongs to the feasible solution
set. Also, it is worth noticing that the optimization criterion



Algorithm 1 Input : System (1), state constraint setSx,
scalarε ∈ R≥0, properC–polytopic ε–contractive setS0.
Output: sequence of sets{Si}i∈N≥1

.

1: i← 0
2: f ← 1
3: while f = 1 do
4: for all j ∈ N[1:pi] do
5: vj⋆ ← solution of Problem 2
6: end for
7: Si+1 ← convh({V(Si), {v

j⋆}j∈N[1:pi]
})

8: if Si+1 = Si then
9: f ← 0

10: else
11: i← i+ 1
12: end if
13: end while

as well as the optimization constraints (5b),(5c) and (5d) are
linear. Nevertheless, the equality constraint (5a) involves the
product of the scalar̄pj < 0 and the vectorvj . However,
Problem 2 can be reduced to a sequence of linear programs
by fixing the variablēpj : Initially, a feasible solution can be
found by settinḡpj to be sufficiently small. The cost function
is increased iteratively using a standard line search algorithm,
by changing the value of̄pj and solving the corresponding
linear program.

Theorem 2:Consider system (1), a properC–polytopic
constraint setSx, a scalar ε ∈ R+ and a properC–
polytopic ε–contractive setS0. Then, Algorithm 1 produces
an admissible sequence of sets{Si}i∈N≥1

for system (1).
Proof: By definition of the convex hull, the following

holds, for alli ∈ N:

Si+1 =convh({V(Si), {v
j⋆}j∈N[1:pi]

})

= convh({V(Si), v
j⋆}j∈N[1:pi]

)

= convh({V(Sv
j⋆

i )}j∈N1:pi
). (6)

By definition of Sj⋆i , for all j ∈ N[1:pi], it follows that
Si ⊂ Si+1, for all i ∈ N. Thus, property1) holds. Moreover,
due to (5c), it follows thatGxv

j⋆
i ≤ 1, for all i ∈ N,

j ∈ N[1:pi]. SinceS0 ⊆ Sx, we obtainSi ⊆ Sx, for all i ∈ N.
Thus, property2) holds. SinceS0 is a properC–polytopic
set, property1) further yields that0 ∈ interior(Si), for all
i ∈ N. Furthermore, by (6),Si is a polytopic set, hence a
properC-polytopic set for alli ∈ N. Thus, property3) holds.
Lastly, note thatS0 is anε-contractive set and supposeSi is
ε-contractive also. Observing that the setsSj⋆i , j ∈ N[1:pi]

are properC–polytopicε-contractive sets and combining (6)
and Lemma 2, it follows thatSi+1 is also anε–contractive
set. Hence, it follows by induction that property4) holds.
Thus, the set sequence{Si}i∈N≥1

is an admissible sequence
of sets for system (1).

The algorithm terminates if there exists anN ∈ N≥1 such
thatSN+1 = SN . Nevertheless, artificial termination criteria
can be introduced in order to ensure finite termination.
Employment of different criteria can be made according

to the problem considered. We examine the following two
frequently encountered cases:

a) Approximation of the domain of attraction.It is well
known that the domain of attraction coincides with the
maximal positively invariant set for linear continuous-time
systems. Thus, to obtain an approximation of the domain of
attraction, one can apply Algorithm 1 starting from a given
properC–polytopic positively invariant set and settingε = 0.
In this case, the finite termination is not guaranteed. Thus,a
maximum number of iterationsNmax as an additional termi-
nation criterion can be introduced. Alternatively, Algorithm
1 can be terminated when a distance function between two
consecutive sets of the sequence is less than a prespecified
valued ∈ R+. We propose the Hausdorff distance, denoted
asdistH(Si,Si+1), i ∈ N≥1. For each pair(Si,Si+1) of the
sequence, it is easy to show that

distH(Si,Si+1) = max
j∈N[1:qi]

min
k∈N[1:qi+1]

‖[Vi]•j − [Vi+1]•k‖∞

= max
j∈N[1:qi]

min
k∈N[1:pi]

∥

∥[Vi]•j − vk⋆
∥

∥

∞
,

for all i ∈ N, wherevk⋆, k ∈ N[1:pi], are the corresponding
solutions of Problem 2. Thus, checking the termination
criterion distH(Si,Si+1) ≤ d is equivalent to solving a
single linear program.

b) Stability analysis of an assigned set of initial con-
ditions. This case can be considered as the autonomous
continuous-time version of the problem studied in [17]:
Given a continuous-time linear system (1), a properC–
polytopic constraint setSx and a properC–polytopic initial
condition setS0, the problem consists in determining if
Sx0 belongs to the admissible domain of attraction. For
the case of linear continuous-time systems and taking into
account Assumption 1, it follows thatSx0 belongs to the
admissible domain of attraction if and only if there exists
a positively invariant properC–set S that satisfies the set
relation Sx0 ⊆ S ⊆ Sx. Thus, one can employ Algorithm
1 with the additional inputS0 and stop whenS0 ⊆ Si. For
properC–polytopic sets, checking this termination criterion
is equivalent to solving a linear program by directly applying
the extended Farkas’ Lemma [18].

Remark 3:The developed results and algorithm can be
extended to polytopic differential inclusions of the form

ẋ(t) ∈ Φ(x(t)), (7)

whereΦ : Rn
⇉ R

n,

Φ(x) := {Ax : A ∈ convh({Ai})i∈N[1:M]
},

Ai ∈ R
n×n, for all i ∈ N[1:M ], M ∈ N≥1. Notice that an

admissible sequence of sets for system (7) is also admissible
for the corresponding continuous-time switched system with
arbitrary switching. Equivalently to Assumption1, system
(7) is considered to be asymptotically stable.

It has been shown (see e.g. [1]) that a properC–polytopic
set is ε–contractive for system (7) if and only if the con-
ditions of Theorem 1 are satisfied for each vertexAi, i ∈
N[1:M ], of the matrix polytopeconvh({Ai})i∈N[1:M]

. Taking



this into account and modifying Lemma 1 and Lemma 2
mutatis mutandis, it is straightforward to obtain the corre-
spondent of Lemma 3. We state the following problem:

Problem 3: Given system (7), a properC–polytopic con-
straint setSx, a scalarε ∈ R≥0, a properC–polytopic ε–
contractive setS, and a fixedj ∈ N[1:p], compute the solution
of the optimization problem

max
vj ,pl

j
,p̄l

j
,l∈N[1:M]

{[G]j•v
j}

subject to

Alv
j = V plj + p̄ljv

j , ∀l ∈ N[1:M ]

1
T
q p

l
j + p̄lj ≤ −ε, ∀l ∈ N[1:M ]

Gxv
j ≤ 1px

plj ≥ 0q, ∀l ∈ N[1:M ].
Lemma 4:There exists a vectorξ ∈ Sx\S such thatSξ is

anε–contractive set for system (7) if and only if there exists
an indexk ∈ N[1:p] such that[G]k•v

k⋆ > 1, wherevj⋆, for
all j ∈ N[1:p], denotes the optimal solution of Problem 3.
For brevity, the proof of Lemma is 4 omitted. An immediate
consequence of this result is that Algorithm 1 can be used
for system (7) with a single modification concerning the
computation of the new vectors{vj⋆}i∈N[1:pi]

, which in this
case is given by the optimal solution of Problem 3 instead
of Problem 2.

Remark 4:The developed results and algorithm can be
also modified in a straightforward manner to deal with
continuous-time non autonomous linear systems with addi-
tive disturbances.

V. I LLUSTRATIVE EXAMPLES

Example 1.We consider the linear continuous-time system
(1) with system matrix

A =

[

−0.1 1.0
−2.0 −0.4

]

,

with eigenvalues−0.25 ± 1.4062i. Also, we assume
the properC–polytopic constraint setSx, where Gx =
[I2 − I2]

T . The initial properC–polytopic positively invariant
setS0 is computed applying the results from [10], resulting in
a symmetric properC–polytopic set with 26 vertices. Setting
ε = 0, we aim to approximate the admissible domain of
attraction. As artificial termination criterion, the maximum
number of iterations was chosen to be equal to30. Applying
Algorithm 1, an admissible sequence of sets is produced.
The last element of the sequenceS30 has128 vertices and is
shown in Figure 1 in yellow. In the same figure, the initial
setS0 is shown in blue and the constraint setSx is shown
in grey.

In Figure 2, the trajectories of the system are shown for
initial conditions starting from the vertices of setS30.

Example 2.We consider the switched linear system under
arbitrary switching, also studied in [9], [10], with matrices

A1 =

[

0.3 0.7
−2.3 −2.3

]

, A2 =

[

−1.8 1.0
−0.8 0.1

]

.
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Fig. 1. State constraint setSx (grey), starting positively invariant setS0

(blue), and the last element of the admissible sequence of set S30 (yellow).
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Fig. 2. Trajectories of the system (Example 1) starting fromthe vertices
of setS30.

Moreover, we consider a non symmetric constraint setSx
described by

Vx =

[

−1 −1 1 1
−1 2 −1 1

]

.

The initial positively invariant setS0 was taken from [10]
and is shown in Figure 3 in blue. Applying Algorithm 1
and setting as termination criterion the Hausdorff distance
distH(Si,Si+1) to be less thand = 0.001, the algorithm
terminates after25 iterations. In Figure 3, the setS25 is
shown in yellow, the initial properC–polytopic positively
invariant setS0 is shown in blue, and the constraint setSx
is shown in grey. Finally, in Figure 4 and Figure 5, the
trajectories of initial conditions starting from the vertices
of the setS25 are shown for systemṡx(t) = A1x(t) and
ẋ(t) = A2x(t) respectively.

VI. CONCLUSIONS

A method for iteratively enlarging a given invariant (con-
tractive) properC–polytopic set forcontinuous-timelinear
systems was presented. It was proven that the proposed
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Fig. 3. State constraint setSx (grey), initial condition setSx0 (blue), and
the positively invariant setS25 (yellow).
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Fig. 4. State constraint setSx (grey), the positively invariant setS25

(yellow), and trajectories for theA1 dynamics starting from the vertices of
S25.

algorithmic procedure generates a monotonic sequence of
invariant (contractive) properC–polytopic sets. A formal
characterization of the limit of theadmissible sequence of
setsmakes the object of future research work.
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