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Robust Positive Invariance and Ultimate Boundedness oflihesr Systems

George Bitsoris, Marina Vassilaki, and Nikolaos Athanasdps

Abstract— In this article the problem of characterizing sets, continuous-time systems with uncertain parameters and/or
described by vector nonlinear inequalities of the formv(x) <w,  exogenous disturbances is considered. In this case also, a
as robustly positively invariant and targets of uniformly — c,mnarison system scheme is used. Conditions for a set to

ultimate bounded nonlinear systems is investigated. The ats b d in of attracti fthe t t set of robust unif
of general parameter uncertain continuous-time dynamical € a domain of attraction ot the target set of robust unitorm

systems affected by exogenous disturbances is considerathe  Ultimate bounded systems are also given.
approach is based on establishing an associated monotone The paper is organized as follows: In the following section,

nonlinear comparison system. A numerical example is pres¢éed  the basic notation and definitions are given. In section lIl,
to illustrate the approach. necessary and sufficient conditions guaranteeing robisst po
|. INTRODUCTION tive invariance for general sets described by nonlinearovec

The dynamics of most real world systems involve non|_nequaI|t|es are developed. In section 1V, the uniformmitte

linearities in the state space description as well as timg_oundedness of nonlinear systems is investigated. Finaly,

varying terms. These terms represent either time varyirr% numerical example illustrating the proposed approach is

or imprecisely known parameters and/or persistent exter ven in section V.
disturbances. Model uncertainties can also been expressed Il. PRELIMINARIES

as persistent external disturbances. Two distinct appesac Throughout the paper, capital letters denote real matrices

are L.Jsed. for stqdymg this class Of systems. The first O%hd lower case letters denote column vectors or scalars.
consists in considering the uncertain parameters as rand%n denotes the reah-space andR™™ denotes the set of
variables with known statistics and the external distudesn real n x m matrices. For twan x m real matricesA — (ai;)

. - j ]

as stochastic signals. In the second approach only the lsour}]l dB = (bij), the inequalityA < B (A < B) is equivalent

of variations of parameter uncertainties and external di% aii < bij(aij < bij). Similar notation holds for vectors
i = Dijldij ij)- .

turbances are known. In this paper the second approach#ﬁ1ally, 7 denotes the time se? = [0,®) andIq denotes
adzptf?d-_f_ t Cof H has been d e ax q identity matrix.
significant amount of research has been done on e e congider time-varying uncertain nonlinear systems

positive invariance of polyhedral sets of linear continsiou with disturbances described by a differential equationhef t
time systems, e.g. [1]-[6] and [7] including the reference

therein. A considerable work has also been devoted to dpecia :

t) = f(t,x(t t 1
classes of nonlinear systems not only for the analysis sot al X(t) = F(t.x(®),¢,n () @)
for the design problem [8]-[15]. where x € R" is the system state t € .7 is the time

The objective of this paper is the establishment of convariable,{ represents uncertain parameters aptl) repre-
ditions guaranteeing the positive invariance and/or @tan sents unknown external disturbances or model uncertaintie
boundedness in subsets of system’s state space describedJbgertain parameteré are assumed to belong to a subset
nonlinear vector inequalities of the fomix) <w. This class 2 of R%. Functionsn(t) are uknown but belong to the
of sets is general enough to include convex and nonconvegtQ, of bounded piecewise continuous functiops.7 —
sets, possibly unbounded, which can be non-connected. TE€ where 7 is assumed to be a compact subsetRSf
idea behind the proposed approach lies in the associatioantaining the origin as an interior point. It is also assdme
of the original system with a quasi-monotone comparisothat f : .7 x R" x 2 x 2# — R" is a continuous function
system. It is shown that existence of a special structureshtisfying sufficient conditions guaranteeing the existen
robust invariant set for the comparison system is a negessaf a unique solutionx(t;tg,Xp) for every initial condition
and sufficient condition for positive invariance of the corxg(ts) =x € R", to € 7, t > 1o, { € Z and any function
responding set in the original system space. Moreover, thgt) € Qp.
problem of robust uniform ultimate boundedness of nonlinea

An important subclass of systems (1) are nonlinear sys-
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conditions guaranteeing the existence of a unique solution [1l. POSITIVE INVARIANCE
X(t;to,Xo) of system (2) for every initial conditiomo(to) = We consider uncertain systems described by state equa-
X €R", t>1to, { € 2 and any functiom () € Q. tions (1).

The qua5|_-m0notone nondecreasmg functions defined be-pefinition 2: A subsetA of the state space of system
low play an important role in the development of the resultﬁ) is said to be robustly positively invariant (RPI)  if for
of this paper: anyto € 7, { € Z, n(t) € Q, and every initial condition

Definition 1. A vector yaluegl functionh(t,_y,(,n),h ' X(tg) =% €A the corresponding trajectory remains Ay
T xRIx Z x # — RY is said to bequas-monotone  hat is x(t;to, Xo) € A for all t > to.

nondecreasing if for any { € 2, n(t) € Q, andte .7

all its componentshi(t,y1,yz,.-.¥g,{,n) i =12,..,qare In this section we are interested in the positive invariance
nondecreasing with respect¥p j=1,2,...0, j#i.  of setsP(v,w) c R" defined by a relation of the form
If function h(t,y,,n) is quasi-monotone nondecreasing,
then for any{ € 2 and n € ¢ system P(v,w) def {xeR":v(x) <w} (8)
y(t) =h(t,y(t),{,n (1)) (3) wherew e RY andv(x), v: R"—R9 is a continuous vector

is monotone, in the sense thag < Jo implies y(t;to, yo) < valued function such that its total time derivative)(x)
Y(tito.50) for all { € Z, n(-) € Q. to€ 7 andt > to. I, exists for any{ € 2 and any disturbance)(t) € Q.
in addition, h(t,0,Z,n) = 0 then [16]y(t;to,Yo) > O for all Functionsv(x) are assumed to be of cla& according to
o € RY, tg € 7 andt > to. N the following definition:

Given a continuous functiom(x), v: R" — RY , vy (x) Definition 3. The vector valued functionv(x) =

T etasl
denotes its total time derivative w.r.t. to system (1) and i&/1(X) V2(X)..vs()]", v:R" = R, v(0) =0 s said to be
defined by relation of class Rin a set% cRY if, given aye %/, for any index

i with 1 <i < g there exists a € R" such that;(x) =y; and
@) Vi) <yjforj#i

. . V(X(t+At)) — v(x(t))
t))= lim s .
Vo () AtLO* up At
In the sequel, it is assumed that the total time derivative It is clear that ifv(x) is a function of clasR in %/, then
of function v(x) w.r.t. system (1) exists for alkk e R", for anyyec % the corresponding sets
te 7, { € Z and any disturbancg(t) € Q. In the case def | _ o
of a differentiable functionv(x) the total time derivative of Pi)(%Y) = {XeR:Vi(x) =yi,vj(x) <yj | =1,2,....q ] #i}

function v(x) w.r.t. system (1) is computed by relation )
are non empty.
V(1) (X) = 0\(;()() f(t,x,Z,n(t)) (5) It is also assumed that the associated sets
def .

Consider now a vector valued function(x), Vv : Si(vf,y) = {zeR: (FxePy(vwy) 1 2=V ()} (10)
R™ — RY and a quasi-monotone nondecreasing functiopyrj — 1 2 .. q are compact for alj € %
h(t.,y,,n), h: 7 xRIxZ x & — RIsatisfyinginequal- | the following theorem necessary and sufficient condi-
Ity tions for setP(v,w) to be positively invariant with respect to

Vi) (¥) < hi(t,v(x),Z,n(t)) i=12,...0q (6)  system (1) are established.

Then the system ) .
' Theorem 1.Given a functionv(x), v: R"—RY of class
y=h(t,y,{,n(t)) (7) Rin # and a vectow € Z, the setP(v,w) is positively

is said to be acomparison system of system (1) associated invariant with respect to system (1) if and only if there éis

with the vector valued function v(x). If function h(t,y,¢,n) & duasi-monotone nondecreasing functiaft,y,¢,n), h:
satisfies sufficient conditions guaranteeing the existefige 7 X % X 2 x 7 — R such that
unique and continuous solutigt; to,Yo) of the comparison Vi (X(t)) < h(t,v(x),Z,n(t)) (11)
system (7) for allyg € RY, to € .7, { € & and any dis-
turbancen (t) € Q, then for system (1) and its comparisonand
system (7), the following result holds:

Lemma 1. If (7) is a comparison system of system (1) htwd,n()<0 Wtes.ce, vnt) e (12)
associated with the vector valued functig(x), then for any Proof. a) Sufficiency: Since functioh(t,y,{,n) has been
Yo € RY the inequalityv(xo) < yo implies v(x(t;to,X0)) < assumed to satisfy conditions guaranteeing the existehce o
y(t;to,Yo) for all t > to. a unique continuous solutioyit;to,yo) of system (7) for all

In the sequel, it is assumed that functioig) are contin- yp e RY, to € 7, { € 2 and any disturbance(t) € Q,, from
uous and satisfy sufficient conditions for the existence of é12) and the hypothesis that functibtt,y,{,n(t)) is quasi-
unique continuous solutioy(t;to, o) of the comparison sys- monotone nondecreasing, it follows tlydt; to, yo) < w for all
tem (7) for allyp e RY, to € 7, { € & and any disturbance t >t [16]. Since, in addition functionh(t,y,{,n) andv(x)
n(t) e Q. satisfy (11), system (7) is a comparison system of system



(1) associated with the vector valued functiefx). Thus, wherevy = Vv(Xg). Therefore the trajectoriegt;to,vp) of a
by virtue of Lemma 1,v(X) < yo implies v[x(t;tp,X0)] < comparison system defined by (13) are the least upper bounds
y(t;to,Yo) forallt >tg , { € 2 and anyn(t) € Q. Thus, if  of v(X(t;to,Xg)). For this reason, a comparison system defined
V(Xo) < w thenv[x(t;to, x0)] < w for all t >tp . Consequently, by (13) is said to be optimal.
P(v,w) is positively invariant with respect to system (1) .

b) Necessity: Consider the functionk; : 7 x % x
Z x H# — R, defined by the relations

def

hty.Z,n) = max {uxt)} i=12..q RGW) = {xeR": Gx<w}
X(t)eR) (vy) “n . .

(13) G € R9*" w e RY with respect to the important class of
with Pj)(vy) given by (9). Since functiow(x) is of class Nonlinear systems with both parameter uncertainfiesnd
Rin &, setsPy(wy) i = 1,2,..,q are non empty for all additive input disturbances(t) described by differential
y € ¥ Since, in addition, setS(v;, f,y) defined by (10) €duations (2).

have assumed be compact, the functidiy,{,n(t)) = .
lha(t,y,2,n (1)) hz(t,y,Z,n(t))...hq(t,y,Z,n(t))]T exists Theorem 2. The polyhedral seR(G,w) is robustly pos-

and, by definition, is quasi-monotone nondecreasin%ively invariant set w.r.t system (2) if and only if there

Furthermore,v(x) (1) < h(t,v(x),Z,n(t)) for any x € R" Xists a quasi-monotone nondecreasing fundtigg ), h*
such that v(x) =y, y € #. Therefore, the system

Next, we use this result for establishing conditions of
positive invariance of a polyhedral set

% x % — RY such that

y(t) = h(t,y(t),Z,n(t)) is a comparison system o_f Gg(x,{) < h*(Gx,{) (14)
system (1) associated with the vector valued function .

v(x). Condition (12) is also satisfied because, otherwise, hw{)+d<0 v{c2Z Wwes (15)
there would exist an indek such thathi(t,w,{,n(t)) > 0. | hared — [ d dp - d ]y

Then, by definition of the functiom(t,y,{,n(t)), there ’

would also exist &g and a statexy such thatvi(xo) = w, di = g%{(GEn)i} i=12..q (16)

and vj(xo) < wj for j =12,..,9 j#i, such that _ _ _
Vi(X0) (1) = hi(to,w,Z, 1 (t)) > 0. This, however, would imply ~ Proof. SinceR(G,w) = P(v,w) with v(x) = Gx, according
that the componenw;(X(to;to,Xo)) = Vi(Xo) = w; of the to Theoremi, setR(G,w) is positively invariant w.r.t. system
function v(x(t;toXg)) would be increasing om =ty along (2) if and only if there exists a quasi-monotone nondecreas-
the trajectoryx(t;tg,Xo), thus contradicting the hypothesising functionh(t,v(x),{,n(t)) satisfying conditions (11) and
that P(v,w) is positively invariant. Therefore, (12) is also (12). For system (2), these conditions are written as

satisfied. "V (x(®) = Gg(x(t),{) + GEN(t) < h(t,v(x),,n () (17)

Remark 1. It is clear from the proof of the above theorem,and
that it is not necessary the comparison system to be defined
in the whole spacéR9. The positive invariance of the set htwdn(t)<0 vte7,feZ, vnM)e, (18)
P(v,w) is guaranteed if , for example, the hypotheses of thespectively. Condition (17) is satisfied by setting
Theorem 1 are satisfied for a comparison system defined N
in set . Furthermore, from the first part of the proof h(t,y,¢,n (1) =h"(y.{) +d (19)
(sufficiency), it follows that in order to verify that a setwith h*(y,{) and d satisfying conditions (14) and (16)
P(v,w) is positively invariant it is sufficient to examine respectively. Then, from (15) it follows that condition §18
whether conditions (11) and (12) are verified for some quask also satisfied.
monotone nondecreasing functibft,y, {,n(t)) defined in a
subset of# such thatw € #'.

Remark 2. It is clear that functiorh(t,y,Z,n(t)) is not The presence of unknown exogenous disturbances may
unique. However, it can be proven that yit;t,v(Xo)) exclude the existence of an equilibrium state for system
denotes the trajectories of the comparison system defingl). This is certainly the case when these disturbances are
by (13), then the corresponding trajector(t;to,v(xo)) of  additive. In such case one is interested in the ultimate doun

IV. ULTIMATE BOUNDEDNESS OF NONLINEAR SYSTEMS

any other comparison system edness of the system according to the following defnition.
N . Let 2" be a compact subset of the state spad®@’
y (1) =h"(t,y (), {,n(t) containing the origin as an interior point.
defined by a relation Definition 3. System (1) is said to beobustly uniformly
ultimately bounded (RUUB) in a subset?” of the state space
Vi) (X(1)) < h*(t,v(x(t)),{,n(t)) R" if there exists a se® , 2 C 2 C R" such that for any

{ € Z andn(-) € Q, and every initial conditiox(tg) = Xo €

2 there exists an instaht(xg) such thai(t;to,xo) € 2~ for
allt >to+t*(xg). SetZ is said to be a domain of attraction
V(X(t;to, X0)) < ¥(t;to, V(X)) < Y (t;to,v(X0)) Wt >to of the uniformly ultimately bounded set".

satisfies the inequality



Itis clear that if system (1) is robustly uniformly ultiméte
bounded in a positively invariant se?”, thenZ is a domain
of attraction if and only if for each initial state) € 2 there
exists at*(xp) such thatx(t;to,Xo) € 2" for t =t*(xp). Let
d(x,.2") denote the distance of statefrom set.2". Then,
we can give the following definition:

Definition 4. A subsetZ” of the state space of system
(1) is said to berobustly uniformly asymptotically stable if,
forany{ € 2 andn(-) € Qp,

a) given atp € .7 and ag > 0 there exist(€) > 0 such
that d(xo, Z7) < &(¢) implies d(x(t;to,%0), Z") < & for all
to € .7 andt > tg,

b) there exists a sey , 2" C 2 C R" such that
tqulod(X(t:to,Xo),%) =0 for anytp € .7 and every initial
conditionX(tg) = %o € Z.

Set 7 is said to be a domain of attraction of theobustly
uniformly asymptatically stable s set.2".

In the following Lemma, we establish conditions of robust Now, letyo € R(1q,r2

uniform ultimate boundedness of monotone systems

y=h(t,y,{,n(t)) (20)

h(t,y,{,n) is quasi-monotone nondecreasing, from (26),
(27), (23), and (24) it would follow that

yj(t;to,row) — zj(t;to row) =

hj(t,y(t;to,r2w), {,n) + £z (t;to, raw)
hj(t,z(t;to raw),{,n) + €zj(t;to roaw)
h

e 0w 7 n) + e E 0w

(t
(t
(t

IN A IA

—ge tt 0,4 ge E) LW =0
for all t >ty such that
rp<e ftr, <rp
or equivalently, such that
to<t<tg+t*.

Therefore, (25) is indeed satisfied.
w). Thenyp < row and since system
(20) is monotone, it follows that

y(t;to Yo) < y(t;toraw),

with h(t,y,Z,n)) being a quasi-monotone nondecreasing" all tp € 7 andt > tp. This inequality together with (26)

function:
Lemma 2. If there exist positive real numbers, r,, and
€ such that

ht,rw,{,n) < —erw Vr €[ry,ry], WeJ (22)

for all { € & and n(-) € Qp, then system (20) is ro-
bustly uniformly ultimately bounded in sé(lg,riw) with
R(lg,row) as domain of attraction.

Proof. Consider the linear system

Z(t) = —ez(t) (22)
whereze RY. Then,
Z(t;to,raw) = rowe £ vt > g (23)
and
Z(t;to’r2W) <riw Vvt>tg+t* (24)
with t* given by
t* }Io 2
=z r
We claim that, for any € 2 andn(-) € Qp,
y(titoroaw) < z(titoraw) Wt € ftoto+t]  (25)

It is clear that inequality (25) is satisfied foe=tp. This is

also true for alk € [tp,to+t*] because otherwise there would

exist a time instant € [to,tp +t*] and an index such that

i=1,2,...q i#] (26)
(27)

Yi(t;to,raw) < z(t;to,row)
yj(t;to,row) = zj(t;to row)

andy;(t + dt;to row) > zj(t + ot; t row) for all 6t belonging
to a time-interval(0,At). The latter relation, however, could

and (24) implies that
y(t;toYo) <riw Wt >to+t*.

This, in turn,implies thaR(lg,r1w) is a robustly uniformly
ultimately bounded set of system (20) aRdq,riw) is a
domain of attractiorll

Let us consider subset®” of system’s state space that
include the set of all possible equilibrium states of the
system, that is,Zp C 2" where

Zo={xeR": (I e Z nex ft,x,{,n)=0W"eT)}
(28)

In the following theorem, necessary and sufficient condi-
tions for the robust uniform ultimate boundedness of system
(1) in setZ" are established:

Theorem 3.If for a continuous functiorv(x), v: R" —
RY there exist a quasi-monotone nondecreasing function
ht,y,{,n),h: T x % x & x # — RY and positive real
numbersry, ro, and € such that

P(v,riw) C 2" C P(v,raw) (29)
Vi) (X()) < h(t,v(x),{.n) (30)
ht,rw,{,n) < —rew Vr €ry,ry], Wwes (32)

then system (1) is robustly uniformly ultimately bounded in
set. 2" andP(v,r,w) is a domain of attraction.

Proof. According to Lemma 2, from condition (31) it
follows that R(lg,r1w) is a robustly uniformly ultimately
bounded set of system (20) a(lq,row) is as domain

not be verified because, taking into account that functioaf attraction. Since, functiorh(t,y,{,n) is quasi-monotone



nondecreasing, from (30) it follows that system is a compari Theorem 4.If there exists a quasi-monotone nondecreas-
son system of (20) associated with the vector valued functiang functionh*(y,{),h* : ' x 2 — RY such that

v(X). Therefore,
P(v,raw) C 2" C P(v,raw)

V(X0) < Yo (32
implies Gg(x,{) <h*(Gx,{)
Now, if xg € P(v,row) then, by virtue of (29), whered = [ dy d; doa ]y’

<

Vixo) < raw di= max{(GEn)i} i=12,..q
and setting nen

Yo = oW then 2 is ultimately bounded an@(v,row) is a domain of

) attraction of system (37).
from (32)-(33) it follows that
VX(t10,%0)) < Y(tito,raw) Vi > to, (34) V. NUMERICAL EXAMPLE
o ) In order to illustrate the results established in Sectidhs |
This implies that there existstasuch that and IV, we provide a numerical example of a control problem
V(X(t;to, %)) < TW Vit > o+t (35) for bilinear dynamical systems.

Let us consider the first order bilinear dynamical system
because, R(lq,r1w) is a robustly uniformly ultimately _
X(t) = —1.15x(t) 4+ u(t) + 0.1x(t)u(t) + n (t)

bounded set of system by conditions (20) &R(dq,row) a (38)

corresponding domain of attraction. Consequentlyxgife
P(v,row) then v(x(t;to,%g)) < riw Vvt > tg+t*or equiva-
lently v(x(t;to,%0)) € P(v,riw), that is by virtue of (29)

wheren (t) € Q,, Qp being the set of piecewise continuous
functions from7 to # = [—0.3 1]. The problem concerns
the determination of a linear state-feedback control law

V(X(t;to,X0)) € 2, Vt > to+1t*. Therefore, 2 is a robustly

uniformly ultimately bounded setZ” of system (1) and u(t) =Ix(t) (39)
P(v,row) is a domain of attractiorill _
such that the resulting closed-loop system
Remark 3. From the proof of Lemma 2, it follows that, X(t) = (=115 1)x(t) + 0.1153(t) + N (t) (40)

under the hypotheses of this theorem, all initial statebe- _ _ _ _
longing to the domain of attractioR(v,r,w) are transferred is robustly uniformly ultimately bounded in the region
to the target setZ” in a time non exceeding,, where

Z ={xeR|-05<x<0.7}, (41)
1
tmin = = Iogf- (36) and
= - < < .
Remark 4. In section Ill, it has been shown that 7={xeR|[-1sx=14)
the existence of a quasi-monototone nondecreasing furig-a corresponding domain of attraction.
tion h(t,y,{,n(t)) satisfying inequality (30) and inequality Settingv(x) = Gx with
h(t,.w,{,n) <0 forall { € Z, n()e Q, andvt € .7, is
i i e : 1 0.7
a necessary and sufficient condition for the positive invari G= { ] . w= { ] , (42)
ance of setP(v,w) w.r.t. system (1). Therefore, under the -1 0.5

hypotheses of Theorem 3, besides robust uniform ultimatgis 2 and% can be equivalently written a8” = R(G,w) =

stability in set2”, the positive invariance of all seBv,rw) {xeR:Gx<w} and Z = R(G,2w). Therefore, acé:ording

Vr € [r1,r2] is guaranteed. to Theorem 4, the control law (39) is a solution to the control
Next, we use this result for establishing conditions oproblem if there exists a quasi-monotone nondecreasing

uniform ultimate stability of system in a polyhedral set  function h*(y) and a positive real number such that

def 2
O R G o= [ [y | <1
G € R9*" w e RY with respect to the important class of
nonlinear systems with both parameter uncertainfieend 2"
input additive disturbances(t) described by differential h*(rw)+d < —erw  vr € [1,2], (44)
equations of the form where

(1) = gt XV, {) +En() (37) I P ML ]
A direct consequence of Theorem 3 is the following result: nemg.é,u{_n} 03



Condition (43) is satisfied for [12] G. Bitsoris, M. Vassilaki and E. Gravalou Comparisotnpiple and
constrained regulation of continuous-time systems,Proceedings of
H (v) — (—1.15+1)y; +0.1maxo,l} max{yf,y%} the 3rd European Control Conference, 1995.
(y) - (_1'15_|_|)y2_|_ leax{o —| } max{y2 yZ} [13] G. Makay, Uniform Boundedness and Uniform Ultimate Bdedness
’ Lr2 for Functional Differential Equationg;unkcialaj Ekvaciojvol. 38, pp.
. — . . 283-296, 1995.
It is clear that functiorh*(y) is quasi monotone nondecreas14] J. Peuteman, D. Aeyels, R. Sepulchre, BoundednesseRies for
ing for y; > 0 ,y> > 0. Thus condition (44) becomes the Time-Varying Nonlinear SystemS,AM J. Control Optim. vol. 39,
1408-1422, 2000.

0.7 [15] A.P. Tchangani, M. Dambrine, J.P. Richard, Stabilétraction do-
h*(rW) +d < —er { 05 vr e [1a 2]7 mains, and ultimate boundedness for nonlinear neutraésysath-
’ ematics and Computers in Smulation, vol. 45, pp. 291-298, 1998.
where [16] G. Bitsoris, Stability analysis of nonlinear dynamisgstems. Inter-

national Journal of Control , vol. 38, pp. 699 - 711, 1983.
e (rw) = (—1.15+1)0.7r +0.1max0,1} (0.49)r’+
o (-1.15+1)0.5r+0.1 ma><{0,—|}(0.49)r2 ’

It is a simple task to show that this inequality is satisfied
if
| <-0.279 (46)

VI. CONCLUSIONS

In this article the robust positive invariance of sets de-
scribed by nonlinear inequalities of the fowx) < w and
the uniform ultimate boundedness of nonlinear systems has
been investigated. The class of general parameter untertai
continuous-time dynamical systems affected by exogenous
disturbances is considered. The approach presented here
is based on the establishment of a monotone nonlinear
comparison system and then deriving positive invariance
and uniform ultimate boundedness properties for the aaigin
system from the corresponding properties of the comparison
system. It is worth noting that the so obtained conditions of
positive invariance are both necessary and sufficient.
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