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Robust Positive Invariance and Ultimate Boundedness of Nonlinear Systems

George Bitsoris, Marina Vassilaki, and Nikolaos Athanasopoulos

Abstract— In this article the problem of characterizing sets,
described by vector nonlinear inequalities of the formv(x)≤ w,
as robustly positively invariant and targets of uniformly
ultimate bounded nonlinear systems is investigated. The class
of general parameter uncertain continuous-time dynamical
systems affected by exogenous disturbances is considered.The
approach is based on establishing an associated monotone
nonlinear comparison system. A numerical example is presented
to illustrate the approach.

I. INTRODUCTION

The dynamics of most real world systems involve non-
linearities in the state space description as well as time-
varying terms. These terms represent either time varying
or imprecisely known parameters and/or persistent external
disturbances. Model uncertainties can also been expressed
as persistent external disturbances. Two distinct approaches
are used for studying this class of systems. The first one
consists in considering the uncertain parameters as random
variables with known statistics and the external disturbances
as stochastic signals. In the second approach only the bounds
of variations of parameter uncertainties and external dis-
turbances are known. In this paper the second approach is
adopted.

A significant amount of research has been done on the
positive invariance of polyhedral sets of linear continuous-
time systems, e.g. [1]-[6] and [7] including the references
therein. A considerable work has also been devoted to special
classes of nonlinear systems not only for the analysis but also
for the design problem [8]-[15].

The objective of this paper is the establishment of con-
ditions guaranteeing the positive invariance and/or ultimate
boundedness in subsets of system’s state space described by
nonlinear vector inequalities of the formv(x)≤w. This class
of sets is general enough to include convex and nonconvex
sets, possibly unbounded, which can be non-connected. The
idea behind the proposed approach lies in the association
of the original system with a quasi-monotone comparison
system. It is shown that existence of a special structured
robust invariant set for the comparison system is a necessary
and sufficient condition for positive invariance of the cor-
responding set in the original system space. Moreover, the
problem of robust uniform ultimate boundedness of nonlinear
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continuous-time systems with uncertain parameters and/or
exogenous disturbances is considered. In this case also, a
comparison system scheme is used. Conditions for a set to
be a domain of attraction of the target set of robust uniform
ultimate bounded systems are also given.

The paper is organized as follows: In the following section,
the basic notation and definitions are given. In section III,
necessary and sufficient conditions guaranteeing robust posi-
tive invariance for general sets described by nonlinear vector
inequalities are developed. In section IV, the uniform ultimate
boundedness of nonlinear systems is investigated. Finaly,
a numerical example illustrating the proposed approach is
given in section V.

II. PRELIMINARIES

Throughout the paper, capital letters denote real matrices
and lower case letters denote column vectors or scalars.
R

n denotes the realn-space andRn×m denotes the set of
real n×m matrices. For twon×m real matricesA = (ai j),
and B = (bi j), the inequalityA ≤ B (A < B) is equivalent
to ai j ≤ bi j(ai j < bi j). Similar notation holds for vectors.
Finally, T denotes the time setT = [0,∞) and Iq denotes
the q× q identity matrix.

We consider time-varying uncertain nonlinear systems
with disturbances described by a differential equation of the
form

ẋ(t) = f (t,x(t),ζ ,η(t)) (1)

where x ∈ R
n is the system state ,t ∈ T is the time

variable,ζ represents uncertain parameters andη(t) repre-
sents unknown external disturbances or model uncertainties.
Uncertain parametersζ are assumed to belong to a subset
Z of R

sζ . Functionsη(t) are uknown but belong to the
setΩη of bounded piecewise continuous functionsη : T →
H where H is assumed to be a compact subset ofR

sη

containing the origin as an interior point. It is also assumed
that f : T ×R

n ×Z ×H → R
n is a continuous function

satisfying sufficient conditions guaranteeing the existence
of a unique solutionx(t; t0,x0) for every initial condition
x0(t0) = x0 ∈ R

n, t0 ∈ T , t ≥ t0, ζ ∈ Z and any function
η(t) ∈ Ωη .

An important subclass of systems (1) are nonlinear sys-
tems with both parameter uncertainties and additive input
disturbancesη(t) described by differential equations of the
form

ẋ(t) = g(x(t),ζ )+Eη(t) (2)

where g : Rn × Z → R
n and E ∈ R

n×sη . It is assumed
that g(x,ζ ) is a continuous function satisfying sufficient



conditions guaranteeing the existence of a unique solution
x(t; t0,x0) of system (2) for every initial conditionx0(t0) =
x0 ∈ R

n, t ≥ t0, ζ ∈ Z and any functionη(·) ∈ Ωη .
The quasi-monotone nondecreasing functions defined be-

low play an important role in the development of the results
of this paper:

Definition 1. A vector valued functionh(t,y,ζ ,η),h :
T × R

q × Z × H → R
q is said to bequasi-monotone

nondecreasing if for any ζ ∈ Z , η(t) ∈ Ωη and t ∈ T

all its componentshi(t,y1,y2, ...yq,ζ ,η) i = 1,2, ...,q are
nondecreasing with respect toy j j = 1,2, ...,q, j 6= i.

If function h(t,y,ζ ,η) is quasi-monotone nondecreasing,
then for anyζ ∈ Z and η ∈ H system

ẏ(t) = h(t,y(t),ζ ,η(t)) (3)

is monotone, in the sense thaty0 ≤ ŷ0 implies y(t; t0,y0) ≤
y(t; t0, ŷ0) for all ζ ∈ Z , η(·) ∈ Ωη , t0 ∈ T and t ≥ t0. If,
in addition,h(t,0,ζ ,η) ≡ 0 then [16]y(t; t0,y0) ≥ 0 for all
y0 ∈ R

q, t0 ∈ T and t ≥ t0.
Given a continuous functionv(x), v : Rn → R

q , v̇(1)(x)
denotes its total time derivative w.r.t. to system (1) and is
defined by relation

v̇(1)(x(t)) = lim
∆t→0+

sup
v(x(t +∆t))− v(x(t))

∆t
. (4)

In the sequel, it is assumed that the total time derivative
of function v(x) w.r.t. system (1) exists for allx ∈ R

n,

t ∈ T , ζ ∈ Z and any disturbanceη(t) ∈ Ωη . In the case
of a differentiable functionv(x) the total time derivative of
function v(x) w.r.t. system (1) is computed by relation

v̇(1)(x) =
∂v(x)

∂x
f (t,x,ζ ,η(t)) (5)

Consider now a vector valued functionv(x), v :
R

n → R
q and a quasi-monotone nondecreasing function

h(t,y,ζ ,η), h : T ×R
q×Z ×H →R

q satisfying inequal-
ity

v̇(1)(x)≤ hi(t,v(x),ζ ,η(t)) i = 1,2, ...,q. (6)

Then the system
.
y = h(t,y,ζ ,η(t)) (7)

is said to be acomparison system of system (1) associated
with the vector valued function v(x). If function h(t,y,ζ ,η)
satisfies sufficient conditions guaranteeing the existenceof a
unique and continuous solutiony(t; t0,y0) of the comparison
system (7) for ally0 ∈ R

q, t0 ∈ T , ζ ∈ Z and any dis-
turbanceη(t) ∈ Ωη then for system (1) and its comparison
system (7), the following result holds:

Lemma 1. If (7) is a comparison system of system (1)
associated with the vector valued functionv(x), then for any
y0 ∈ R

q the inequalityv(x0) ≤ y0 implies v(x(t; t0,x0)) ≤
y(t; t0,y0) for all t ≥ t0.

In the sequel, it is assumed that functionsv(x) are contin-
uous and satisfy sufficient conditions for the existence of a
unique continuous solutiony(t; t0,y0) of the comparison sys-
tem (7) for ally0 ∈R

q, t0 ∈ T , ζ ∈ Z and any disturbance
η(t) ∈ Ωη .

III. POSITIVE INVARIANCE

We consider uncertain systems described by state equa-
tions (1).

Definition 2: A subset∆ of the state space of system
(1) is said to be robustly positively invariant (RPI) if for
any t0 ∈ T , ζ ∈ Z , η(t) ∈ Ωη and every initial condition
x(t0) = x0 ∈ ∆ the corresponding trajectory remains in∆,
that is x(t; t0,x0) ∈ ∆ for all t ≥ t0.

In this section we are interested in the positive invariance
of setsP(v,w)⊂ R

n defined by a relation of the form

P(v,w)
de f
= {x ∈ R

n : v(x)≤ w} (8)

wherew ∈ R
q andv(x), v : Rn−→R

q is a continuous vector
valued function such that its total time derivative ˙v(1)(x)
exists for any ζ ∈ Z and any disturbanceη(t) ∈ Ωη .
Functionsv(x) are assumed to be of classR, according to
the following definition:

Definition 3. The vector valued functionv(x) =
[v1(x) v2(x)...vs(x)]T , v :Rn →R

q, v(0) = 0 is said to be
of class R in a setY ⊂R

q if, given ay ∈ Y , for any index
i with 1≤ i ≤ q there exists ax ∈R

n such thatvi(x) = yi and
v j(x)≤ y j for j 6= i.

It is clear that ifv(x) is a function of classR in Y , then
for any y ∈ Y the corresponding sets

P(i)(v,y)
de f
= {x∈R

n : vi(x) = yi,v j(x)≤ y j j = 1,2, ...,q j 6= i}
(9)

are non empty.
It is also assumed that the associated sets

S(i)(v, f ,y)
de f
=

{

z ∈ R : (∃x ∈ P(i)(v,y) : z = v̇i(1)(x))
}

(10)

for i = 1,2, ...,q are compact for ally ∈ Y .
In the following theorem necessary and sufficient condi-

tions for setP(v,w) to be positively invariant with respect to
system (1) are established.

Theorem 1. Given a functionv(x), v : Rn−→R
q of class

R in Y and a vectorw ∈ Y , the setP(v,w) is positively
invariant with respect to system (1) if and only if there exists
a quasi-monotone nondecreasing functionh(t,y,ζ ,η), h :
T ×Y ×Z ×H → R

q such that

v̇(1)(x(t))≤ h(t,v(x),ζ ,η(t)) (11)

and

h(t,w,ζ ,η(t))≤ 0 ∀t ∈ T ,ζ ∈ Z , ∀η(t) ∈ Ωη . (12)

Proof. a) Sufficiency: Since functionh(t,y,ζ ,η) has been
assumed to satisfy conditions guaranteeing the existence of
a unique continuous solutiony(t; t0,y0) of system (7) for all
y0 ∈R

q, t0 ∈T , ζ ∈Z and any disturbanceη(t)∈Ωη , from
(12) and the hypothesis that functionh(t,y,ζ ,η(t)) is quasi-
monotone nondecreasing, it follows thaty(t; t0,y0)≤w for all
t ≥ t0 [16]. Since, in addition functionsh(t,y,ζ ,η) andv(x)
satisfy (11), system (7) is a comparison system of system



(1) associated with the vector valued functionv(x). Thus,
by virtue of Lemma 1,v(x0) ≤ y0 implies v[x(t; t0,x0)] ≤
y(t; t0,y0) for all t ≥ t0 , ζ ∈Z and anyη(t) ∈ Ωη . Thus, if
v(x0)≤w thenv[x(t; t0,x0)]≤ w for all t ≥ t0 . Consequently,
P(v,w) is positively invariant with respect to system (1) .

b) Necessity: Consider the functionshi : T ×Y ×
Z ×H → R, defined by the relations

hi(t,y,ζ ,η) = max
x(t)∈P(i)(v,y)

{v̇(1)i(x(t))} i = 1,2, ...,q.

(13)
with P(i)(v,y) given by (9). Since functionv(x) is of class
R in Y , setsP(i)(v,y) i = 1,2, ...,q are non empty for all
y ∈ Y .Since, in addition, setsS(vi, f ,y) defined by (10)
have assumed be compact, the functionh(t,y,ζ ,η(t)) =
[h1(t,y,ζ ,η(t)) h2(t,y,ζ ,η(t))...hq(t,y,ζ ,η(t))]T exists
and, by definition, is quasi-monotone nondecreasing.
Furthermore, ˙v(x) (1) ≤ h(t,v(x),ζ ,η(t)) for any x ∈ R

n

such that v(x) = y, y ∈ Y . Therefore, the system
ẏ(t) = h(t,y(t),ζ ,η(t)) is a comparison system of
system (1) associated with the vector valued function
v(x). Condition (12) is also satisfied because, otherwise,
there would exist an indexi such thathi(t,w,ζ ,η(t)) > 0.
Then, by definition of the functionh(t,y,ζ ,η(t)), there
would also exist at0 and a statex0 such thatvi(x0) = wi

and v j(x0) ≤ w j for j = 1,2, ...,q j 6= i, such that
.

vi(x0)(1) = hi(t0,w,ζ ,η(t))> 0. This, however, would imply
that the componentvi(x(t0; t0,x0)) = vi(x0) = wi of the
function v(x(t; t0x0)) would be increasing ont = t0 along
the trajectoryx(t; t0,x0), thus contradicting the hypothesis
that P(v,w) is positively invariant. Therefore, (12) is also
satisfied.

Remark 1. It is clear from the proof of the above theorem,
that it is not necessary the comparison system to be defined
in the whole spaceRq

. The positive invariance of the set
P(v,w) is guaranteed if , for example, the hypotheses of the
Theorem 1 are satisfied for a comparison system defined
in set Y . Furthermore, from the first part of the proof
(sufficiency), it follows that in order to verify that a set
P(v,w) is positively invariant it is sufficient to examine
whether conditions (11) and (12) are verified for some quasi-
monotone nondecreasing functionh(t,y,ζ ,η(t)) defined in a
subset ofY such thatw ∈ Y .

Remark 2. It is clear that functionh(t,y,ζ ,η(t)) is not
unique. However, it can be proven that ify(t; t0,v(x0))
denotes the trajectories of the comparison system defined
by (13), then the corresponding trajectoryy∗(t; t0,v(x0)) of
any other comparison system

.
y∗(t) = h∗(t,y∗(t),ζ ,η(t))

defined by a relation

v̇(1)(x(t))≤ h∗(t,v(x(t)),ζ ,η(t))

satisfies the inequality

v(x(t; t0,x0))≤ y(t; t0,v(x0))≤ y∗(t; t0,v(x0)) ∀t ≥ t0

wherev0 = v(x0). Therefore the trajectoriesy(t; t0,v0) of a
comparison system defined by (13) are the least upper bounds
of v(x(t; t0,x0)). For this reason, a comparison system defined
by (13) is said to be optimal.

Next, we use this result for establishing conditions of
positive invariance of a polyhedral set

R(G,w)
de f
= {x ∈R

n : Gx ≤ w}

G ∈ R
q×n, w ∈ R

q with respect to the important class of
nonlinear systems with both parameter uncertaintiesζ and
additive input disturbancesη(t) described by differential
equations (2).

Theorem 2. The polyhedral setR(G,w) is robustly pos-
itively invariant set w.r.t system (2) if and only if there
exists a quasi-monotone nondecreasing functionh∗(y,ζ ), h∗ :
Y ×Z → R

q such that

Gg(x,ζ )≤ h∗(Gx,ζ ) (14)

h∗(w,ζ )+ d ≤ 0 ∀ζ ∈ Z ∀t ∈ T (15)

whered =
[

d1 d2 · · · dq
]T

,

di = max
η∈H

{(GEη)i} i = 1,2, ...,q (16)

Proof. SinceR(G,w) = P(v,w) with v(x) =Gx, according
to Theorem.1, setR(G,w) is positively invariant w.r.t. system
(2) if and only if there exists a quasi-monotone nondecreas-
ing functionh(t,v(x),ζ ,η(t)) satisfying conditions (11) and
(12). For system (2), these conditions are written as

v̇(1)(x(t)) = Gg(x(t),ζ )+GEη(t)≤ h(t,v(x),ζ ,η(t)) (17)

and

h(t,w,ζ ,η(t)) ≤ 0 ∀t ∈ T ,ζ ∈ Z , ∀η(t) ∈ Ωη (18)

respectively. Condition (17) is satisfied by setting

h(t,y,ζ ,η(t)) = h∗(y,ζ )+ d (19)

with h∗(y,ζ ) and d satisfying conditions (14) and (16)
respectively. Then, from (15) it follows that condition (18)
is also satisfied.

IV. U LTIMATE BOUNDEDNESS OF NONLINEAR SYSTEMS

The presence of unknown exogenous disturbances may
exclude the existence of an equilibrium state for system
(1). This is certainly the case when these disturbances are
additive. In such case one is interested in the ultimate bound-
edness of the system according to the following defnition.

Let X be a compact subset of the state spaceRn

containing the origin as an interior point.
Definition 3. System (1) is said to berobustly uniformly

ultimately bounded (RUUB) in a subsetX of the state space
R

n if there exists a setD , X ⊂ D ⊆ R
n such that for any

ζ ∈Z andη(·)∈Ωη and every initial conditionx(t0) = x0 ∈
D there exists an instantt∗(x0) such thatx(t; t0,x0)∈X for
all t ≥ t0+ t∗(x0). SetD is said to be a domain of attraction
of the uniformly ultimately bounded setX .



It is clear that if system (1) is robustly uniformly ultimately
bounded in a positively invariant setX , thenD is a domain
of attraction if and only if for each initial statex0 ∈D there
exists at∗(x0) such thatx(t; t0,x0) ∈ X for t = t∗(x0). Let
d(x,X ) denote the distance of statex from setX . Then,
we can give the following definition:

Definition 4. A subsetX of the state space of system
(1) is said to berobustly uniformly asymptotically stable if,
for any ζ ∈ Z andη(·) ∈ Ωη ,

a) given at0 ∈ T and aε > 0 there existsδ (ε)> 0 such
that d(x0,X )< δ (ε) implies d(x(t; t0,x0),X )< ε for all
t0 ∈ T and t ≥ t0,

b) there exists a setD , X ⊂ D ⊆ R
n such that

lim
t→∞

d(x(t; t0,x0),X ) = 0 for any t0 ∈ T and every initial

conditionx(t0) = x0 ∈ D .

Set D is said to be a domain of attraction of therobustly
uniformly asymptotically stable s setX .

In the following Lemma, we establish conditions of robust
uniform ultimate boundedness of monotone systems

.
y = h(t,y,ζ ,η(t)) (20)

with h(t,y,ζ ,η)) being a quasi-monotone nondecreasing
function:

Lemma 2. If there exist positive real numbersr1, r2, and
ε such that

h(t,rw,ζ ,η)≤−εrw ∀r ∈ [r1,r2], ∀t ∈ T (21)

for all ζ ∈ Z and η(·) ∈ Ωη , then system (20) is ro-
bustly uniformly ultimately bounded in setR(Iq,r1w) with
R(Iq,r2w) as domain of attraction.

Proof. Consider the linear system

ż(t) =−εz(t) (22)

wherez ∈R
q. Then,

z(t; t0,r2w) = r2we−ε(t−t0) ∀t ≥ t0 (23)

and
z(t; t0,r2w)≤ r1w ∀t ≥ t0+ t∗ (24)

with t∗ given by

t∗ =
1
ε

log
r2

r1

We claim that, for anyζ ∈ Z andη(·) ∈ Ωη ,

y(t; t0,r2w)≤ z(t; t0,r2w) ∀t ∈ [t0, t0+ t∗] (25)

It is clear that inequality (25) is satisfied fort = t0. This is
also true for allt ∈ [t0, t0+ t∗] because otherwise there would
exist a time instantt ∈ [t0, t0+ t∗] and an indexj such that

yi(t; t0,r2w)≤ zi(t; t0,r2w) i = 1,2, ...,q i 6= j (26)

y j(t; t0,r2w) = z j(t; t0,r2w) (27)

andy j(t +δ t; t0,r2w)> z j(t +δ t; t0,r2w) for all δ t belonging
to a time-interval(0,∆t). The latter relation, however, could
not be verified because, taking into account that function

h(t,y,ζ ,η) is quasi-monotone nondecreasing, from (26),
(27), (23), and (24) it would follow that

ẏ j(t; t0,r2w)− ż j(t; t0,r2w) =

= h j(t,y(t; t0,r2w),ζ ,η)+ εz j(t; t0,r2w)

≤ h j(t,z(t; t0,r2w),ζ ,η)+ εz j(t; t0,r2w)

≤ h j(t,e
−ε(t−t0)r2w,ζ ,η)+ εe−ε(t−t0)r2w

≤ −εe−ε(t−t0)r2w+ εe−ε(t−t0)r2w = 0

for all t ≥ t0 such that

r1 ≤ e−ε(t−t0)r2 ≤ r2

or equivalently, such that

t0 ≤ t ≤ t0+ t∗.

Therefore, (25) is indeed satisfied.
Now, let y0 ∈ R(1q,r2w). Theny0 ≤ r2w and since system

(20) is monotone, it follows that

y(t; t0,y0)≤ y(t; t0,r2w),

or all t0 ∈ T and t ≥ t0. This inequality together with (26)
and (24) implies that

y(t; t0,y0)≤ r1w ∀t ≥ t0+ t∗.

This, in turn,implies thatR(Iq,r1w) is a robustly uniformly
ultimately bounded set of system (20) andR(Iq,r1w) is a
domain of attraction.�

Let us consider subsetsX of system’s state space that
include the set of all possible equilibrium states of the
system, that is,X0 ⊆ X where

X0 = {x ∈ R
n : (∃ζ ∈ Z ,η ∈ H : f (t,x,ζ ,η) = 0 ∀t ∈ T )}

(28)

In the following theorem, necessary and sufficient condi-
tions for the robust uniform ultimate boundedness of systems
(1) in setX are established:

Theorem 3. If for a continuous functionv(x), v : Rn →
R

q there exist a quasi-monotone nondecreasing function
h(t,y,ζ ,η),h : T × Y ×Z ×H → R

q and positive real
numbersr1, r2, andε such that

P(v,r1w)⊆ X ⊂ P(v,r2w) (29)

v̇(1)(x(t))≤ h(t,v(x),ζ ,η) (30)

h(t,rw,ζ ,η)≤−rεw ∀r ∈ [r1,r2], ∀t ∈ T (31)

then system (1) is robustly uniformly ultimately bounded in
setX andP(v,r2w) is a domain of attraction.

Proof. According to Lemma 2, from condition (31) it
follows that R(Iq,r1w) is a robustly uniformly ultimately
bounded set of system (20) andR(Iq,r2w) is as domain
of attraction. Since, functionh(t,y,ζ ,η) is quasi-monotone



nondecreasing, from (30) it follows that system is a compari-
son system of (20) associated with the vector valued function
v(x). Therefore,

v(x0)≤ y0 (32)

implies
v(x(t; t0,x0))≤ y(t; t0,y0) ∀t ≥ t0. (33)

Now, if x0 ∈ P(v,r2w) then, by virtue of (29),

v(x0)≤ r2w

and setting
y0 = r2w

from (32)-(33) it follows that

v(x(t; t0,x0))≤ y(t; t0,r2w) ∀t ≥ t0. (34)

This implies that there exists at∗ such that

v(x(t; t0,x0))≤ r1w ∀t ≥ t0+ t∗ (35)

because,R(Iq,r1w) is a robustly uniformly ultimately
bounded set of system by conditions (20) andR(Iq,r2w) a
corresponding domain of attraction. Consequently, ifx0 ∈
P(v,r2w) then v(x(t; t0,x0)) ≤ r1w ∀t ≥ t0 + t∗or equiva-
lently v(x(t; t0,x0)) ∈ P(v,r1w), that is by virtue of (29)
v(x(t; t0,x0)) ∈ X , ∀t ≥ t0+ t∗. Therefore,X is a robustly
uniformly ultimately bounded setX of system (1) and
P(v,r2w) is a domain of attraction.�

Remark 3. From the proof of Lemma 2, it follows that,
under the hypotheses of this theorem, all initial statesx0 be-
longing to the domain of attractionP(v,r2w) are transferred
to the target setX in a time non exceedingtmin where

tmin =
1
ε

log
r2

r1
. (36)

Remark 4. In section III, it has been shown that
the existence of a quasi-monototone nondecreasing func-
tion h(t,y,ζ ,η(t)) satisfying inequality (30) and inequality
h(t,w,ζ ,η) ≤ 0 for all ζ ∈ Z , η(·)∈ Ωη and ∀t ∈ T , is
a necessary and sufficient condition for the positive invari-
ance of setP(v,w) w.r.t. system (1). Therefore, under the
hypotheses of Theorem 3, besides robust uniform ultimate
stability in setX , the positive invariance of all setsP(v,rw)
∀r ∈ [r1,r2] is guaranteed.

Next, we use this result for establishing conditions of
uniform ultimate stability of system in a polyhedral set

R(G,w)
de f
= {x ∈R

n : Gx ≤ w}

G ∈ R
q×n, w ∈ R

q with respect to the important class of
nonlinear systems with both parameter uncertaintiesζ and
input additive disturbancesη(t) described by differential
equations of the form

ẋ(t) = g(t,x(t),ζ )+Eη(t) (37)

A direct consequence of Theorem 3 is the following result:

Theorem 4. If there exists a quasi-monotone nondecreas-
ing functionh∗(y,ζ ),h∗ : Y ×Z →R

q such that

P(v,r1w)⊆ X ⊂ P(v,r2w)

Gg(x,ζ )≤ h∗(Gx,ζ )

h∗(rw,ζ )+ d ≤−rεw ∀r ∈ [r1,r2], ∀ζ ∈ Z ,

whered =
[

d1 d2 · · · dq1
]T

,

di = max
η∈Ωη

{(GEη)i} i = 1,2, ...,q

thenX is ultimately bounded andP(v,r2w) is a domain of
attraction of system (37).

V. NUMERICAL EXAMPLE

In order to illustrate the results established in Sections III
and IV, we provide a numerical example of a control problem
for bilinear dynamical systems.

Let us consider the first order bilinear dynamical system

ẋ(t) =−1.15x(t)+ u(t)+0.1x(t)u(t)+η(t) (38)

whereη(t) ∈ Ωη , Ωη being the set of piecewise continuous
functions fromT to H = [−0.3 1]. The problem concerns
the determination of a linear state-feedback control law

u(t) = lx(t) (39)

such that the resulting closed-loop system

ẋ(t) = (−1.15+ l)x(t)+0.1lx2(t)+η(t) (40)

is robustly uniformly ultimately bounded in the region

X = {x ∈ R | −0.5≤ x ≤ 0.7} , (41)

and
D = {x ∈R | −1≤ x ≤ 1.4}

is a corresponding domain of attraction.
Settingv(x) = Gx with

G =

[

1
−1

]

, w =

[

0.7
0.5

]

, (42)

setsX andD can be equivalently written asX =R(G,w)=
{x ∈ R : Gx ≤ w} and D = R(G,2w). Therefore, according
to Theorem 4, the control law (39) is a solution to the control
problem if there exists a quasi-monotone nondecreasing
function h∗(y) and a positive real numberε such that

Gg(x) =

[

(−1.15+ l)x(t)+0.1lx2(t)
−(−1.15+ l)x(t)−0.1lx2(t)

]

≤ h∗(Gx) (43)

and
h∗(rw)+ d ≤−εrw ∀r ∈ [1,2], (44)

where

d =





max
η∈[−0.3,1]

{η}

max
η∈[−0.3,1]

{−η}



=

[

1
0.3

]



Condition (43) is satisfied for

h∗(y) =

[

(−1.15+ l)y1+0.1max{0, l}max{y2
1,y

2
2}

(−1.15+ l)y2+0.1max{0,−l}max{y2
1,y

2
2}

]

(45)
It is clear that functionh∗(y) is quasi monotone nondecreas-
ing for y1 ≥ 0 ,y2 ≥ 0. Thus condition (44) becomes

h∗(rw)+ d ≤−εr

[

0.7
0.5

]

∀r ∈ [1,2],

where

h∗(rw) =

[

(−1.15+ l)0.7r+0.1max{0, l}(0.49)r2+
(−1.15+ l)0.5r+0.1max{0,−l}(0.49)r2

]

.

It is a simple task to show that this inequality is satisfied
if

l ≤−0.279 (46)

VI. CONCLUSIONS

In this article the robust positive invariance of sets de-
scribed by nonlinear inequalities of the formv(x) ≤ w and
the uniform ultimate boundedness of nonlinear systems has
been investigated. The class of general parameter uncertain
continuous-time dynamical systems affected by exogenous
disturbances is considered. The approach presented here
is based on the establishment of a monotone nonlinear
comparison system and then deriving positive invariance
and uniform ultimate boundedness properties for the original
system from the corresponding properties of the comparison
system. It is worth noting that the so obtained conditions of
positive invariance are both necessary and sufficient.
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