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A polyhedral approach to the stability analysis and feedback
stabilization of networked control systems

Nikolaos Athanasopoulos, George Bitsoris, and Leonidas Dritsas

Abstract— In this note, the stability analysis and control
design of Networked Control Systems (NCS) with bounded
transmission delays, constant and unknown or time varying,is
investigated using polyhedral Lyapunov functions. First,condi-
tions guaranteeing stability are formulated for the equivalent
augmented discrete-time system with structured uncertainties.
Then, algebraic conditions leading to the computation of a
linear state feedback controller for a NCS with bounded time
varying delays are established. Both the stability analysis and
synthesis problem are reduced to linear programming methods,
a welcome consequence stemming from the choice of polyhedral
Lyapunov functions.

I. INTRODUCTION

The major control challenge in analysis and synthesis of
Networked Controlled System (NCS) is to face the problems
due to the presence of uncertain network-induced delays [1],
[2]. These delays stem from the information from sensor to
controller and from controller to actuator. For the case of a
discrete static feedback implemented with a periodh, these
delays can be lumped into a single termτk, wherek refers
to the sampling instantkh.

Significant effort has been invested in developing control
methodologies to handle the network delay effect in NCSs
(see surveys [1], [2]). Robust stability conditions for NCS
with varying network-induced delays have been recently
established using quadratic [3], [4] and non-quadratic Lya-
punov functions [5]. In [6], LMI formulation is used for
robust stability analysis and controller synthesis for NCS
subject to uncertain time-varying delays bounded by a sam-
pling period; the case of NCS with delays longer than one
sampling period is presented in [7], [8]. By treating the
uncertain NCS delay as a time-varying parameter uncertainty,
sufficient conditions, expressed as LMIs, for the existenceof
a static stabilizing state feedback controller appear in [8], [9],
[10]. Also, switched system approaches have recently been
developed in [11], [12].

Most approaches use as analysis and synthesis tools ei-
ther Lyapunov-Krasovskii functionals or quadratic Lyapunov
functions. Recently, in [5], [13] polyhedral Lyapunov func-
tions were used for the analysis and design of networked
control systems that are described by ARMA models. The
notion of the existence of invariant sets was also introduced
for this class of systems, and stabilizing laws have been
considered.
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In this article the NCS are described by state equations
with an augmented state vector composed of the states at two
successive time instants and polyhedral Lyapunov functions
are used. . The benefit of this approach is twofold: First,
the choice of polyhedral Lyapunov functions along with the
decomposition of the matrix exponential to its constituent
matrices leads to the development of a methodology of
stability analysis and control design based on the solution
of a linear programming problems. Second, working in the
augmented state space less conservative results are produced,
since no extra properties guaranteeing the existence of pos-
itively invariant or contractive sets are imposed.

The article is organized as follows: Section II refers to
the modelling aspects of NCS with varying transmission
delays. In Section III, stability conditions for NCS systems
are established. These conditions lead to the development
of a method for the determination of the admissible delay
range for systems controlled by linear state-feedback. In
Section IV, the design problem of linear state-feedback
controllers guaranteeing the stability for any delay belonging
to a prespecified range is investigated. A numerical example
concerning the control design of linear NCS is given in
section V.

Throughout this paper, capital letters denote real matrices
and lower case letters denote column vectors or scalars.
For two real vectors x =

[

x1 x2 ... xn
]T

and y =
[

y1 y2 ... yn
]T

x < y (x ≤ y) is equivalent toxi <

yi (xi ≤ yi) for i = 1,2, ...,n. Similar notation holds for
matrices. For real vectorsx and matricesH with nonnegative
entries we use the simplified notationsx ≥ 0 and H ≥ 0
respectively. Given a real matrixH = (hi j ), H+ = (h+i j )
and H− = (h−i j ) are the nonnegative matrices with entries
h+i j = max{hi j ,0} andh−i j =max{−hi j ,0} respectively. Thus,
H = H+−H−. Finally, for a vectorx∈ R

n, ||x|| denotes its
infinity norm. 0n and 1n denote then×n zero and identity
matrices respectively.

II. NCS-DYNAMICS

The dynamics of the NCS under investigation is described
by the combination of a continuous time linear time invariant
plant with a discrete time controller and its configuration
is shown in Figure 1. The sampling periodh is assumed
to be constant and known, whereas both controller and
actuator (including the zero-order-hold – ZOH) are event-
driven devices in the sense that they update their outputs as
soon as they receive a new sample. The state vectorx is
sampled periodically, transmitted through the network, fed
to the discrete–time controller which computes the control



action and transmits it to the event–driven actuator after an
uncertain delay. The plant receives this command after an
uncertain delayτk.

Fig. 1. NCS structural framework

In this article, the case of systems with less than one
sampling period delayτk, that is τk < h, is considered.
For the control architecture shown in Figure 1, the system
dynamics is described below, fort ∈

[

kh+ τk,kh+h+ τk+1
)

:

ẋ(t) = Acx(t)+Bcû(t), y(t) =Ccx(t), (1)

û(t) = u(k−1), t ∈
[

kh−h+ τk−1
, kh+ τk

)

(2)

whereAc ∈ R
n×n, Bc ∈ R

n×m, Cc ∈ R
s×n. Signal û(t) repre-

sents the most recent control action presented to the event–
driven actuator at the time instancet within a sampling
period, that is within the time interval[kh, kh+h). The total
delay within thekth sampling period is denoted byτh and
is assumed upper bounded, i.e. 0≤ τmin < τk ≤ τmax= h. In
general it is a time varying and uncertain quantity, reflecting
the nature of the network involved, the network load, etc.

Since the actuation time instances are not equidistant, the
piecewise constant control action ˆu(t) experiences a “jump”
at the uncertain time instancekh+ τk. Thus, it is not in
general possible to treat the ensuing NCS in a standard
sampled-data or time–delayed setting [2], [15]. However, the
exact discretization of (1),(2) is straightforward and is given
by [14]:

x(k+1) = Φx(k)+Γ0(τk)u(k)+Γ1(τk)u(k−1) (3)

whereΦ = exp(Ach) and

Γ0(τk) =

h−τk
∫

0

exp(Act)Bcdt ,

Γ1(τk) = −Γ0(τk)+

h
∫

0

exp(Act)Bcdt. (4)

The uncertain delay can always be written asτk = τ◦+τk
∆

with τ◦ denoting the selected nominal value,τo ∈ [τmin,τmax].
Consequently, matricesΓ0(τk), Γ1(τk) can be decomposed
into constant and known nominal partsΓ0(τ◦), Γ1(τ◦) and
uncertain, although bounded, parts∆Γ0(τk,τ◦), ∆Γ1(τk,τ◦),
that is

Γi(τk)
△
= Γi(τ◦)+∆Γi(τk

,τ◦) i = 0,1

where

Γ0(τ◦) =
h−τ◦
∫

0

exp(Act)Bcdt, Γ1(τ◦) =
h
∫

h−τ◦
exp(Act)Bcdt

∆Γ1(τk
,τ◦) =

h−τ◦
∫

h−τk

exp(Act)Bcdt =−∆Γ0(τk
,τ◦). (5)

System (3) can thus be equivalently written in the form

x(k+1) = Φx(k)+ [Γ0(τ◦)+∆Γ0(τk
,τ◦)]u(k)+

+[Γ1(τ◦)+∆Γ1(τk
,τ◦)]u(k−1). (6)

When a discrete–time linear state feedback lawu(k) =Fx(k)
is applied, the closed–loop dynamics becomes

x(k+1) =
[

Φ+Γ0(τk)F
]

x(k)+Γ1(τk)Fx(k−1) (7)

or

x(k+1) = Φx(k)+ [Γ0(τ◦)+∆Γ0(τk
,τ◦)]Fx(k)+

+[Γ1(τ◦)+∆Γ1(τk
,τ◦)]Fx(k−1). (8)

III. STABILITY ANALYSIS OF NCS

Equation (8) describing a delayed discrete-time system
can be equivalently written in state equations form in the
augmented state space. Setting

z(k)
△
=
[

x(k)T x(k−1)T
]T

,

we establish the equivalent description for the closed–loop
dynamics

z(k+1) =

[

Φ+Γ0(τk)F Γ1(τk)F
In 0n

]

z(k). (9)

Using (8), equation (9) can be equivalently written as

z(k+1) =

[

Φ+Γ0(τ◦)F Γ1(τ◦)F
In 0n

]

z(k)+

+

[

∆Γ0(τk,τ◦)F ∆Γ1(τk,τ◦)F
0n 0n

]

z(k). (10)

Thus, system (9) is described by a state equation of the form

z(k+1) = A◦
dz(k)+∆Ad(τk

,τ◦)z(k)

and is decomposed into a nominal system part characterized
by matrix A◦

d ∈ R2n×2n

A◦
d =

[

Φ+Γ0(τ◦)F Γ1(τ◦)F
In 0n

]

which is a function ofτ◦, the selected gainF and an
uncertain part∆Ad(τk,τ◦) ∈ R

2n×2n

∆Ad(τk
,τ◦) =

[

∆Γ0(τk,τ◦)F ∆Γ1(τk,τ◦)F
0n 0n

]

being clearly a function of the uncertain delayτk and of the
selected gainF.

Nominal matrixA◦
d is time invariant and can be computed

given the continuous time dynamics, the sampling period



and the static feedback gain. Furthermore, using the relation
∆Γ1(τk) = −∆Γ0(τk), the uncertain “perturbation” matrix
∆Ad can be expressed as

∆Ad(τk
,τ◦) =

[

−∆Γ1(τk,τ◦)F ∆Γ1(τk,τ◦)F
0n 0n

]

.

In the sequel, for notation brevity, we omit the dependence
of ∆Ad(τk,τ◦) and∆Γ1(τk,τ◦) on τk andτ◦ and we use the
notations∆Ad and∆Γ1 respectively.

Inhere, the following issue is addressed: Given a controller
u(k) = [F 0]T z(k) which stabilizes the nominally delayed
closed–loop system , that is such that

∣

∣eig(A◦
d)
∣

∣< 1, what is
it to be expected in terms of stability when the same control
law is used for the uncertain discrete–time system in (10)?
Moreover, since the varying network delay is reflected into
the uncertain matrices∆Ad and∆Γ1, is it possible to quantify
the answer in terms of a “delay range” for which asymptotic
stability of the closed–loop system is guaranteed?

Stability of uncertain varying systems

x(k+1) = A(τ)x(k) (11)

with τ belonging to a set τ ∈ [τmin,τmax] is guaranteed
if there exists a common Lyapunov function for all mem-
bers Sτ of the family of time invariant systems (11) with
τ ∈ [τmin,τmax]. Such stability conditions are given in the
following lemma:

Lemma 1: If for a matrix G ∈ R
p×2n

, max
1≤ j≤p

{(Gx) j >

0} ∀x 6= 0, a vectorw∈ R
p with positive components and

any τ ∈ [τmin,τmax] there exist a positive real numberε < 1
and matricesH(τ) ∈ R

p×p satisfying the relations

GA(τ) = H(τ)G (12)

H(τ)w≤ εw (13)

H(τk)≥ 0 (14)

then system (11) is asymptotically stable.
This Lemma is an extension to uncertain systems of a basic

result developed for time-invariant systems [17]. Relations
(12) and (13) are the necessary and sufficient conditions for
the positive definite scalar function

v(z)
△
= max

1≤i≤2n

{

(Gz)i

wi

}

to be a Lyapunov function of all systems (11) withτ ∈
[τmin,τmax]. Moreover,v(x(k+ 1)) ≤ εv(x(k)), that is, ε is
a measure of the exponential rate convergence of statex(k)
to the equilibriumx= 0.

Application of this result to system (9) provides stability
conditions that relate the network delay with the feedback
controller gains:

Theorem 2:If for a matrix G ∈ R
p×2n, max

1≤ j≤p
{(Gx) j >

0} ∀x 6= 0, a vectorw ∈ R
p with positive components and

anyτk ∈ [τmin,τmax] there exist a positive real numberε < 1
and matricesH(τk) ∈R

p×p satisfying the relations

G

[

Φ+Γ0(τk)F Γ1(τk)F
In 0n

]

= H(τk)G (15)

(16)

H(τk)≥ 0 (17)

then system (8) is asymptotically stable.
A direct consequence of this result is the following corol-

lary where conditions guaranteeing the asymptotic stability
of NCS with a fixed delayτ∗ are established.

Corollary 3: If there exist a matrix G ∈
R

p×2n
, max

1≤ j≤p
{(Gx) j > 0} ∀x 6= 0 , a vector w ∈ R

p

with positive components, a nonnegative real number
ε(τ∗)< 1 and a matrixH◦(τ∗) ∈ R

p×p such that

G

[

Φ+Γ0(τ∗)F Γ1(τ∗)F
In 0n

]

= H(τ∗)G (18)

H(τ∗)w< ε(τ∗)w (19)

H(τ∗)≥ 0 (20)

then system (8) with fixed delayτ∗ is asymptotically stable.
Remark 4:The above relations can be used to deter-

mine the delay bounds ensuring stability for a given linear
state feedback gain when constant and unknown delays are
present. In particular, for a certain gainF, the following
linear programming problems

min
H(τ∗), ε(τ∗)

{ε(τ∗)} (21)

subject to (18)-(20) are solved for different values of the
delay τk. If the optimal value ε(τ∗) is less than one,
asymptotic stability is ensured for system (9) for the delay
τk = τ∗.

IV. ROBUST STATE FEEDBACK STABILIZATION

Although conditions of Theorem 2 guarantee asymptotic
stability for a constant and unknown delayτ∗, they cannot be
applied in a straightforward manner to the case of uncertain
time varying delays. This is due to the fact that in this
case matricesΓ0(τk) and Γ1(τk) depend on an unknown
and time-varying parameterτk and as a result this is also
true for the undetermined matrixH(τk). A similar problem
is faced when LMI methods or Model Predictive Control
approaches to stabilization of linear parameter varying sys-
tems are used. Another approach consists in modelling the
delay-induced terms∆Γ0(τk,τ◦) and ∆Γ1(τk,τ◦) using a
polytopic approximation. In a recent work [18] an approach,
based on convex polytopic inclusions, to the construction
of discrete-time models of linear systems with time-varying
input delays has been developed. In this article, the uncertain
matrices∆Γ0(τk,τ◦) and∆Γ1(τk,τ◦) are expressed in terms
of the constituent matrices of the open loop matrixAc. This
decomposition, combined with the use of polyhedral Lya-
punov functions, leads to conditions guaranteeing asymptotic
stability of NCS controlled by linear state feedback.

The exponentialexp(Act) of a matrix Ac can always be
written as

exp(Act) = a1(t)Z1+a2(t)Z2+ ...+an(t)Zn (22)



where Zi ∈ R
n×n i = 1,2, ...,n are real matrices, the so

called “constituent matrices”, andai(t) i = 1,2, ...,n are
real functions corresponding to the eigenvaluesλi of matrix
Ac. To each real eigenvalueλ with multiplicity r, there
correspond functionsaq(t) given by relationsaq(t) = tqeλ t

q= 0,1, ..., r−1 and to each pair of conjugate complex eigen-
valuesλ = σ ± jω of multiplicity r there correspond pairs
of functionsacq(t) = tqeσt cos(ωt) andasq(t) = tqeσt sin(ωt)
q= 0,1, ..., r −1. Therefore,

∆Γ1(τk
,τ◦) =

h−τ◦
∫

h−τk

exp(Act)Bcdt =

=
n

∑
i=1

h−τ◦
∫

h−τk

ai(t)dtZiBc =
n

∑
i=1

ci(τk)ZiBc. (23)

whereci(τk) are integrals of the form

ci(τk) =

h−τ◦
∫

h−τk

tqeλ tdt

in the case of a real eigenvalueλ , or

ci(τk) =

h−τ◦
∫

h−τk

tqeσt cos(ωt)dt

and

ci(τk) =

h−τ◦
∫

h−τk

tqeσt sin(ωt)dt

in the case of a pair of conjugate complex eigenvaluesλ =
σ ± jω . We are in a position to state the following:

Theorem 5:If for a matrix G ∈ R
p×2n , max

1≤ j≤p
{(Gx) j >

0 ∀x 6= 0 and a vectorw ∈ R
p with positive components

there exist realp× p matricesH◦,HZ1,HZ2, ...,HZn, and a
real numberε < 1 such that

G

[

Φ+Γ0(τ◦)F Γ1(τ◦)F
In 0n

]

= H◦G (24)

G

[

−ZiBF ZiBF
0n 0n

]

= HZi G i = 1,2, ...,n (25)

H◦+
n

∑
i=1

ci(τk)HZi ≥ 0 ∀τk ∈ [τmin,τmax] (26)

(

H◦+
n

∑
i=1

ci(τk)HZi

)

w≤ εw ∀τk ∈ [τmin,τmax] (27)

then the equilibriumx = 0 of system (8) is asymptotically
stable.

Proof: From (23) and (25) it follows that

G

[

∆Γ0(τk,τ◦)F ∆Γ1(τk,τ◦)F
0n 0n

]

=

= G

[

−∑n
i=1ci(τk)ZiBcF ∑n

i=1ci(τk)ZiBcF
0n 0n

]

=

=
n

∑
i=1

ci(τk)G

[

−ZiBcF ZiBcF
0n 0n

]

=

=
n

∑
i=1

ci(τk)HZi G

Thus,

G

[

Φ+Γ0(τk)F Γ1(τk)F
In 0n

]

=

= G

[

Φ+Γ0(τ◦)F Γ1(τ◦)F
In 0n

]

+

G

[

−∆Γ1(τk,τ◦)F ∆Γ1(τk,τ◦)F
0n 0n

]

=

= H◦G+
n

∑
i=1

ci(τk)HZi G=

(

H◦+
n

∑
i=1

ci(τk)HZi

)

G.

Taking into account (26) and (27) we conclude that hypothe-
ses of Theorem 1 are satisfied for

H(τk) = H◦+
n

∑
i=1

ci(τk)HZi

Therefore the equilibriumx= 0 of system (8) is asymptoti-
cally stable.�

Remark 6:Since τ◦ ∈ [τmin,τmax], there exists aτk ∈
[τmin,τmax] such thatci(τk) = 0. Then, for conditions (26)
and (27) to be satisfied it is necessary thatH◦ ≥ 0 and
H◦w< w. These relations together with (24) guarantee the
asymptotic stability of the positive invariance of setP(G,w)
w.r.t. to the nominal augmented system

z(k+1) =

[

Φ+Γ0(τ◦)F Γ1(τ◦)F
In 0n

]

z(k)

Therefore, conditions (24)-(27) of Theorem 4 can be parti-
tioned into two groups: The first one, composed of relations
(24), H◦ ≥ 0 andH◦w< w refers to the nominal system and
guarantee the asymptotic stability of the equilibriumx = 0
and the positive invariance of setP(G,w) w.r.t. this system.
These conditions do not depend on the delay timeτk. The
second group is composed of relations (25)-(27) and define
implicitly the range of admissible delaysτk for which the
asymptotic stability of the equilibriumx= 0 and the positive
invariance of set P(G,w) is preserved.

The next step, is to replace conditions (26) and (27) by
relations non depending on the delay timeτk but only on the
range[τmin,τmax]. Setting

HZi = H+
Zi
−H−

Zi

relations (26) and (27) can be written as

H◦+
n

∑
i=1

ci(τk)H+
Zi
−

n

∑
i=1

ci(τk)H−
Zi
≥ 0 (28)

(

H◦+
n

∑
i=1

ci(τk)H−
Zi
−

n

∑
i=1

ci(τk)H+
Zi

)

w≤ εw , (29)



∀τk ∈ [τmin,τmax]. Let

ci max
△
= max

τmin≤τk≤τmax

{ci(τk)}.

Then

H◦+
n

∑
i=1

ci(τk)HZi =

= H◦+
n

∑
i=1

ci(τk)H+
Zi
−

n

∑
i=1

ci(τk)H−
Zi

0≥

≥ H◦−
n

∑
i=1

max{ci max,0}H+
Zi
+

n

∑
i=1

min{ci min,0}H−
Zi

∀τk ∈ [τmin,τmax] because, by definition,H+
Zi
≥ 0 andH−

Zi
≥0.

Therefore, condition (26) is satisfied if

H◦−
n

∑
i=1

max{ci max,0}H+
Zi
+

n

∑
i=1

min{ci min,0}H−
Zi
≥ 0

Using similar arguments we can also prove that condition
(27) is satisfied if
(

H◦+
n

∑
i=1

min{ci min,0}H+
Zi
−

n

∑
i=1

max{ci max,0}H−
Zi

)

w≤ εw.

We are now in a position to establish the following result
where no conditions depending on the uncertain or time
varying delay timeτk are present.

Theorem 7:If for a matrix G∈R
p×n, max

1≤ j≤p
{(Gx) j}> 0

∀x 6= 0 and a vectorw∈R
p with positive components, there

exist nonnegative matricesH◦,H+
Z1
,H−

Z1
,H+

Z2
,H−

Z2
...,H+

Zn
,H−

Zn
such that

G

[

Φ+Γ0(τ◦)F Γ1(τ◦)F
In 0n

]

= H◦G (30)

G

[

−ZiBF ZiBF
0n 0n

]

= HZi G i = 1,2, ...,n (31)

H◦−
n

∑
i=1

max{ci max,0}H+
Zi
+

n

∑
i=1

min{ci min,0}H−
Zi
≥ 0 (32)

(

H◦+
n

∑
i=1

min{ci min,0}H+
Zi
−

n

∑
i=1

max{ci max,0}H−
Zi

)

w≤ εw

(33)
then the equilibriumx = 0 of system (8) is asymptotically
stable and setP(G,w) is positively invariant for any time
varying delayτk ∈ [τmin,τmax].

Conditions (32) and (33) can be simplified in the case
when the open-loop matrixAc has real eigenvalues. In
this case, ifτ◦ = τmin = 0, then parametersci(τk) are
nonnegative and increasing in[τmin,τmax]. This implies

ci max
△
= ci(τmax) =

h−τ◦
∫

h−τmax

tqeλ tdt ≥ 0

and

ci min
△
= ci(τmin) =

h−τ◦
∫

h−τmin

tqeλ tdt = 0.

Therefore, in this case, conditions (32) and (33) can be
equivalently expressed as

H◦
0 −

n

∑
i=1

ci(τmax)H
+
Zi
≥ 0

(

Ho−
n

∑
i=1

ci (τmax)H−
Zi

)

w≤ εw

Thus, we establish the following corollary of Theorem 6:
Corollary 8: If the open-loop- matrixAc has real eigen-

values and for a matrixG∈R
p×n , max

1≤ j≤p
{(Gx) j}> 0 ∀x 6=0

and a vectorw∈ R
p with positive components, there exist

nonnegative matricesH◦,H+
Z1
,H−

Z1
,H+

Z2
,H−

Z2
...,H+

Zn
,H−

Zn
such

that

G

[

Φ+Γ0(τ◦)F Γ1(τ◦)F
In 0n

]

= H◦G (34)

G

[

−ZiBF ZiBF
0n 0n

]

= HZi G i = 1,2, ...,n (35)

H◦−
n

∑
i=1

ci(τmax)H
+
Zi
≥ 0 (36)

(

H◦−
n

∑
i=1

ci (τmax)H−
Zi

)

w≤ εw (37)

then the equilibriumx = 0 of system (8) is asymptotically
stable and setP(G,w) is positively invariant for any time
varying delayτk ∈ [τmin,τmax].

A solution to relations (30)-(33) can be obtained by defin-
ing an optimization problem having these relations as linear
constraints. Thus, a state-feedback control lawu(k) = Fx(k)
that stabilizes the NCS for any delay timeτk ∈ [τmin,τmax]
is determined by solving the linear programming problem

min
ε,F,H◦,H◦

1 ,H
+
Zi
,H−

Zi
i=1,2,...,n

{ε} (38)

under linear constraints

G

[

Φ+Γ0(τ◦)F Γ1(τ◦)F
In 0n

]

= H◦G (39)

G

[

−ZiBF ZiBF
0n 0n

]

= HZi G i = 1,2, ...,n (40)

H◦−
n

∑
i=1

max{ci max,0}H+
Zi
+

n

∑
i=1

min{ci min,0}H−
Zi
≥ 0 (41)

(

H◦+
n

∑
i=1

min{ci min,0}H+
Zi
−

n

∑
i=1

max{ci max,0}H−
Zi

)

w≤ εw

(42)

H◦
,H+

Z1
,H−

Z1
,H+

Z2
,H−

Z2
...,H+

Zn
,H−

Zn
≥ 0p. (43)

If the optimal value of parameterε is less than one, then
the corresponding control lawu(k) = Fx(k) is a solution to
the problem under consideration. It should be emphasized
that, according to Theorem 2, minimization of parameterε
results in improved transient behavior, because parameterε
is a measure of the exponential convergence of the state to
the equilibrium of the augmented delayed system.



V. NUMERICAL EXAMPLE

In this example, the control synthesis problem is investi-
gated for the benchmark system [4] with system matrices

Ac =

[

0 1
0 −0.1

]

, Bc =

[

0
0.1

]
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Fig. 2. State response and control effort for the closed loopNCs, with
initial conditionsx(−1) = x(0) = [1.5 0.5]T (x1 denoted by “.” while x2 is
denoted by “o”.)

The sampling period is chosen to beh = 0.82sec. The
control design problem consists in finding a linear state
feedback control lawu(k) = Fx(k) such that the resulting
closed-loop NCS is asymptotically stable for time varying
uncertain delaysτk ∈ [τmin τmax], whereτmin = 0, τmax=
h= 0.82sec. In this setting, we choose the nominal value of
the delayτo to be equal to the minimum value, that isτo =
τmin = 0. Since all eigenvalues of the open-loop continuous-
time system are real, that isλ1 =0, λ2=−0.1, we can use the
results stated in Corollary 8. Solving the linear programming
problem (39)-(43) with performance index (38), the optimal
solution of the optimal value isε∗ = 0.79. Thus, a stabilizing
control law is computed with feedback gain

F = [−0.94 −4.98].

In Fig. 2, the state response of the closed-loop system as well
as the corresponding control strategy are shown, for initial
conditionx(−1) = x(0) = [1.5 0.5]T .

VI. CONCLUSIONS

The main novelty of the approach presented in this article
is, first, the use of polyhedral Lyapunov functions for the
stability analysis and control design of networked control
systems and, second, the decomposition of the matrix expo-
nential to its constituent matrices in order to alleviate the
uncertainty factor depending on the time varying delayτk. It
has been shown that the computational effort for producing
the results is small since only linear optimization problems

are involved. It is also worth mentioning that when we are
only interested in stability with no additional requirements of
existence of positively invariant sets, less conservativeresults
are obtained.
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