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Stability Analysis and Control of Bilinear

Discrete-Time Systems: A Dual Approach

Nikolaos Athanasopoulos∗ and George Bitsoris ∗

∗ Control Systems Laboratory, University of Patras, 26500 Patras,
Greece (e-mail: {nathanas,bitsoris}@ece.upatras.gr)

Abstract: In this article, the stabilization problem of discrete-time bilinear systems by state-
feedback control is investigated. First, necessary and sufficient conditions guaranteeing positive
invariance or/and attractivity of polyhedral sets of general form with respect to quadratic
systems are provided. These results are then used to establish systematic methods of determining
linear and nonlinear state feedback control laws making a prespecified polyhedral set a domain
of attraction with respect to the resulting closed-loop system, even in the presence of input
constraints.

Keywords: bilinear discrete-time systems, constrained control, dual comparison principle.

1. INTRODUCTION

Bilinear systems are systems with a special type of non-
linearity in the dynamics, consisting of second order poly-
nomial products between the input and state variables.
Stability analysis as well as control design for this class
of nonlinear systems still remains a topic of interest for
practical reasons, as many processes in engineering and
biology can be naturally modelled by bilinear systems
(Mohler et al. (1980)). Also, bilinear approximations are
better than the linear ones, especially when well estab-
lished identification algorithms can be used (Favoreel et al.
(1999)).

For the case of continuous-time systems, in recent works,
(Amato et al (2009), Tarbouriech et al (2009)), quadratic
Lyapunov functions were used, while in Athanasopou-
los et al (2010) the authors choose polyhedral Lyapunov
functions. For discrete-time systems, most approaches are
based on model-based predictive control theory and feed-
back linearization, for instance Cannon et al. (2003),
Fontes et al. (2008), Ekman (2005). Another possible
approach, which leads to the computation of stabilizing
linear state feedback control laws and polyhedral approx-
imations of the domain of attraction can be found in
Bitsoris et al. (2008), Athanasopoulos et al (2010), both
for the unconstrained and constrained case. The control
strategy is computed by applying established algebraic
sufficient conditions for existence of polyhedral Lyapunov
functions.

In this article, a novel approach, closely related to com-
parison systems, which leads to necessary and sufficient
conditions of existence of stabilizing control laws for the
closed-loop bilinear system, is adopted. In particular, the
dual comparison principle, as stated in the companion pa-
per Bitsoris et al. (2011), is exploited in order to establish
conditions guaranteeing existence of stabilizing feedback
control laws that can be either linear or nonlinear. The
benefits of the approach are obvious since these conditions
are necessary and sufficient and lead to the establishment

of systematic methods leading to the computation of sta-
bilizing control laws even in presence of input constraints.

The article is organized as follows: In section 2, necessary
notations as well as the problem statement are given.
In section 3, algebraic necessary and sufficient conditions
guaranteeing positive invariance of polyhedral sets and the
asymptotic stability of systems with second order poly-
nomial nonlinearities are established. Then, in section 4,
design techniques for the unconstrained and constrained
stabilization problem are developed, using linear and non-
linear state-feedback control laws. Finally, in section 5,
a numerical example illustrating the effectiveness of the
proposed method is given, while in section 6 conclusions
are drawn.

2. PROBLEM STATEMENT

Throughout the paper, capital letters denote real matrices
and lower case letters denote column vectors or scalars.
R

n denotes the real n-space and R
n×m denotes the set of

real n×m matrices. Given a real n×m matrix A = (aij),
A+ = (a+ij) and A− = (a−ij) are n × m matrices with

entries defined by the relations a+ij = max{aij , 0} and

a−ij = −min{aij , 0}. Thus, A = A+ − A−. Inequality

A ≤ B (A < B) with A,B ∈ R
n×m is equivalent to

aij ≤ bij(aij < bij). Similar notation holds for vectors.
Given a function v(x), v : Rn → R

p and a set X ⊆ R
n,

then v(X) = {y ∈ R
p : (∃x ∈ R

n : v(x) = y)}. Finally, T
denotes the time set T = {0, 1, 2, ...}.

We consider bilinear discrete-time systems described by
difference equations of the form

x(t+ 1) = Ax(t) +Bu(t) +











xT (t)C1

xT (t)C2

...
xT (t)Cn











u(t) (1)



where x ∈ R
n is the state vector, u ∈ R

m is the input
vector, t ∈ T is the time variable and A ∈ R

n×n, B ∈
R

n×m, Ci ∈ R
n×m, i = 1, 2, . . . , n.

Also, a bounded polytopic subset of the state space defined
by inequalities

Gx ≤ d (2)

withG ∈ R
q×n, d ∈ R

q, d > 0, is given. This set can also be
described as the convex hull of its vertices wi i = 1, 2, ..., p,
i.e.

conv(w1, w2, ..., wp) (3)

where wi i = 1, 2, ..., p denote the vertices of the polytopic
set.

The unconstrained stabilization problem to be investi-
gated is formulated as follows: Given system (1) and a
bounded polytopic subset of the state space defined by
(3), determine a state-feedback control law making this set
a domain of attraction of the resulting closed-loop system.

In the constrained stabilization problem, control con-
straints u ∈ S(L, ρ) of the form

S(L, ρ) = {u ∈ R
m : Lu(t) ≤ ρ} (4)

with ρ ∈ R
q, ρ > 0, L ∈ R

c×m are also imposed. Thus, the
problem is the determination of a state-feedback control
law such that all initial states belonging to the set defined
by (3) transferred asymptotically to the origin while the
control constraints (4) are satisfied.

3. POSITIVE INVARIANCE AND STABILITY

Given a dynamical system, a subset of its state space is
said to be positively invariant if all trajectories starting
from this set remain in it for all future instances. Thus,
if the state constraints define an admissible subset of the
state space then a solution to the control problem under
state constraints is a stabilizing linear control law making
this admissible set positively invariant with respect to
the resulting closed-loop system. Since in practical control
problems the state constraints are usually expressed by
linear inequalities, the admissible set is a polyhedron.
When linear state-feedback control laws of the form

u(t) = Kx(t) (5)

are chosen, K ∈ R
m×n, the resulting closed-loop system is

described by equation

x(t+ 1) = (A+BK)x(t) +











xT (t)C1Kx(t)
xT (t)C2Kx(t)

...
xT (t)CnKx(t)











. (6)

This equation describes a nonlinear system with second
order polynomial nonlinearity. Therefore, it is very impor-
tant to establish conditions guaranteeing positive invari-
ance of polyhedral sets of the form (3) with respect to
nonlinear systems with second order polynomial nonlin-
earities of the general form

x(t+ 1) = Ax(t) +











xT (t)M1x(t)
xT (t)M2x(t)

...
xT (t)Mnx(t)











, (7)

A ∈ R
n×n, Mi ∈ R

n×n, i = 1, .., n. Using the notation
adopted in the companion paper Bitsoris et al. (2011) set
(3) can be written as

Q(W, g, 1)
△

= {x ∈ R
n : (∃y ∈ R

p
+ : g(y) ≤ 1, x = Wy)}

where W = [w1 w2 · · · wp ] and g(y) = eT y. The follow-
ing Lemma provides necessary and sufficient conditions
for a set of the form Q(W, g, r) to be positively invariant
with respect to a nonlinear discrete-time system x(t +
1) = f(x(t)) and is very important for the development
of the results of this paper.

Lemma 1:(Bitsoris et al. (2011)). The set

Q(W, g, r)
△

= {x ∈ R
n : (∃y ∈ R

p : g(y) ≤ r, x = Wy)}

with W ∈ R
n×p and g(y), g : R

p → R is a positively
invariant set of system

x(t+ 1) = f(x(t)) (8)

with f : Rn → R
n, if and only if there exists a function

h(y), h : Rp
+ → R

p
+ such that

f(Wy) = Wh(y)

and set
R(g, r)

△

= {y ∈ R
p : g(y) ≤ r} (9)

is a positively invariant set of system

y(t+ 1) = h(y(t)).

We shall use this result to establish conditions guaran-
teeing that a polyhedral set defined by linear inequalities
(2) or equivalently as the convex hull of its vertices is
positively invariant with respect to the nonlinear system
(7):

Theorem 2: The polytope with vertices wi i = 1, 2, ..., p
is positively invariant with respect to system (7) if and
only if there exist matrices Dj ∈ R

p×p j = 1, 2, . . . , p and
a nonnegative matrix P ∈ R

p×p such that

AW = WP (10)

WTMiW =

p
∑

j=1

wijDj i = 1, 2, . . . , n (11)

and function h : Rp → R
p,

h(y) = Py +











yTD1y

yTD2y
...

yTDpy











(12)

is nonnegative and satisfies inequality

0 ≤ eTPy + yTDy ≤ 1 ∀y ∈ R
p
+, eT y ≤ 1 (13)

where

D =
n
∑

j=1

Dj . (14)

Proof: According to Lemma 1, the polytope with vertices
wi i = 1, 2, ..., p is positively invariant with respect to
system (7) if and only if there exists a function h(y), h :
R

p
+ −→ R

p
+, that is a nonnegative function h(y), such that

AWy +











yTWTM1Wy

yTWTM1Wy
...

yTWTM1Wy











= Wh(y) (15)



and set P (g, 1) =
{

y ∈ R
p
+ : eT y ≤ 1

}

is positively invari-
ant w.r.t. system y(t+ 1) = h(y(t))

eTh(y) ≤ 1 ∀y ∈ R
p
+, eT y ≤ 1 (16)

It is clear that a function h(y) satisfying (15) is of the form
(12). Indeed,

AWy +











yTWTM1Wy

yTWTM1Wy
...

yTWTMC1Wy











= WPy +W











yTD1y

yTD2y
...

yTDpy











which is equivalent to relations (10) and (11). Further-
more, set P (g, 1) is positively invariant w.r.t. system y(t+
1) = h(y(t)) if and only if eTh(y) ≤ 1 ∀y ∈ R

p
+, e

T y ≤ 1,
that is if and only if

eTPy + eT











yTD1y

yTD2y
...

yTDpy











≤ 1 ∀y ∈ R
p
+, eT y ≤ 1,

which is equivalent to

eTPy + yTDy ≤ 1 ∀y ∈ R
p
+, eT y ≤ 1

with matrix D given by (14) �.

Asserting whether a given polytope Q(W, g, 1) is positively
invariant depends on our ability to check whether hy-
potheses of Theorem 1 and in particular condition eTPy+
yTDy ≤ 1 is verified for all y ∈ P (g, 1) where g(y) = eT y.
Taking into account that matrix P is nonnegative and that
function eTPy + yTDy is nonnegative in y ∈ P (g, 1) we
establish the following result:

Theorem 3: The polytope with vertices wi i = 1, 2, ..., p
is positively invariant with respect to system (7) if and
only if there exist matrices Dj ∈ R

p×p j = 1, 2, . . . , p and
a nonnegative matrix P ∈ R

p×p such that

AW = WP (17)

WTMiW =

p
∑

j=1

wijDj i = 1, 2, . . . , n (18)

and
eTPy∗ ≤ 2 (19)

if there exists a y∗ ≥ 0 satisfying relations

PT e+ (D +DT )y∗ = 0 (20)

eT y∗ ≤ 1 (21)

or

eTPy + yTDy ≤ 1 ∀y : eT y = 1, y ≥ 0. (22)

if there does not exist a y∗ ≥ 0 satisfying relations
(20),(21).

Proof: By virtue of Theorem 1, it is sufficient to prove
that condition (13) is equivalent either to the existence
of a vector y∗ ≥ 0, eT y∗ ≤ 1 satisfying relations (20)
and (21), or relation (22). Relation (20) is the condition
for eTPy∗ + y∗TDy∗ to be an extreme value of function
eTPy + yTDy. Then

eTPy∗ + y∗TDy∗ = eTPy∗ + 0.5y∗T (D +DT )y∗ =

= eTPy∗ − 0.5eTPy∗ =

= 0.5eTPy∗

If y∗ ≥ 0, then this extreme value is a maximum because
matrix P is nonnegative. Thus, if eT y∗ ≤ 1, then condition

eTPy + yTDy ≤ 1 ∀y ∈ R
p
+, eT y ≤ 1 (23)

is satisfied if and only if eTPy∗ ≤ 2. If eT y∗ > 1, then
condition (23) is satisfied if and only if eTPy + yTDy ≤
1 ∀y : eT y = 1, y ≥ 0. Finally, if there does not exist
y∗ ≥ 0 satisfying (20), then eTPy + yTDy is increasing
in R

p
+ and again condition (23) is satisfied if and only if

eTPy + yTDy ≤ 1, ∀y : eT y = 1, y ≥ 0.

The above theorem is useful in order to check if set
Q(W, g, r) is positively invariant w.r.t. system (7), as
it is explained below: First, relation (17),(18),(20), (21)
are solved in order to find suitable matrices P , Dj ,
j = 1, ..., p and a vector y∗. If a solution can be found
and in addition relation (19) holds, set Q(W, g, r) is
positively invariant w.r.t. system (7). If relation (19) is
not satisfied, then set Q(W, g, r) is not positively invariant.
If relations (17),(18),(20), (21) are not compatible, the
following optimization problem is solved

max
P,D1,...,Dp,y

{eTPy + yTDy} (24)

subject to relations (17), (18) and the additional con-
straints eT y = 1, y ≥ 0. If the optimal value of the objec-
tive function is less than one, set Q(W, g, r) is positively
invariant w.r.t. (7).

It is worth noticing that the previous results provide
necessary and sufficient conditions guaranteeing positive
invariance of Q(W, g, r) with respect to (7). However,
it is possible to establish simpler sufficient conditions
guaranteeing invariance. This is done in the following
Corollary of Theorem 2.

Corollary 4: The polytope with vertices wi i = 1, 2, ..., p
is positively invariant with respect to system (7) if and
only if there exist matrices Dj ∈ R

p×p j = 1, 2, . . . , p and
a nonnegative matrix P ∈ R

p×p such that

AW = WP (25)

WTMiW =
n
∑

j=1

wijDj i = 1, 2, . . . , p (26)

and function h : Rp → R
p,

h(y) = Py +











yTD1y

yTD2y
...

yTDpy











(27)

is nonnegative and satisfies inequality

eTPy + yTD+y ≤ 1, ∀eT y = 1 (28)

where

D =

n
∑

j=1

Dj (29)

Proof : Condition (12) of Theorem 2 can be equivalently
expressed as

eTPy + yT (D+ −D−)y ≤ 1 ∀y ∈ R
p
+, eT y ≤ 1 (30)

Since matrices P, D+ and D− are nonnegative, condition
(30) is satisfied if

eTPy + yTD+y ≤ 1 ∀y ∈ R
p
+, eT y = 1

�



Using this result, checking whether a given polytope
Q(W, g, 1) is positively invariant w.r.t. system (6) can be
carried out by solving a convex optimization problem, that
is

max
P,D1,...,Dp,y

{eTPy + yTDy} (31)

subject to relations (25),(26), (29) and eT y = 1.

It is a well known fact that positive invariance is closely re-
lated to the stability of a dynamical system. The following
lemma can be used for stability analysis purposes:

Lemma 5: (Bitsoris et al. (2011)). Suppose that the origin
is an equilibrium point of system (7), g(y) is a continuous
function, g : Rp → R

s, g(0) = 0, and there exists matrix
W ,W ∈ R

n×p, rankW = n. If there exists a function h(y),
h : Rp

+ → R
p
+ such that function g(h(y)) is nondecreasing,

g(f(Wy)) = g(Wh(y)) (32)

and P (g, r) is a contractive set with respect to system

y(t+ 1) = h(y(t))

then the equilibrium x = 0 of system (7) is asymptotically
stable and set Q(W, g, r) is a domain of attraction.

Following similar steps as in Theorem 3, we are in a
position to establish necessary and sufficient conditions
guaranteeing asymptotic stability for system (7), as shown
in the next result:

Theorem 6: The polytope with vertices wi i = 1, 2, ..., p
is a domain of attraction with respect to system (7) if and
only if there exist matrices Dj ∈ R

p×p j = 1, 2, . . . , p a
nonnegative matrix P ∈ R

p×p and a positive scalar ε > 0
such that

AW = WP (33)

WTMiW =

p
∑

j=1

wijDj i = 1, 2, . . . , n (34)

and
eTPy∗ ≤ 2− ε (35)

if there exists a y∗ ≥ 0 satisfying relations

PT e+ (D +DT )y∗ = 0 (36)

eT y∗ ≤ 1 (37)

or

eTPy + yTDy ≤ 1− ε ∀y : eT y = 1, y ≥ 0. (38)

if there does not exist a y∗ satisfying relations (36),(37).

Proof: It is easy to show that if relations (33)-(37) hold,
the maximum value of eTh(y) is strictly less than one, thus
set P (g, r) is contractive with contraction factor (1 − ε)
and according to Lemma 5 set Q(W, g, r) is a domain of
attraction w.r.t. (7). If relations (33),(34),(36),(37) hold
but (35) does not, then set Q(W, g, r) is not a domain of
attraction. Otherwise, if (38) holds for ε > 0, setQ(W, g, r)
is contractive w.r.t. (7).

4. CONTROL DESIGN TECHNIQUES

4.1 Linear state feedback stabilization

We first consider the unconstrained control problem. A lin-
ear control law u = Kx is a solution to the unconstrained
control problem for system (1) if set defined by (2) or (3) is
a domain of attraction of the resulting closed-loop bilinear

system (6). Thus, by applying the previous result stated
in Theorem 6 to system (6), we establish the following:

Theorem 7: The linear control law u(t) = Kx(t) is
a solution to the unconstrained control problem if there
exist matrices Dj ∈ R

p×p j = 1, 2, . . . , p, a nonnegative
matrix P ∈ R

p×p , a control gain K ∈ R
m×n and a scalar

ε such that
(A+BK)W = WP (39)

WTCiKW =

p
∑

j=1

wijDj i = 1, 2, . . . , n (40)

ε > 0 (41)

and
eTPy∗ ≤ 2− ε (42)

if there exists a y∗ ≥ 0 satisfying relations

PT e+ (D +DT )y∗ = 0 (43)

eT y∗ ≤ 1 (44)

or
eTPy + yTDy ≤ 1− ε (45)

∀y : eT y = 1, y ≥ 0 (46)

if there does not exist a y∗ satisfying relations (43),(44).

Thus, a possible approach to the determination of a linear
state feedback control law which is a solution to the
unconstrained optimization problem, is to consider the
above relations as constraints of an optimization problem.
In specific, we first solve the optimization problem with
objective function

max
K,P,D1,...,Dp,y,ε

{eTPy + yTDy}

subject to constraints (39)-(44). If no solution can be
found, another optimization problem is solved, with
the same objective functions and constraints (39)-(41),
(45),(46). It can be easily seen proven that quantity (1−ε)
is a measure of the performance of the closed-loop bilinear
system in terms of convergence speed to the equilibrium
point. Thus, ε can be a fixed quantity if we are interested
in finding a linear control law with a prespecified rate of
convergence.

4.2 Nonlinear state feedback stabilization

In this section, we consider nonlinear state feedback con-
trol laws of the form

u(x) = Uλ(x), ∀x ∈ conv{w1, w2, .., wp}, (47)

where U ∈ R
m×p, Wλ(x) = x, eTλ(x) ≤ 1, λ ≥ 0,

λ ∈ R
p. The nonlinear control law (47) is a solution

to the unconstrained control problem for system (1) if
set defined by (2) or (3) is a domain of attraction of
the resulting closed-loop bilinear system (6). Taking into
account Lemma 1, we establish the following

Theorem 8: The nonlinear control law (47) is a solution
to the unconstrained control problem if there exist ma-
trices Dj ∈ R

p×p j = 1, 2, . . . , p, a nonnegative matrix
P ∈ R

p×p , a matrix U ∈ R
m×p and a scalar ε such that

AW +BU = WP (48)

WTCiU =

p
∑

j=1

wijDj i = 1, 2, . . . , n (49)



and function h : Rp → R
p,

h(y) = Py +











yTD1y

yTD2y
...

yTDpy











(50)

is nonnegative and satisfies inequality

0 ≤ eTPy + yTDy ≤ 1− ε ∀y ∈ R
p
+, eT y ≤ 1 (51)

where

D =

n
∑

j=1

Dj (52)

and
ε > 0. (53)

Proof: All x ∈ conv{w1, w2, .., wp} can be expressed as a
linear combination of the set vertices x = Wλ, eTλ ≤ 1,
λ ≥ 0. Thus, x(t+ 1) = f(x(t), u(x(t)) can be written as

f(x(t), u(x(t)) = AWλ+BUλ+











λTWTC1Uλ

λTWTC2Uλ
...

λTWTMCnUλ











(54)

Setting y = λ and using relations (48),(49) it can be easily
seen that

f(x(t), u(x(t)) = f(Wy) = Wh(y). (55)

Furthermore, set P (g, r) is a contractive set with respect
to system y(t+1) = h(y(t)) since relations (51)-(53) hold.
Thus, according to Lemma 5, the equilibrium x = 0 is
asymptotically stable and set Q(W, g, r) is a domain of
attraction with respect to the closed-loop system.

Equivalent algebraic relations that lead to the computa-
tion of a stabilizing control law (47) can be formulated,
similar than those in Theorem 7.

4.3 The constrained control problem

Let us now consider the case where control constraints
of the form (4) are also imposed. It is known( Bitsoris
et al. (1995) ) that a state feedback control law u(t) is a
solution to the constrained control problem if and only if
there exists a subset Ω of the state space which is both a
positively invariant set and a domain of attraction of the
resulting closed-loop system and satisfies the set relation

Q(W, g, 1) ⊆ Ω ⊆ Sx(L, ρ), (56)

where Sx(L, ρ) = {x ∈ R
n : Lu(x) ≤ ρ}, L ∈ R

c×m,
ρ ∈ R

c, ρ > 0. Many different approaches for the
determination of such a control law can be developed by
combining this result with those concerning the positive
invariance of polyhedral sets. An interesting special case
is when Q(W, g, 1) = Ω, that is when the stabilizing linear
control law u(t) = Kx(t) renders the desired domain
of attraction positively invariant w.r.t. the closed-loop
system. Then, set relation (56) becomes

Q(W, g, 1) ⊆ Sx(L, ρ). (57)

Choosing a linear control law, set relation (57) can be
verified through linear algebraic relations established using
the extended Farkas’ lemma. Thus, the input constraints

are satisfied if and only if there exists a nonnegative matrix
E ∈ R

c×q such that

EG = LK (58)

Ed ≤ ρ. (59)

In the case of nonlinear state feedback control laws of
the form (47), set relation (57) holds if the following
inequalities are verified:

LUi ≤ ρ, i = 1, .., p. (60)

This is true because by definition the control law (57) is a
convex combination of the column vectors of matrix U .

�

5. NUMERICAL EXAMPLE

We consider a bilinear system (1) with the same data
matrices as in Bitsoris et al. (2008):

A =

[

0.8 0.5
0.4 1.2

]

, B =

[

1
2

]

C1 =

[

0.45
0.45

]

, C2 =

[

0.3
−0.3

]

To illustrate the ability to cope with polyhedral sets of
general form, the desired domain of attraction is a non
symmetric polyhedral set having as vertices the columns
of matrix W ,

W =

[

−1.2 −1.44 0.6 1.8 0
1.2 −0.6 0.6 −1.2 −1.56

]

.

Also, the control input must satisfy physical constraints

−um ≤ u ≤ uM

with uM = um = 0.5. We consider a nonlinear state
feedback control law of the form (47). In order to find
the input matrix U , the following optimization problem is
solved:

max
U,ε,y∗Dj ,j=1,..,5

{ε}

subject to
AW +BU = WP

WTCiU =

p
∑

j=1

wijDj i = 1, 2, . . . , n

ε > 0

eTPy∗ ≤ 2− ε

y∗ ≥ 0

PT e+ (D +DT )y∗ = 0

eT y∗ ≤ 1

−um ≤ Ui ≤ uM , i = 1, .., p

In this case, no feasible solution can be found. Thus, we
solve the following optimization problem

max
U,ε,yDj ,j=1,..,5

{

eTPy + yTDy
}

subject to
AW +BU = WP

WTCiU =

p
∑

j=1

wijDj i = 1, 2, . . . , n

0 < ε < 1

0 ≤ eTPy + yTDy ≤ 1− ε



y ≥ 0
eT y = 1

−um ≤ Ui ≤ uM, i = 1, .., p

This optimization problem is feasible, and the optimal
values of the input matrix U are

U = [−0.20 0.50 −0.50 0.06 0.50 ] .

Since the control law Uλ(x) = x, λ(x) ≥ 0, eTλ ≤ 1 is
not uniquely defined, we can choose among many different
stabilizing strategies. In this example, we choose an online
control law, solving at each time instant t the following
linear programming problem:

min
λ

{

Ax (t) +Bu (λ) +

[

x(t)
T
C1

x(t)
T
C2

]

u (λ)

}

subject to
x(t) = Wλ

u(λ) = Uλ

λ ≥ 0
eTλ ≤ 1

In Fig. 1 the state trajectories of the closed loop system
starting from the vertices of the polyhedral set are shown.

−1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

Fig. 1. Contractive polyhedral set having as vertices the
columns of matrix W and state trajectories of the
closed-loop system starting from the vertices of the
set.

6. CONCLUSION

In this article a novel approach regarding the uncon-
strained and constrained stabilization of bilinear discrete-
time system, based on the dual comparison principle, is
presented. First, necessary and sufficient conditions guar-
anteeing the positive invariance of a polyhedral set of gen-
eral form with respect to a quadratic system are presented.
By slightly modifying these conditions, necessary and suffi-
cient conditions were established guaranteeing asymptotic
stability of the zero equilibrium point together with a
polyhedral approximation of the domain of attraction.
Finally, systematic design methods were presented which
lead to the computation of stabilizing linear state feedback
laws and a special family of nonlinear control laws, even in
the presence of input constraints. The control laws can be
computed so that the closed loop system has a guaranteed
rate of convergence to the equilibrium point.
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