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Feedback Stabilization of Networked Control Systems

George Bitsoris, Nikolaos Athanasopoulos and Leonidasésit

Abstract—In this paper the stability analysis and control the controller “asynchronicity” have recently develop&a]|
synthesis problems for Networked Control Systems (NCS) with  [11].
bounded transmission delays (constant and unknown or time- Most of these control approaches use as analysis and

varying) are investigated. First, stability conditions for NCS . . . .
described by ARMA models are established and a method synthesis tools either Lyapunov-Krasovskii functionals o

for the determination of admissible delay range is developed. guadratic Lyapunov functions. In the best of the authors’
Then, a linear programming method for the design of linear knowledge, the use of polyhedral Lyapunov functions has

state-feedback controllers guaranteeing the stability of the not yet been investigated in the context of NCS, although it
system for any delay belonging to a prespecified range is pas heen shown to be a powerful tool in many interesting

developed. Contrary to the usual approaches based on the trol bl includi th f robust d
use of quadratic Lyapunov functions, a polyhedral Lyapunov control problems (including the case of robust and con-

approach is adopted for both analysis and synthesis. A control Strained control) where it yields generic and less consiee/a
synthesis numerical example is given to illustrate the reduction results compared to quadratic Lyapunov approaches [12],

of conservatism of the tolerable delay range when compared to [13], [14], [15]. In this paper NCSs are described by ARMA
former resuits . models. Thus the results concerning the positive invaganc

of polyhedral sets for ARMA models, established in [21] are
I. INTRODUCTION used.

It is well known that the major control challenge in The paper is organized as_follows_: Section I_I re_fers to the
analysis and synthesis of Networked Controlled Systeﬁﬁ‘Ode”'”g aspects of NCS with varying transmission delays.

(NCS) is to face the problems due to the presence &p Section 11, stability conditions for NCS systems debed
uncertain network-induced delays stemming from the verdY ARMA models are established. These conditions lead to

fact of utilizing a common communication channel for he development of a method for the determination of the

closing the loop [1]. These delays stem from the informatioRdMissible delay range for a systems controlled by linear
flow between: a) the sensor and the controller, and b) triate-feedback. In Section IV the design problem of linear
controller and the actuator. They have in general differertiate-feedback controllers guaranteeing the stabilitghef
characteristics depending primarily on the utilized netwo SyStem for any delay belonging to a prespecified range
protocol, the scheduling methods and the communicatidi investigated. An illustrative control synthesis nuroafi
overhead (packet collisions/retransmissions/losses}l s €X@MPple is given in Section V.
N%S WS:Iefth%i[) prEsenc;e imposes[ls]trifzt]Iir[T;)i]tat[i‘lo]nsFon Lhe [I. NCS-DYNAMICS
achievable feedback performance [1], [2], [3], [4]. For the . . .
case of a discrete static feedback implemented with a periodThroughOUt this paper, capital letters denote real matrice
h, these delays can be lumped into a single tekpwhere and lower case letters denote column vectTors or scalars.
k refers to the sampling instait [2]. For two real vectorqs]: =lo oo x” ) .andy -
Significant effort has recently been invested in developin& Yioy2 e Yn | T <y (z < y) is equivalent to
control methodologies to handle the network delay effect ifii < ¥i (z; < y;) fori =1,2,..., n. Similar notation holds
NCSs (see surveys [1], [5]). In [3], LMIs are used for robusfor matrices. Given a real matri¥l = (h;;), |H| denotes
stability analysis and controller synthesis for networkgd- the matr|x|H| = (|hy]). Finally, 0, denotes the: x n null
tems subject to uncertain time-varying delays upper botind&"atrx. , , o
by a sampling period; the case of NCS with delays longer 1"€ dynamics of the NCS under investigation is de-
than one sampling period is presented in [4], [6]. By treal_§cr|b_ed by the co_mbmgﬂon ofa_contmuous—tlme Ilnea_rﬂme
ing the uncertain NCS delay as a time-varying parametdivariant plant with a discrete—time controller and its fign
uncertainty, sufficient conditions, expressed as LMIs, fopration is shown in Figure 1. This configuration corres_ponds
the existence of a static stabilizing state feedback ctetro to the case of a remote controller, non-collocated with the
appear in [7], [8], [9]. Switched system approaches tha€nSor and actuator [16], [17], [18].

explicitly take into account both the delay uncertainty and 1h€ sampling periodh is assumed to be constant and
known, whereas both controller and actuator (including the
This work was supported in part by the Greek State Scholfesshi zero-order-hold _ZOH) are event-driven devices in thes_ens
Foundation. that they update their outputs as soon as they receive a
G. Bitsoris, N. Athanassopoulos gnd _L. Dritsas are withpnaw sample. The state vectar is sampled periodically,
the Control Systems Laboratory, University of Patras, Ratra . . .
26500, Greece. e-mail: bitsoris@ce. upatras. gr transmitted through the network, fed to the discrete—time

nat hanas@ce. upatras. gr, |dri @tenet.gr controller which computes the control action and transmits



it to the actuator after an uncertain delay. The plant receivwhere® = exp(A.h) and

this command after an uncertain dela¥. Inhere, the case X

h—T
ky _
Periodic FO(T ) - / eXp(A(’A)Bcd)\ )
20 PLANT Sampler 0 ,
U)o .\ _ ~ .
> ZOH —> x(:(Z)*A(x(:(lj‘i’Bc_Z/l(t) h Fl (Tk) _ _FO(Tk) + /eXp(Ac)\)Bch (4)
Y)=C.x (1) /
Delay x(kh) Th tain del | be d d”

. e uncertain delay can always be decomposed”as
¢ DISCRETE TIME 7° + 7K with 7° denoting the selected nominal value, €
t CONTROLLER [Tmin, Tmaz)- 1N this paper the nominal value® of the

u,; =K, x(kh) uncertain delay is chosen to be® = 7,,,;,. System variables
with (°) as superscript will denote the corresponding nominal
value.

Fig. 1. NCS structural framework .
9 The matricesl'y(7%), T'y(7%) can then be decomposed

, , , into constant and known nominal pafitg(7°), I'1(7°) and
of SISO systems with less than one sampling period delay,certain though bounded pad’y, AT , that is
(t* < h), is examined. For the control architecture shown N ’ ’

in Figure 1, the system dynamics is described below, for Li(7%) 2 T4(°) + ALy (7%, 7°) i=0,1
t € [kh+ 7" kh+ h 4 7F1):

where _—
T(t) = A(Jj(t) + B(:a(ﬂv y(t) = ch(t)a (1) FO(TO) = / exp(AC)\)Bcd)\
0
ﬂ(t)—{ u(k—1), te [kh—h+7"1 kh+ 1) A
1 u(k), t € |kh+7* kh+h+7H1). R
(2) Fl(T ) = / eXp(AC)\)BCd)\
The total delay within thekth sampling period, that is h—re°
the time from the instant when the sampling node samples h—7°
sensor data from the plant to the instant when actuatorsArl(Tk 7°) = exp(A,7)Bodr = —ATo(7%,7°) (5)

exert a control action (whose computation was based on
this sample) to the plant is denoted by = 7% + 7%.
Moreover this total delay is assumed upper bounded asSystem (3) can thus be equivalently written in the form
0 < Tmin < 7" < Tmax = h and in general it is a time— o 0 E o

varying and uncertain quantity, reflecting the nature of them(k D = oz(k) Jg (To(r )+kAFOO(T 70))ulk) +
network involved, the network load, etc. In (2)(t) is the A7) + AT 70))ulk — 1) (6)
“most recent” control action presented to the event-drivenysing a discrete—time linear state feedback lapk) =
actuator at the time instance within a sampling period .z (k), the closed-loop dynamics becomes

(i.e. within the time intervalkh, kh + h)), and can take . .

either one of the two values(k — 1) or u(k). Certain Z(k+1) = [® +To(r*)Kys] w(k)+[T1 (") Kop] 2(k—1) .

h—7k

part of the material in this section can be traced in recent )
publications [16], [17], [18] hence the presentation wi b 1. STABILITY ANALYSIS OF NCS
brief. _ _ _ o . System (3) can be written in the form

The important modeling issue arising from (2) is that

the actuation time instances are not equidistant becaase th A* (g Hz(k) =0 (8)
piecewise constant C.OerI actmgt) experiences a jump whereq~! is the backward shift operator antf(¢—!) is a
at the uncertain time instané#&+-7" when the control action . .
) ) . real polynomial matrix of the form

coming out of the event—driven ZOH device is updated from
valueu(k — 1) into u(k). Hence, unless” is constant, it is
not in general possible to treat the ensuing NCS in a standard
sampled-data or “time—delayed” setting and a “hybrid” petu
should be used [1], [16],[19], [20]. The stability of this of class systems via polyhedral

Despite the “jump” nature of(t), the discretization of (2) Lyapynov functions has been investigated in [21]. The au-
between consecutive sampling instances is straightfarwathors of this paper have established necessary and suficien
and the ensuing exact discretization is given by [17], [18]:conditions for a scalar function

A () =1+ Ajg + Asq?

v(xz) = max [(G)il
z(k+ 1) = da(k) + To(7*)a(k) + T (F)u(k — 1) (3) 1<i<n w;



to be a Lyapunov function for system (8). These conditionby settingw = [ 1 1 }T and selecting matrix G as follows:
are stated in the following theorem: For each value of(,s, G is composed of the left eigenvec-
Theorem 1]21] If there exist matri RPXP p > , h
mnkgo:em H([) e]}RPtXPe: f[leesﬂépjt, :?/fctemw . }g]; ;w?h tors of matrix(® + B4K,;) where B; = g’exp(Ac)\)Bcd/\.
positive components andea> 0 such that Comparing to [18], where the stability of the same NCS has
. . ) been studied, it can be clearly seen that using Theorem 2
GAY = H;G, i=12 larger delay bounds are computed even when matrix G is

(|HE| + |HDw < ew chosen randomly.

e<1

then the equilibriume = 0 of system (8) is asymptotically
stable.

By applying this result to system (3) we establish condi
tions guaranteeing the asymptotic stability of NCS withdixe
delay 7%:

Theorem 2if there exist matricesd € RP*" p > n,
rankG = n, H(7%) € RP*? H(7*¥) € RPXP a vector
w € RP with positive components and &7*) > 0 such
that

0.8

0.6

0.5

0.4

Network delay range Ik/h

0.3

G[® + (") K] = H(7F)G 9) 02

GIy(T")Kp = H'(7)G (10) o1

(|H0(7—k)| + |H1 (Tk)|)w S g(Tk)w (11) o e Ouputfeedbacﬁ gain Kof range e '
e(th) < 1 (12)

then the equilibriumr — 0 of system (3) is asymptotically Fig. 2. 'Stability margins for the closed-loop system whempatifeedback
gain varies from -1 to 1.

stable.

It can be easily seen that if for a fixed matrx €
RP*™ p > n, rankG = n and a vectorw € RP with IV. A DESIGN APPROACH FOR FIXED AND UNCERTAIN
positive components conditions (9)-(12) of Theorem 2 are DELAYS

satisfied for all~* belonging to a delay range ., Tmax),
the equilibriumz = 0 of system (3) is asymptotically stable .4 +n0us-time system (1), the boungs, and ., of the

: ) - 9
for any time varying delay™ € [7min, Timas]. CONditions ncertain input delay* and a sampling period, determine
(9)-(12) in Theorem 2 can be used to determine the range Qfstate—feedback control law(k) = K,z (k) such that the

admissible delay time for which the stability of the Closed'resulting closed-loop NCS is asymptotically stable for any

loop NCS is guaranteed. This is illustrated in the following;,q varying delayr” € [Tumin, Tmax |-

example. _ o In order to establish an approach to this problem we
We consider the open-loop stable continuous time lineyy, sider the perturbed description of the NCS:
system (1) with

The design problem is formulated as follows: Given the

rk+1) = O®+To(r")K + AFo(Tk,TO)st)J)(k) +
A= [ e } . Be= [ g } +(T1(7°) + ATy (7F, 7°) Ko p)a(k — 1) (13)
Ceo = [ 01 ] Theorem 3. If for a nonsingular matrix

The sampling period i# = 1.333 sec while the uncertain G € R"*"there existn x n matrices , H°, H',
input delay can vary between zero and one full samplinésH(T’“),Ho_ (T’“),P_IQ (tF), H{ (t%),H, (%), a _ vector
period, i.e.7® € [0,h). We assume a state-feedback gainv € R™ with positive components and a positive scalar

matrix K,y of the form € < 1 such that
Kiy=[0 Ko | G[® +To(7%)Kyf] = H°G (14)
which in fact corresponds to an output feedback control GT1 ()K= H'G (15)

uw(k) = K,ry(k). In Fig. 2, the stability margins are drawn
fo(r %wo difffergan)t choices of matrixz: The smaller margins GAFl(Tk)KSf = AH(THG (16)
are computed when the nonsingular maifixc R?*2 and HO — AH(+%) = Hi (+%) - H, (%) 17)
the positive vectorw are chosen randomly, while the larger

delay bounds for which stability is preserved are computed H' + AH(%) = H, (%) - H, (") (18)



(H (75 + Hy (7%) + HY (7F) + Hy (P")w < ew (19)  wherec;(7%) are integrals of the form
h—7°

ci(th) = / eNTdr
h—7k

for all 7% € [7iin, Tmax) then the equilibriumz = 0 of  in the case wheré; corresponds to a simple real eigenvalue
system (13) is asymptotically stable for any time varyingy

Hy (%) > 0,,H, (*) > 0,
H, (%) > 0,,H, (+*) > 0,

delay timer* € [Tmin, Tmax]- hr
Proof: Taking into account that\I'o(7%) = —AT(7%), ci(th) = / r9eMTdr
from (14)- (19) it follows that Bk
G[®+To(T%) K] = G[® + To(7°) Ky s + ATo(7%)Ksf] = in the case whereZ; corresponds to a multiple real eigen-
0 X value.
=(H" —AH(T)G Let us define
G[Fl(Tk)KSf} = G[Fl(TU)KSf + AFl(Tk)KSf] = Cmax é Clmax t C2max + --- + Cnmax
= (H'+AH(T")G with
AN (kK
(HO — AH()| + [H' + AH() o = Gmex =20, )]
(|ﬁg(7k) —H, (") + |H1 (") = H, ("))w < In the case where°® = 1, ¢;(7%) are positive for any
I — S A TF € [Tinin, Tmax), it follows thate; max 2 ¢i(Tmax) - We can
< ([Ho (7")| + [Hy () + [Hy ()| + [Hy () |w = now establish the following result
=t K\, Tk Theorem 4: If for a nonsingular matribxG € R™*", there
= <
(Ho (%) + Hy () + Hy () +H, ()w < ew exist n x n matrices ,H", H', H. H%,..., H}, a vector
becauseH, (7*) > O,, H, (t*) > 0,, H, (r*) > 0,, w € R™ with positive components andsa> 0 such that
H, (Tk) > O,. Thus , setting G[® + FO(TO)st} — ¢ (22)
Ho(r*) = H® — AH(7") GIy () Ky = H'G (23)
Hy(7%) = H' + AH(7) (|H°| + |H )w < ew (24)
we conclude that all hypotheses of Theorem 2 are sat- cmaxGZi B Ky = H%G j=1,2,..,n (25)

isfied. Therefore the equilibriunx = 0 of system (13) 0 ; L ; '

is asymptotically stable for any time varying delay time (" — Hz|+[H +Hz[)w <ew j=1,2,...n (26)

Tk S [TminaTmax}~ e<1 (27)
A direct application of this result to the design of state-

feedback controllers is not possible because unknown minen the equilibriume = 0 of system (13) is asymptotically

tI’ICESHO (%), Hy (7 )7H1 (r%), H; (7*) depend onr*.In stable for any time varying delay* € [Tuin, Tmax)-

order to overcome these difficulties we next establish tabi ~ Proof: From (21) it follows that

conditions independent of*.Due to space limitations the GAT (1 )st _ Cl(Tk)GleCst+62(Tk)GZQBCKSf+m
analysis is restricted to systems with real open-loop eigen
values. +o+ e (T7)GZ, B.K

The exponentialexzp(A.7) of a matrix can always be for any 7+

min, 'max d b irt f (25
written in the form [Tinin: Tmax]-and ,by virtue of (25),

C
cxp(Acr) = ar(1) 21 + as(1) 2o + . + an(7)Z,  (20)  GAL(TH)Ep = 2( )HZG+ 4 c( )HZG_
max max

where Z; € R™™™ § = 1,2,..,n are real matrices " ei(7) . .
(constituent matrices) and;(r) ¢ = 1,2,...,n are real = (Z mHZ G = AH(7%)@28)
functions of the forma, () = 79N, im1

Therefore, where ot

h—1° AH(Tk) _ Z C; T HZZ
. ~“max
AFl(Tk’To): / exp(A.7)Bedr = i=1

Taking into account tha\T'y(7%) = —AT(7%), from (22),
(23) and (29) it follows that

h—1k

n

Z / NarzB. =Y e()zB, (21 COFTTHE =GR+ To(r) Ky + ATo(r) Koy =
=1, i=1 = (H° - AH(T"))G



G (TF) K] = GIT1 (1)K + AT (7F) K] =
= (H'+AH(™)G

Thus conditions (9) and (10) of Theorem 2 are satisfied witllq’

Hy=H® — AH(7%)
H, = H'+ AH(T")
Furthermore,

(| Ho(T™)] + [Hy (75) w =

= (|H° = AH(")| + |[H" + AH (") )w =

— ci(T) ci(T) ;
_’<1_ZC >H°+ . (H° — HY) | w+
i=1 max i=1 max
—~ (™) 1 e alT) o
! (1_2 CmaX>H +Z Cmax (H +HZ)w§
i=1 i=1
= ci(7F) ci(tF) ;
< (1- 3 o+ 35— o
i=1 i=1
= ¢;(7") = c;(7") ;
(-3 3
i=1 i=1
n (K
< (1— eilr )> (|H°| + |H))w+
’L::l CIII'IX
n k
Ci i i
+Z£(|HO—HZ|+\H1+HZ\)1U

Cm -
i=1 max

< (l—im>ew+zﬂ:6i(7k)6w=6w

Cmax cmax

becausel — > a(™) > . Therefore conditions (11) .

=1 Cmax

and (12) of Theorem 2 are also satisfied for any detéay
belonging to the time intervak,in, Tmax] CONsequently the
equilibrium 2 = 0 of system (13) is asymptotically stable

for any time varying delay* € [Tumin, Tmax] -

Hl g Ci(Tk) 7 _
+H () || | w=
i=1 max

H'+H, =T, -, i=12..n
with 0 > 0,70, > 0, > 0H.y > 0 i =
2,...,n.
A solution of relations (22)-(27) can be obtained by
defining an optimization problem having these relations
as linear constraints. Thus, a state-feedback control law
u(k) = K px(k) that stabilizes the NCS for any delay time
7 € [Tmin, Tmax) 7" €an be determined by solving the linear
programming problem

min_~_ {e} (29)

Kop, HY,HO,HY, H} L H, Hi Hlg

under linear constraints

G[® +To(t°) K] = H'G (30)
G (t)K,; = H'G (31)
(|HO|+|H1|)w§€w (32)

cmaxGZiB. Ko = HL,G j=1,2..n  (33)

H - H,=®,-®, i=12..n (34

H'+H =HL ", i=12..n 35
1Z 1Z ) 4y )

(Hyy + Hyy+ Hiy +Hip)w <ew j=1,2,...n (36)

>0/, >0H,>0H,>0 j=1,2 ..n
(37)

If the optimal value of parameter satisfies inequality
e < 1 the corresponding control law(k) = K rz(k) is
a solution to the problem under consideration.

It should be emphasized that minimization of parameter
e results to improved transient behavior, because parameter
¢ is a measure of the exponential convergence of the state
to the equilibrium of the delayed system. Indeed, it can be
proven that under conditions (29)-(36) the positive dedinit

function o
v(z) 2 max {W}
1<i<n W;
is a Lyapunov function for system (13) which satisfies
inequalityv(z(k + 1)) < ev(z(k)) with € < 1.

V. NUMERICAL EXAMPLE
We consider an unstable continuous-time linear system (1)

According to this result, a solution to the mentionedyin matrices
A, — 1.7208 2.9184 } . B, = [ 2 ]

problem is obtained by first selecting a pdi,w) and

then by solving relations (22)-(27) with respect to the un-

known matricesK s, H', H*, AH(7%),H}, i=1,2,..,n —1.1396 —2.0408 1

and parametet. Since these conditions imply the positiveThe sampling period i$% = 1.1 second, the bounds of the
invariance of the polyhedral se®(G,w) = {z € R™ : uncertain input delay are,,;, = 0, Tmaez = 0.7 and the
|Gz| < w} with respect to the system described by thenominal discrete-time dynamics are computed fgr= 0.
equationz(k + 1) = ®z(k) + Lo(7°)u(k),a pair (G,w) The feedback gaink,; = [ —0.1419 —0.1771 | was
which is (®,To(7°))—positively invariant [22] must be se- computed by solving the linear programming problem (29)-

lected. These relations can be formulated as linear algebrg36) setting
equalities and inequalities by setting

o | 06468 0.7626 ] Cwe [

H® — HY, = Hyy — Hoy =1 05313 0.8472



The optimal value of is 0.98 < 1. In Fig.3 and Fig.4 the

state response of the discrete-time system and the cont
effort for initial state zp = [0.5947 0.8070]7are shown
respectively.

state variables x,, x,

time (sec)

Fig. 3. State response of the closed-loop system for insiatexy =
[0.5947 0.8070]T".

0.2
0.15F

0.1

control effort u

0.05F

time (sec)

Fig. 4. Control strategy for initial stateo = [0.5947 0.8070]7.

VI. CONCLUSIONS

A novel approach for both the stability analysis and stat
feedback controller design for linear Networked Contro
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