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A novel approach to the computation of the maximal controlled
invariant set for constrained linear systems

Nikolaos Athanasopoulos and George Bitsoris

Abstract— In this paper, the problem of the determination
of the maximal controlled invariant set of linear systems
subject to polyhedral input and state constraints, together with
the corresponding state-feedback control law is investigated.
Instead of computing one-step reachable sets or maximizing
the volume of a specific invariant set, the proposed method
consists of the iterative expansion of an initial ”small” invariant
set by adding new vertices to its convex hull. This is achieved by
minimizing the distance of each new vertex from the vertices of
the polyhedral set defining the state constraints. This approach,
established for both continuous-time and discrete-time systems,
does not require invertibility of matrix A, open-loop stability
or symmetry of the constraints.

I. I NTRODUCTION

Two major approaches have been developed to tackle the
problem of regulation of systems with state and control con-
straints: model predictive control and set theoretic methods.
In model predictive control [1], [3], constraints are naturally
embedded in the optimization procedure. In set theoretic
methods [2], the constraints are related to sets characterized
by properties that ensure constraint satisfaction. For both
approaches, the estimation of the maximal region of the
state space where the system can operate without violating
the constraints is a very important problem. This problem
is related to the determination of controlled invariant sets.
These sets (with the exception of [4]) may be ellipsoids or
polytopes.

The usual method to determine the exact or an estimate
of the maximal invariant set is through one-step reach-
able sets [5],[6],[7],[8],[9],[10],[11]. Specifically, Gutman
and Chwikel [5] proposed an algorithm based on vertex
computation which produces the maximalΩ invariant set.
In [6] the notion of output and maximal output admissible
sets was studied in a more general framework and algorithms
based on the computation of N-reachable sets were proposed.
Lassere [9] proposed an approach to determine the N-
reachable and controllable set by only checking the unstable
subspace of the autonomous system . The problem of finding
a stabilizing solution with an assigned initial condition set
was studied in [16],[11]. In [11] the authors proposed a
forward algorithm which finds a stabilizing solution for
trajectories starting from the vertices of the assigned set
and a backward algorithm based on the N-controllable set.
Dorea and Hennet [7],[8] proposed an algorithm based on
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the half plane representation of sets by formulating algebraic
conditions of (A,B) invariance. In [12] an LMI approach was
used for the enlargement of the domain of attraction using
lifting techniques. The terminal invariant set in [13] was en-
larged using a linear programming approach. In [14] convex
optimization problems are formulated for the enlargement
of the stability region. In [15] a tuning parameter for the
enlargement of the positively invariant set was introduced.

In this paper, a new approach to the estimation of the
maximal controlled invariant set and to the determination
of a corresponding state-feedback control law is developed.
Instead of trying to compute one-step reachable sets, the
enlargment of an initially ”small” polyhedral controlled
invariant set is carried out iteratively by adding at each
step a new vertex to its convex hull. This is achieved by
minimizing at each step the distance of the new vertex from
the vertices of the assigned initial condition set. This method
does not require invertibility of matrix A, open-loop stability,
controllability of (A,B) or symmetry of the constraint sets.
It can be applied to both discrete-time and continuous-time
linear systems and can also be extended to the determination
of controlled invariant sets with linear state-feedback control
laws.

II. PROBLEM STATEMENT

Throughout the paper,Rn denotes the realn-space and
R

m×n denotes the set of realm×n matrices. The elements
of a real matrixP ∈ R

m×n are denoted bypij . P ≥ 0
is a matrix with nonnegative elements. For vectorsa, b
relationa ≤ b holds componentwise. For two setsS andQ,
S \Q denotes their set difference i.e. the set that contains all
elements ofS that do not belong toQ. For a setS, int(S)
denotes the interior ofS. Given q points v1, ..., vq defined
on the realn-spaceR

n, S = conv{v1, ..., vq} denotes the
convex hull ofv1, ..., vq.

We consider both continuous-time and discrete-time linear
systems. Continuous-time systems are described by differen-
tial equations of the form

ẋ(t) = Ax(t) + Bu(t) (1)

while discrete-time systems are described by difference equa-
tions of the form

x(t + 1) = Ax(t) + Bu(t) (2)

wherex ∈ R
n is the state vector,u ∈ R

m is the input vector,
A ∈ R

n×n, B ∈ R
n×m and t is the time variable belonging

to the set[0,∞) in the case of continuous-time systems or



to the set of nonnegative integers in the case of discrete-time
systems.

Although the method can deal with any polyhedral input
constraint set, for simplicity of the presentation the control
variableu is constrained to belong to a setU ⊆ R

m defined
by the relation

U = {u ∈ R
m : −u ≤ u ≤ u} (3)

where u and u are vectors with nonnegative components.
Thus,−u and u represent the lower and upper bounds of
the control variables.

Definition 1: A subsetS ⊂ R
n of the state space is said

to becontrolled invariantw.r.t. system (2) or (3) if and only
if there exists a feedback control lawu = f(x) ∈ U , such
that x0 ∈ S implies x(t;x0) ∈ S for all t ≥ 0.

Definition 2: Given a setS ⊂ R
n, a subsetSM ⊆ S is

said to bethe maximal controlled invariant setif and only if
it is controlled invariant and contains all controlled invariant
sets contained inS for a specific input constraint setU .

Definition 3: A subsetS ⊂ R
n of the state space is said

to be positively invariantw.r.t. to an autonomous system if
and only if for any initial statex0 ∈ S the corresponding
trajectoryx(t;x0) satisies relationx(t;x0) ∈ S for all t ≥ 0.

In this paper we study the controlled invariance of
bounded convex polyhedral subsetsS of the state spaceRn

containing the origin as an interior point. Such polyhedral
sets are represented as

S = {x ∈ R
n : Gx ≤ w} (4)

with G ∈ R
r×n and w ∈ R

r, w > 0. A bounded convex
polyhedral set can also be represented as the convex hull of
its verticesv1, ..., vq, i.e.

S = conv{v1, ..., vq} (5)

The problem to be investigated is formulated as follows:
Given a linear system (1) or (2) and state and input con-
straint setsS and U respectively, determine an estimate
Se of the maximal controlled invariant setSM ⊆ S and
the corresponding control lawue(x) making setSe both
positively invariant and domain of attraction of the origin
for the resulting closed-loop system.

III. PRELIMINARIES

It is known [16] that a polyhedral set represented by (4)
is positively invariant set of an autonomous linear discrete-
time systemx(t + 1) = Ax(t) if and only if there exists a
nonnegative matrixH ∈ R

r×r such that

GA = HG (6)

Hw ≤ w. (7)

If the polyhedral setS is represented as the convex hull of its
vertices (5) then ([17],[18]) its positive invariance w.r.t. to an
autonomous linear discrete-time systemx(t + 1) = Ax(t) is
equivalent to the existence of a nonnegative matrixP ∈ R

q×q

such that

AV = V P (8)

eT P ≤ eT (9)

where V ∈ R
n×q is the matrix with columns

V =
[

v1 v2 · · · vq
]

and e ∈ R
q, e =

[

1 1 · · · 1
]T

.
In the case of autonomous linear continuous-time systems

ẋ(t) = Ax(t) [19], the positive invariance of a polyhedral set
represented by (4) is equivalent to the existence of a matrix
H ∈ R

r×r with nonnegative off-diagonal entries such that

GA = HG (10)

Hw ≤ 0. (11)

If the polyhedral setS is represented as the convex hull
of its vertices (5) then its positive invariance w.r.t. to an
autonomous linear continuous-time systemẋ(t) = Ax(t)
is equivalent to the existence of matrixP ∈ R

qxq with
nonnegative off-diagonal entries such that

AV = V P (12)

eT P ≤ 0. (13)

Equivalent conditions to (10)-(11) and (12)-(13) have also
been established by [20] and [21] respectively.

Given control constraints (3), a polyhedral setS =
conv{v1, ..., vm} is controlled invariant w.r.t. the linear
discrete-time system (2) if and only if [21] there existui

∈ U , i = 1, ..., q and a nonnegative matrixP ∈ R
q×q such

that
AV + B

[

u1 u2 · · · uq
]

= V P (14)

eT P ≤ eT . (15)

Moreover, setS can be a domain of attraction if instead of
(15) the following inequalities are satisfied:

eT P ≤ εeT (16)

0 < ε < 1. (17)

The polyhedral setS = conv{v1, ..., vm} is controlled
invariant w.r.t. continuous-time linear system (1) if and only
if there existui , i = 1, ..., q and a matrixP ∈ R

q×q with
nonnegative off-diagonal elements such that

AV + B
[

u1 u2 · · · uq
]

= V P (18)

eT P ≤ 0. (19)

Equivalent conditions have also been established by Blan-
chini and Miani [21]. S is also a domain of attraction if
inequality (19) is replaced by the following conditions:

eT P ≤ εeT (20)

ε < 0. (21)

If conditions (14)-(15) or (18)-(19) are satisfied for
discrete-time and continuous-time systems respectively,then



there exist state-feedback control laws rendering setS posi-
tively invariant. A possible approach to the determinationof
such state-feedback control lawsu(x) consists in first solving
the optimization problem

min
u1,...,uq,P,ε

{ε}

under constraints

−u ≤ ui ≤ u, i = 1, 2, ..., q

and (14)-(15) or (18)-(19) for a discrete-time or a continuous-
time system respectively. Then a solution to this problem can
be obtained [22], [23] by setting

u(x) =

q
∑

i=1

λi(x)ui

whereλi(x), i = 1, 2, ..., q are nonnegative real numbers
such that

∑q
i=1 λi(x) ≤ 1 andx =

∑q
i=1 λi(x)vi.

IV. M AIN RESULTS

We now consider the case when setS cannot be controlled
invariant, that is the case when the above conditions of
controlled invariance are not satisfied. We assume that the
unconstrained system under consideration satisfies conditions
guaranteeing the existence of a linear state-feedback con-
trol law so that the resulting closed-loop system possesses
polyhedral invariant sets. Then, by contraction, it is always
possible to determine a sufficiently ”small” polyhedral set
S0 = conv{v1

0 , .., vm0

0 }, S0 ⊂ S,which is controlled invari-
ant. The goal is to enlarge this set and, if possible, to derive
the maximal controlled invariant setSM included inS.

Most methods for enlarging a polyhedral controlled in-
variant set are based upon the one-step reachable sets. These
approaches, developed for discrete-time systems, provide
polyhedral controlled invariant sets with unacceptably big
number of vertices and cannot be extended to continuous-
time systems. In addition, by this approach only nonlinear
control laws can be obtained.

In this section, a systematic method of recursively in-
creasing the volume of a controlled invariant subset ofS
is described. Starting from a polyhedral controlled invariant
set Sj = conv{v1

j , .., v
qj

j },at each step a new polyhedral
controlled invariant setSj+1 = conv{v1

j+1, .., , v
qj+1

j+1 } =

conv{v1
j , .., v

qj

j , v∗} with vi
j+1 = vi

j , i = 1, 2, ..., qj is
constructed. It is worth mentioning that adding a vertex at
each step in the convex hull of setSj does not necessarily
increase the complexity of the representation of the set. The
new vertexv

qj+1

j+1 = v∗ is determined by minimizing its
distance from a pointvch belonging toS\Sj . In the sequel,
we develop this approach for the discrete-time case:

Step 0. The algorithm starts with the determination of an
arbitrarily ”small” polyhedral controlled invariant setS0 ⊂
S,

S0 = conv{v1
0 , .., vq0

0 }, vi
0 ∈ R

n, i = 1, ..., q0

and of a set of control vectorsui
0 ∈ U, i = 1, ..., q0

corresponding to each vertexvi
0 ∈ R

n, i = 1, ..., q0 of S0.

Step 1. At this step, we have already computed a poly-
hedral controlled invariant setSj

Sj = conv{v1
j , .., v

qj

j }, vi
j ∈ R

n, i = 1, ..., qj

and a corresponding set of control vectorsui
j ∈ U, i =

1, ..., qj .
We choose a pointvch ∈ S outside setSj and solve the

following optimization problem:

min
v∗,p,u∗,ε

{‖v∗ − vch‖∞} (22)

subject to

Av∗ + Bu∗ =

qj
∑

i=1

piv
i
j + pqj+1v

∗ (23)

pi ≥ 0, i = 1, ..., qj + 1 (24)

qj+1
∑

i=1

pi ≤ ε (25)

0 < ε ≤ 1 (26)

Gv∗ ≤ w (27)

−u ≤ u∗ ≤ u (28)

whereG andw correspond to the half-plane representation of
setS. The optimization criterion can always be made linear
because it is equivalent to

min
v∗,p,u∗,ε,δ

{δ}

with the additional constraints :

−δ ≤ v∗

i − vch
i ≤ δ, i = 1, .., n.

This optimization problem can be reduced to a sequence
of linear programming problems by solving each time the
problem with pqj+1 = a ∈ [0, 1). Among all pointsv∗

produced by the solution of the LP problems, we choose
the one closest tovch.

If the optimal v∗ does not belong toSj , then, setting
v

qj+1

j+1 = v∗ and u
qj+1

j+1 = u∗, we construct the following
set

Sj+1 = conv{v1
j , ..., v

qj

j , v∗} = conv{v1
j+1, ..., v

qj+1

j+1 }.

together with the set of control vectors{u1
j+1, ..., u

qj+1

j+1 }.
Relations (23)-(26) imply the positive invariance and attrac-
tivity of Sj+1 (when ε is strictly less than 1) while (27)
and (28) guarantee constraint satisfaction. It is clear that
Sj+1 ⊃ Sj .The corresponding control law that makes set
Sj+1 both positively invariant and domain of attraction of
the closed-loop system is

u(x) =

qj+1
∑

i=1

λi(x)ui
j+1 (29)

Then settingSj = Sj+1 we repeat this procedure to deter-
mine a new ”larger” polyhedral controlled invariant set.



If the optimalv∗ belongs toSj we set

Ei = {x ∈ R
n : ‖x − vch‖∞ < d∗} ∩ S

d∗ being the optimal value of criterion (22), and we proceed
to Step 2. SetEi consists of points that have already been
tested for ”expansion” of setSj with no success.
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Fig. 1. SetsS andEi (white),Sj (gray), and setT remaining to be checked
for the expansions ofSj (black).

Step 2. Since the optimization procedure has not pro-
duced a vectorv∗ /∈ Sj , set Ei is excluded from future
search at this stage. IfE, which is the set union of all sets
Ei excluded in past iterations, satisfies relationE ∪Sj 6= S,
then we choose another pointvch ∈ S\(SjUE) and repeat
step 1. Otherwise, i.eE ∪ Sj = S, the algorithm terminates
and the maximal controlled invariant set isSmax = Sj . �

The choice of vectors ofvch at each iteration of this
algorithm is crucial, because all points of setS\Sj have to
be tested for possible ”expansion” of setSj . In this paper, we
choose the initial vectorsvch to be theq vertices ofS. After
q unsuccessful iterations we construct setsEi = Qi ∩ S,
i = 1, ..., q, where Qi = {x ∈ R

n : ‖x − vch
i ‖∞ ≤

d∗i }. The vertex-representation of every setQi is Qi =
conv{r1, ..., r2n}, whererj = vch

i + diDj , j = 1, ..., 2n and
D ∈ R

nx2n

a matrix with columns all2n distinct vectors
with elements equal to1 or −1. Then, we compute set
T = S \ (E1 ∪ ... ∪ Eq ∪ Sj). The new vectorsvch are
the extreme points of setT . These new vectors will produce
new setsEi, i = q + 1, ..., k. Set T will be updated to
T = S \ (E1 ∪ ... ∪ Ek1

∪ Sj). In Fig.1, setT as well as
setsEi ,i = 1, ..., k are shown. This procedure will continue
until T = ∅.

The algorithm converges to the maximal controlled in-
variant set because otherwise there would exist another con-
trolled invariant setW ⊃ Smax = conv{v1

max, ..., vqmax
max } .

Then, there would exist a pointx0 ∈ W such thatx0 /∈
Smax. This would imply the existence of a time instant
M > 1 such thatx(M ;x0) ∈ Smax while x(M − 1;x0) /∈
Smax. This in turn would imply the existence of nonnegative

scalarspi, i = 1, .., qmax + 1 ,
∑qmax+1

i=1 pi ≤ 1 such that

x(1;x(M − 1;x0)) =

qmax
∑

i=1

piv
i
max + pqmax+1x(M − 1;x0)

Consequently, the set

Si = conv(v1
max, ..., vmmax

max , x(M − 1;x0)).

would be controlled invariant. This set however would have
been determined in step 1, thus contradicting the hypothesis
that x(M − 1;x0) /∈ Smax.

In addition, it can be clearly seen that the algorithm con-
verges to the maximal controlled invariant set independently
of the choice of initial setS0.

A. Determination of linear state-feedback control laws

The algorithm described above can be modified in order
to produce a polyhedral controlled invariant set together
with a linear state- feedback control law making this set
positively invariant. To this end, it is sufficient to replace the
optimization problem in step 1, by the following nonlinear
programming problem:

min
v∗,P,Kj+1,εk

{‖v∗ − vch‖∞} (30)

subject to
(A + BKj+1)V = V P (31)

P ≥ 0 (32)
qj+1
∑

i=1

pik ≤ εk, k = 1, .., qj + 1 (33)

εk < 1 k = 1, .., qj + 1 (34)

Gsv
∗ ≤ ws (35)

−u ≤ Kj+1v
j ≤ u, j = 1, .., qj (36)

−u ≤ Kj+1v
∗ ≤ u (37)

where V ∈ R
n×(qj+1) , V =

[

v1 · · · uq v∗
]

and
P ∈ R

(qj+1)×(qj+1) is a matrix with nonnegative elements.
This nonlinear programming problem is always feasible. The
algorithm converges although it is not guaranteed that the
maximal controlled invariant set is reached.

B. Continuous time systems.

We can apply the same algorithm with slightly different
constraints:

min
v∗,p,u∗,ε

{‖v∗ − vch‖∞}

subject to

Av∗ + Bu∗ =

qj
∑

i=1

piv
i
j + pqj+1v

∗

pi ≥ 0, i = 1, ..., qj + 1

qj+1
∑

i=1

pi ≤ −ε



ε > 0

Gsv
∗ ≤ ws

−u ≤ u∗ ≤ u

For the derivation of a linear state-feedback control law
the optimization problem in step 1 becomes:

min
v∗,P,Kj+1,εk

{‖v∗ − vch‖∞}

subject to
(A + BKj+1)V = V P

P ≥ 0

qj+1
∑

i=1

pik ≤ −εk

εk > 0

k = 1, .., qj + 1

Gsv
∗ ≤ ws

−u ≤ Kj+1v
j ≤ u, j = 1, .., qj

−u ≤ Kj+1v
∗ ≤ u

whereV ∈ R
n×(qj+1) , V = [ v1 · · · uq v∗ ].

V. NUMERICAL EXAMPLE

We consider the following linear discrete time system [24]

A =

[

1 0.1
0 0.98

]

, B =

[

0
0.98

]
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Fig. 2. Maximal invariant setSmax, constraint setS and trajectories
emanating from some vertices ofSmax, nonlinear control law case.

The state and input constraint setsS and U respectively
are defined by relations

S = {x ∈ R
2 : Gsx ≤ ws} (38)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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Fig. 3. Sets produced in the expansion procedure, nonlinearcontrol case .
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Fig. 4. Maximal invariant setSmax, constraint setS and trajectories
emanating from some vertices ofSmax, linear control law case.

where

Gs =









1 0
0 1
−1 0
0 −1









, ws =









1
1
1
1









and
U = {u ∈ R : −um ≤ u ≤ uM} (39)

whereum = uM = 1 . The maximal invariant polyhedral
setSmax produced has 14 vertices. The control law is

u(x) =
14
∑

i=1

λi(x)ui

and is computed online at each time instantt by solving the
following linear programming problem:

min
λi(x(t))

{‖Ax(t;x0) + B

14
∑

i=1

λi(x(t;x0))u
i‖∞}



subject to

x(t;x0) =
14
∑

i=1

λi(x(t;x0))v
i

14
∑

i=1

λi(x(t;x0) ≤ ε

λi(x(t;x0) ≥ 0, i = 1, .., 14

The initial set S0 and the expansion procedure of the
controlled invariant set is shown in Fig. 3. It is worth noticing
that the maximal invariant set is computed after 52 iterations,
i.e 52 points have been added to the convex hull of the initial
set, whileSmax has only 14 vertices. Finally, by applying
the design procedure established above for the linear state
feedback control case, a gain matrix

Kmax =
[

−0.5957 −0.5875
]

is computed. The setSmax has 8 vertices. This set together
with the trajectories starting from some of its vertices is
shown in Fig. 4. It is clear that this method gives better
results than the one used in [24].

VI. CONCLUSIONS

In this paper, a method for the determination of the
maximal controlled invariant set which is also a domain of at-
traction under a suitable state-feedback control law, has been
established. The method applies to both continuous-time
and discrete-time linear systems with polyhedral constraints.
The convergence of the algorithm is guaranteed. In order
to illustrate the performance of the method, an example,
studied also in [24], has been chosen. It has been shown
that the proposed method provides better approximation of
the maximal invariant set for the case of nonlinear control
laws and a larger invariant set and a simpler controller for
the case of linear state-feedback.
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