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Abstract

Meeting the performance specifications of consolidated web services in
a data center is a challenging research problem, since the control of the
underlying cloud computing infrastructure must meet the Service Level
Agreement (SLA) requirements and satisfy the system’s constraints. In
this article, we address the admission control and resource allocation prob-
lem jointly, by establishing a unified modeling and control framework.
Convergence to a desired reference point and stability and feasibility of
the control strategy are guaranteed, while achieving high performance of
the co-hosted web applications. The efficacy of the proposed approach is
illustrated in a real testbed.

1 Introduction

Virtualization technology allows the consolidation of many services on a server
cluster. The co-hosted applications share the available resources according to
their requirements. This implies that providers allot the computational and
network resources to the competing services and customers pay only for the
consumed resources according to a usage-based price model. The performance
of a web service is described in a Service Level Agreement (SLA) between the
service provider and the customer; the Service Level Objectives (SLOs) are the
network metrics, which prescribe the desired Quality of Service (QoS) levels.
From the customer’s view, the goals are the satisfaction of some predefined
nominal values of the SLOs and a guaranteed level of QoS with the minimum
financial cost. These objectives usually conflict with the goals of the provider,
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who aims for a management system that allocates the resources to each service
optimally in a manner that achieves SLOs, ensures availability of resources
under any workload circumstances and minimizes the operational cost, e.g., the
energy consumption. In addition, the workload of these web services is generally
unpredictable and highly variant, while the available resources are subject to
constraints. Due to the above contradictory targets between the customer and
provider, quantifying and managing the performance of such complex systems
is a critical problem.

There are several emerging challenges that an autonomic management frame-
work must address in order to achieve the above goals. Network controllers are
implemented in two levels, namely, the local level and the global level. Global
level controllers focus on load balancing, which shares the volume of requests
among the replicas of an application. Additionally, they arrange the Virtual
Machines (VM) placement, which determines the set of applications executed
by each server. Local level controllers deal with application specific or server
specific problems, i.e., the admission control (AC) that rejects requests under
peak workload conditions, and the resource allocation (RA), which assigns to
each VM the available resources (CPU, memory, network bandwidth). Admis-
sion control is implemented by either changing the capacity of the VM or by
using the Dynamic Voltage and Frequency Scaling (DVFS) [26] mechanism, thus
changing the server’s service rate.

Contrary to most existing approaches, in this article we propose a local
controller scheme that addresses admission control and resource allocation si-
multaneously in a unified framework, thus, making the cooperation with existing
global level controllers easier.

In order to capture the dynamic behaviour of the response times of the
hosted applications and their dependencies from the request rates, the allocated
CPU capacities and the percentage of the accepted requests, we utilize a Linear
Parameter Varying (LPV) systems [30] modeling framework. LPV models have
a structure similar of a linear system, which however varies in time, depending
on a set of parameters that relate to the behaviour of the system. Thus, we
are able to achieve a tradeoff between the simplicity of the resulting model and
the accurate description of the system dynamics. Moreover, using off-the shelf
identification algorithms for LPV systems [9] we are able to create such models
using a set of data, which is available in most cloud computing architectures.

Next, based on the established LPV state space model, we determine a set
of feasible operating set-points by solving off-line optimization problems. In
detail, we compute feasible operating points that satisfy predetermined desired
QoS nominal values, i.e., sets of desired response times for each application,
allocated CPU capacities and percentages of admittance of requests. Moreover,
we compute state feedback control laws which guarantee constraint satisfac-
tion and convergence of the closed-loop system to the desired operating point.
The control strategies are computed using quadratic Lyapunov functions [19].
Loosely speaking, a Lyapunov function is a distance metric that describes how
far the states of the system are from the desired operating point. These func-
tions are utilized to design controllers which guarantee that the distance from



the operating point is strictly decreasing at each time instant. Since we obtain
different controllers for each desired operating point, we propose a stabilizing
switching scheme between such different operating points by computing and ap-
propriately ordering their domains of attraction. The computational complexity
of the controller implementation is small, since at every time instant a linear
programming problem and a point location problem are required to be solved.

The remaining of the paper is structured as follows. Section 2 discusses
related work. Section 3 contains an analytical description of the system iden-
tification, the determination of feasible equilibrium points and the controller
synthesis and implementation. In section 4, the application and evaluation of
the approach in a real testbed is presented, along with a comparison with ex-
isting methods. Conclusions are drawn in section 5. For clarity of exposition,
some technical background and results regarding the controller synthesis and
implementation are presented in the Appendix.

2 Related Work

We categorize the existing approaches that concern the modeling and control of
web services according to the employed model and the control method.

The models of consolidated web services on a cloud computing infrastructure
are derived mainly from queuing theory and discrete-time state space models.
In specific, the models based on queuing theory rely on the relatively strong
assumption that the system is at the steady state condition. On the other
hand, linear time invariant (LTI) state-space models can efficiently describe the
transient behavior of the system. However, the model is only accurate close to
an operation point. The most promising category of state space models em-
ployed are LPV models, since they are allowed to vary according to a modeling
parameter. This modeling approach is suitable for describing the dynamics of
web services behavior, because it captures the effect of various parameters such
as incoming request rate or service time. Table 1 summarizes the benefits and
drawbacks of each modeling method that is used in the relevant studies.

The second categorization of the existing approaches concerns the control
method used, namely the admission control and/or the resource allocation. In
specific, resource allocation approaches can be distinguished between those that
change dynamically the CPU capacity of service VMs and those that consider
as control variable the CPU frequency of the servers with fixed CPU capacity.
The above techniques can be combined with the addition or migration of VM
using a pool of idle servers. Most of the resource allocation solutions assume
that servers are protected from overloading. However, admission control and
resource allocation are two problems that need to be solved jointly in order
to ensure the performance of the web service under any workload variations.
Table 2 summarizes the benefits and drawbacks of each control method used in
the related studies.

Independent of the modeling and control approach, it appears that no ex-
isting method considers the explicit determination of a desired operating point.



Strengths Weaknesses Related Studies
Queuing Models - Scalability. - Valid only in

steady state.
- Specific work-
load distribu-
tions.

[6]- [8], [17], [20],
[21], [23], [31], [33],
[34]

LTI Models - Capture tran-
sient behaviour.

- Scalability.
- Accuracy.

[13], [22], [35]

LPV Models - Capture tran-
sient behaviour.
- Embed system’s
parameters.
- Scalability.
- Accuracy.

- Identification
Procedure.

[16], [26]- [28]

Table 1: Comparison of existing modeling approaches.

The LTI or LPV models combined with feedback control infer an operation
point from measurements or the system identification procedure. However, if
the state variables are far away from that nominal operation point, the underly-
ing servers are saturated and the model becomes non-linear. Similarly, queuing
theory approaches combined with an optimization method suffer from the same
limitation. In detail, queuing models assume specific distribution (e.g., M/G/1)
for the incoming request and service rate and determine the operating point
only for steady state conditions.

In the following paragraphs, we review some representative studies of inter-
est that are close to the approach proposed here. Ardagna et al. [7] presented a
distributed algorithm for capacity allocation and load balancing. The system’s
dynamic behavior was modeled by an M/G/1 queue, while the joint control
problem was solved as as an optimization problem applying a decomposition
technique for nonlinear programming. Although the resource allocation is sim-
plified, since they assume single tier web applications, VMs have predefined
fixed capacity and are homogeneous in terms of resources (CPU, RAM). In [6],
a joint admission control and resource allocation framework utilized queuing
theory to capture systems dynamics. The two controllers were separated in two
different optimization subproblems that were solved sequentially in an iterative
fashion. However, it was not examined whether the sequence of solutions pro-
vides any performance guarantee. Kusic et al. [20], [21] derived an analytical
mathematical model from queuing theory and tackled resource provisioning as
an optimization problem solved with a predictive control method. Some system
parameters (e.g., service rate) were empirically computed while the implementa-
tion considered the VM placement and capacity allocation problems separately.
Urgaonkar et al. [31] presented a utility based solution, which maximizes the
average application throughput and energy cost of the data center. Using queu-



Strengths Weaknesses Related Studies
Admission Con-
trol (AC)

- Overloading
Protection.

- Fixed capacity.
- Rejection of
requests under
heavy workload.

[16], [17], [22], [23]

Resource Alloca-
tion (RA)

- Dynamic capac-
ity.

- No performance
guarantee under
heavy workload.

[7], [20], [21], [27]-
[29], [33]- [35]

AC+RA - Stability guar-
antee.
- Overloading
protection.
- Dynamic capac-
ity.

- Complexity. [6], [8], [13], [26],
[31]

Table 2: Comparison of existing control approaches.

ing theory models and an optimization technique framework, they addressed
the problems of admission control, server selection and resource allocation sep-
arately. In [8], the authors proposed a holistic approach for application place-
ment, admission control, resource allocation. They used queuing theory models
and a greedy algorithm to solve the placement problem and consequently split
admission control and capacity allocation as two decoupled subproblems. There,
admission controller is designed separately from [12], ignoring the resource allo-
cation solution. Wang et al. [33] proposed a two level controller combined with
queuing modeling. The global level determines if the CPU share is efficient
for the total incoming workload and it activates a certain number of servers.
The local controller solves the resource allocation problem in order to satisfy
the predicted workload. However, it is assumed that the incoming load to each
application replica is proportional to the CPU share and a linear relationship
between CPU share and processing rate is proposed. Since all the above so-
lutions use queuing models they are valid only for steady state conditions and
they do not examine if the operational point is feasible or not.

In [22], a feedback admission controller using an LTI model was proposed,
which also takes into account CPU utilization to regulate the admitted work-
load. ACRA [13] is an integrated framework that solves jointly the admission
control and resource allocation problems using a group of LTI models, which is
not scalable as the number of consolidated services increases. Furthermore, it
was shown that the determined equilibrium point is always feasible. Yaksha [17]
presented an admission controller, which is based on an initial queuing model
and an LTI model that is derived from the linearisation of the queuing model,
while a proportional-integral (PI) feedback controller is designed. However, the
obtained linearised residual error model may be large. Liu et al. [23] addressed
the above limitation by using an adaptive controller to design the feedback loop



working together with the queuing model through on-line tuning of model pa-
rameters from measurements. This self-tuning approach lowers the need for
system characterization experiments in designing the controller and makes the
system more robust. However the range of admitting probability adjustment
is limited because of the linearisation model near the operation point. In [35],
the authors demonstrated a resource allocation framework that regulates CPU
frequency and VM capacity to minimize the power consumption of server clus-
ters. They used decoupled linear models and PI and MPC (Model Predictive
Control) controllers. Qin et. al. [27], used an LPV model to design a robust
controller on frequency domain. However, the convergence of the identification
algorithm is very sensitive to some parameters. Similarly in [28], the authors de-

Figure 1: Cloud System Control Framework.

rived an LPV model from the linearisation of a queuing model and they designed
a robust resource allocator in frequency domain using DVFS (Dynamic Voltage
and Frequency Scaling) technology. In [26], the authors combined the admis-
sion control and resource allocation using LPV system identification and Model
Predictive Control (MPC), which calculates the admission probability and CPU
frequency using DVFS technology. Although their controller offers a trade-off
between power consumption and SLOs achievement, it does not guarantee the
performance among different operating points. Giani et al. [16] presented an
LPV modeling combined with a PI admission control, without addressing re-
source allocation. It is one of the few studies that provided a stability analysis
of their controller. In [34] the authors presented a two level control framework.
The global level computes the number of active servers, while the local level
optimizes the CPU share of VMs in each server using an MPC scheme. The



model is derived from analytical equations where the operation point was cho-
sen arbitrarily. Finally DynaQos [29] is a model-free self tuning fuzzy controller
that on the global level computes the necessary aggregated capacity, while the
local level computes the capacity share such that the SLA requirements are
met. Apart from [13], all the aforementioned papers do not examine if their
solution guarantees the feasibility of steady-state operation, the stability and
the consolidated applications’ performance simultaneously.

3 Autonomous Framework

Figure 2: Local Level Architecture.

Figure 1 illustrates the general control architecture for the consolidation of
web applications on a distributed cloud computing platform. An Infrastructure
as a Service (IaaS) or Software as a Service (SaaS) provider has server clusters
in different data centers, which are heterogeneous in terms of resource capacity.
The VMs of each application are consolidated in these servers. The global
level controller must split the total incoming workload, Λi, i = 1, . . . , n of n
applications, into partial fractions of load (λj

i ) among the VMs of the application
running at different locations. The objective of the global level controller can
be load balancing or Distributed Rate Limiting (DRL), aiming to equalize the
performance in each of the underlying data centres according to a performance
indicator.

The local level controllers aim at satisfying the SLOs reference value, the
physical constraints and at minimizing the power consumption. Figure 2 depicts
the system’s architecture for the consolidation of two multi-tier applications
and one single-tier application. Typically, web applications consist of many
components such as web servers (WEB), application servers (AP) and databases
(DB), shown in Figure 2. Black solid and red dashed lines on Figure 2 show the
communication between the components of each service in order to complete a



Figure 3: Structural diagram of the proposed modeling and control framework.

task. The components of each application are assigned to servers according to a
application placement algorithm. In this article, we assume that the topology of
VMs in the server cluster is predefined. The local controller must solve admission
control and resource allocation as a joint decision problem. For example, in
the setting shown in Figure 2 the goal is to determine at each time instant
the admittance probability (p1, p2, p3) for every service, as well as the capacity
(CPU) share for their VMs (c1,1, ..., c3,1).

Figure 3 illustrates the modeling and control framework presented in this pa-
per. On the left part of this figure all the necessary off-line steps are presented.
Initially, the LPV model, xk+1 = A(sk)xk+B(sk)uk, is identified (Ai, Bi) using
a set of available input, output (U,X) data and the prediction (λ̃) of the incom-
ing request rate (λ) from real traces. Next, we quantify the existing physical
system’s constraints on the control inputs (U) and states (X) of the system. In
specific, the CPU share of each VM and the admission probability are the two
control inputs of the system (the vector u(k) on Figure 3). The CPU capacity of
each VM varies between two limit values, while the sum of the VMs capacities
in each server cannot exceed the total capacity of the server. The admission
probability ranges between a minimum and a maximum value. In addition, the
state vector (u(k)) having as elements the response times of each application
(x(k)) on Figure 3) varies between two extreme values that can be extracted
precisely by experiments that lead servers near to their saturation point. The
produced LPV model and the system constraints are taken into account by the
corresponding element of Figure 3 that determines the set of feasible operat-
ing points (uref , xref ). The determination of these points is addressed as an



optimal decision problem. Finally, a stabilizing state-feedback control law u is
designed off-line and implemented at each time step u(k). The offline control
strategy takes into account the SLOs target values, the system’s constraints and
the determined set of equilibrium points in order to calculate the gain matrix
Ki and the domain of attraction Ri, the area of the state-space where it is
guaranteed that the system trajectory will be driven on the equilibrium point,
for each operating point. Then at every time interval a point location problem
determines the current operation point and the final input vector u(k) is applied
to the real testbed. The details of the above components on Figure 3 will be
analytically described in the forthcoming subsections. Table 3 summarizes the
notation used throughout the article.

LPV Model
n Number of consolidated applications
m Number of active servers

Ai LPV state matrices, i = 0, ..., n

Bi LPV input matrices, i = 0, ..., n
sk LPV model parameter

λik Incoming request rate of ith application
in the kth time interval

λ̃ik Prediction of incoming request rate
of ith application in the kth time interval

States (vector)

xk 90th percentile of the response times at the kth time interval
Inputs (vector)

ci,jk CPU capacity of VM i
j that belongs to

ith application on jth server at the kth time interval

pik admittance probability of ith application
at the kth time interval

uk concatenated input vector, contains ci,jk
and pik in the kth time interval

Constraints
X State constraint set
U Input constraint set

Reference Values
xref Equilibrium response time vector
uref Equilibrium point input vector
Tref SLA highest acceptable response time vector

Table 3: The parameters, states and input signals, constraint sets and reference
values for the LPV system (2).



3.1 Modeling and Identification

Modeling the dynamic behaviour of consolidated web services on a cluster of
servers is challenging, since there are no analytical equations that capture the
system dynamics. In a previous work [13], a group of LTI models that covers the
range of the incoming workload was used. While the approach is more precise
than a single LTI model, it is not scalable with respect to the workload range and
the number of co-hosted applications. In order to overcome this issue, a Linear
Parameter Varying (LPV) model [30] is adopted, which is tuned according to
a system parameter. Thus, in this context, the LPV model replaces the group
of LTI models in [13], making it scalable with respect to the range of incoming
workload. Additionally, it is proven to be more accurate. The advantages of
LPV models against the other proposed modeling methods in literature are
shown in Table 1.

System identification is a mature field in systems theory [24] . Generally, a
mathematical model of a system, is chosen to describe analytically the dynamic
operation of a process. The system model is a function of the input vector u,
which contains all the control signals, and the state vector x, which contains
the dominant variables of the system that have memory. For the discrete-time
case, a difference equation associates the states at the next time instant with
the states and control inputs at the current time instant, i.e., xk+1 = f(xk, uk).
The vector-valued mapping f(·, ·) can be linear or nonlinear. Having chosen the
structure of the model, i.e., a family of functions or a set of parameters, the
identification procedure determines an explicit model, using data sets of input
signals and states.

We consider n consolidated applications on m servers and each application
has one VM on every server. We select as state variables xi ∈ R, i = 1, .., n, the
90th percentile of response time. The state vector is denoted by x ∈ R

n, i.e.,

x := [x1 . . . xn]
⊤
.

We consider as inputs the CPU capacities ci,j of each VM, where i = 1, . . . , n
denotes the application and j = 1, . . . ,m the server, and the admittance prob-
abilities pi, i = 1, ..., n, for each application. Consequently, the input vector
u ∈ R

(m+1)n is defined as follows

u := [c1,1 ... c1,m c2,1 ... c2,m ... cn,1 ... cn,m p1 ... pn]
⊤
.

(1)
The LPV model is of the form

xk+1 = A(sk)xk +B(sk)uk, (2)

where A(sk) ∈ R
n×n, B(sk) ∈ R

n×(m+1)n are the system matrices which depend
on the time varying LPV parameter sk and k is the time variable. In specific,
the parameter vector s ∈ R

n contains the prediction values λ̃i, i = 1, .., n, of
the incoming request rate λi of each application i.e.,

s = [λ̃1 λ̃2 . . . λ̃n]
⊤.



The parameter varying matrices A(sk), B(sk) are chosen to have a linear de-
pendence on vector sk, k ∈ N, i.e.,

A(sk) = A0 +

n
∑

i=1

siAi, B(sk) = B0 +

n
∑

i=1

siBi (3)

where Ai ∈ R
n×n, i = 0, . . . , n and Bi ∈ R

n×(m+1)n, i = 0, . . . , n are linear
invariant matrices, whose elements are identified below.

The system (2) is identified using the algorithm of [9]. In specific, the fol-
lowing LPV input-output (LPV-IO) representation method is used to derive the
unknown coefficients from past measurements

xk = a1(sk)xk−1 + · · ·+ ana
(sk)xk−na

+ b1(sk)uk−1 + · · ·+ bnb
(sk)uk−nb

, (4)

where na, nb represent the number of past values of the state and the input
vector respectively. The coefficients ai(sk), i = 1, ..., na and bi(sk), i = 1, ..., nb

are used to construct the matrices Ai, Bi of (3).
For example, if there are two applications (n = 2) consolidated in one server

(m = 1), then the corresponding LPV-IO represantation (4) is,

xk = a1(sk)xk−1 + b1(sk)uk−1,

and the LPV model has the following form,
[

x1,k+1

x2,k+1

]

=

[

a11(sk) a12(sk)
a21(sk) a22(sk)

] [

x1,k

x2,k

]

+

[

b11(sk) b12(sk) b13(sk) b14(sk)
b21(sk) b22(sk) b23(sk) b24(sk)

]









c1,1,k
c2,1,k
p1,k
p2,k









. (5)

The timestamps of real traces from [5] were used to produce data sets of the
incoming request rate λk and the control variables of the CPU capacity ci,j of
each VM and the admittance probabilities pi of each application follow uniform
distribution respectively. Usually a data set with 2000 samples is sufficient to
achieve highly accurate models.

In order to evaluate the produced models, the standard Best Fit Rate (BFR)
[26] score was used. The second column of Table 4 illustrates the accuracy
of model (5) that corresponds to na = 1, nb = 1. This model succeeds in
25% higher score than the corresponding LTI model, which is produced by the
classical RLS algorithm [36] for LTI modeling. In a typical testbed described
analytically in Section 4, the identification experiments show that taking into
account past values of states and inputs increases the accuracy of the model, as
shown in Table 4. However, for na = 3, nb = 3 the improvement is negligible.

3.2 Request Rate Predictor

In order to predict the incoming request rate of each application, Holt’s linear
exponential smoothing (LES) filter [37] is used, which can capture the linear



na = 1, nb = 1 na = 2, nb = 2 na = 3, nb = 3
LPV-RLS 76.72%− 82.61% 79.37%− 86.79% 80.29%− 87.17%

RLS 43.45%− 57.04% 45.08%− 59.23% 45.54%− 59.64%

Table 4: Comparison of the BFR score of the LPV-RLS and RLS identification
algorithms.

trend in the time series. For example, during time step k, the estimated value
λ̃k of incoming request rate λk for a one-step prediction horizon is obtained as
follows,

λ̃k = λ̂k + bk,

λ̂k = αλk + (1− α)(λ̂k−1 + bk−1),

bk = β(λ̂k − λ̂k−1) + (1 − β)bk−1,

(6)

where α, β are smoothing constants, λ̂k denotes the smoothed value for time step
k and bk represents the linear trend in the measurement series. For initialization,
we use a random value for λ̂0 inside the range of incoming request rate and
b0 = 0.5.

3.3 State and Input Constraints

The computational resources of a server cluster, which hosts a group of appli-
cations, are inherently limited. Moreover, there are network constraints that
bound the range of response time and incoming request rate. The 90th per-
centile of response time xi of the application i in any time interval varies from a
small positive value ε (e.g., 0.01ms) to the value when the system is saturated or
the requests have expired due to network constraints. Thus, states are bounded
in the constraint set X, where

X = {x ∈ R
n : ε ≤ xi ≤ xmax, i = 1, . . . , n}. (7)

On the other hand, input constraints consider the restrictions on VM capacity
and admittance probability. For each VM of application i on server j, the
CPU capacity ci,j varies from a minimum value cmin to a maximum cmax.
Additionally, the sum of VMs capacity should not exceed the total capacity of
the server CTj . The admittance probability ranges from a minimum value pmin

to pmax = 1. All the above constraints form the input constraint set U,

U = {u ∈ R
(m+1)n : cmin ≤ ci,j ≤ cmax, i = 1, . . . , n, j = 1, . . . ,m,

∑n

i=1 ci,j ≤ CTj , j = 1, . . . ,m,

pmin ≤ pi ≤ pmax, i = 1, . . . , n}.
(8)

We remind the reader that the input vector is defined by (1).



3.4 Determination of the Operating Point

The modeling framework in section 3.1 allows for identifying a number of desired
feasible operating points. From a set of candidate equilibrium points we choose
the ones satisfy the SLA requirements and the state and input constraints (7)
and (8) respectively. The determination of this point is a decision problem
that includes several competing objectives, such as small response times and
low power consumption. Thus, depending on the priority of the goals set and
selecting accordingly the corresponding cost function, an optimization problem
can be formulated, whose solution is the desired equilibrium point. In partic-
ular, we desire to satisfy the response time reference value of each service and
maximize the admittance probability without violating the system constraints.

To this end, given a desired response time vector xref, an input vector uref

is computed by the solution of the following linear optimization problem,

min
ci,jref ,piref

,di







n
∑

i=1

m
∑

j=1

wijci,jref +

n
∑

i=1

wdi
di







(9a)

subject to

xref = Âlxref + B̂luref, l = 1, . . . , 2n, (9b)

ε ≤ xrefi ≤ xmax, i = 1, . . . , n, (9c)

cmin ≤ ci,jref ≤ cmax, i = 1, . . . , n, j = 1, . . . ,m, (9d)
n
∑

i=1

ci,jref ≤ CTj , j = 1, . . . ,m, (9e)

pmax − piref ≤ di, i = 1, . . . , n, (9f)

di ≥ 0, i = 1, . . . , n. (9g)

The matrices Âl, B̂l, l = 1, ..., 2n represent the values of the matrices Ā(s), B̄(s),
for all extreme values of the LPV parameter s. A detailed exposition of this
transformation is in the Appendix. Consequently, Eq.(9b) ensures that (xref, uref)
is the equilibrium point for all possible parameter variations. Eq.(9c)-(9e) en-
sure state and input constraint satisfaction. The positive numbers wij , i =
1, . . . , n, j = 1, . . . ,m, and wdi,i=1,...,n, are weights of the optimization cost
function and their values correspond to the trade-off among the competitive
objectives. The auxiliary variables di in the cost function and the last two
equations are used to maximize the admittance probability. In accordance with
the notation used in (1), the reference input vector uref is

uref =
[

c1,1ref · · · c1,mref
· · · cn,1ref ... cn,mref

p1ref · · · pnref

]⊤
.

3.5 Controller Design

In this subsection, we construct state-feedback control laws. At each time in-
stant, a state-feedback controller takes as input the current measurements of



the states of the system (2). After processing this information, the values of the
control inputs (1), which in this case are the CPU capacities of each VM and
the percentage of the admitted requests, are calculated and fed to the system.
In specific, our goal is to compute a control law that drives the states of the
system, i.e., the response times of each application i, i = 1, ..., n, to a desired pre-
specified equilibrium point, while the physical constraints (7), (8) are satisfied at
all times. We tackle the problem of constraint satisfaction and of convergence to
the desired equilibrium point simultanesouly, by utilizing quadratic Lyapunov
functions for the system (2). The benefit of the proposed method is that it
leads to the computation of a stabilizing control law, while at the same time
it characterizes a set of initial conditions (i.e., initial response times) that can
be transferred to the equilibrium point (desired response times) without violat-
ing the state and input constraints. These sets are called regions of attraction
(RoA), associated to the chosen control law and the equilibrium point [19].

The problem to be investigated can be formally formulated as follows: Given
the system (2), a set of desired operating points xref,i, i = 1, ..,M and the
state and input constraints (7), (8), compute state-feedback control strategies
u := gi(x), i = 1, . . . ,M and a domain of attraction (DoA) Ri ⊂ R

n for each
operating point, such that the closed-loop system is locally asymptotically stable
with respect to xref,i.

Since the incoming workload is unpredictable and sudden changes occur, it
is important to have different operating points in order to have more flexibility.
For example, if the incoming request rate dramatically increases, then changing
to another operating point with higher response time but also higher throughput
may be a profit-full strategy. Consequently, a second problem to be investigated
is to compute a control strategy such that the closed-loop system is guaranteed
to change efficiently between different operating points.

We consider the system (2), retrieved by the identification procedure de-
scribed in Subsection 3.1. The LPV parameter sk is calculated at each time
instant by the request rate predictor described in Subsection (3.2), the state
and input constraints have been formulated in Subsection 3.3, while the set of
feasible equilibrium points has been computed in (3.4). The proposed controller
synthesis is described by the following off-line steps,

Step 1 For each chosen equilibrium point xref,i, we apply a coordinate transfor-
mation in order to obtain the translated system with its equilibrium point
at the origin.

zk = xk − xref,i,

vk = uk − uref,i,
(10)

zk+1 = A(sk)zk +B(sk)vk. (11)

The state and input constraints are transformed accordingly to z ∈ Xi, v ∈
Ui.

Step 2 For each translated system (11), we consider a quadratic candidate Lya-
punov function [10, chapter 2], [18, chapter 4] Vi(·), i = 1, . . . , N , i.e.,

Vi(z) = z⊤Piz. (12)



Moreover, we consider a linear state-feedback control law gi(·) for each
system (24) i, i = 1, . . . , N (11), of the form gi(z) = Kiz, i = 1, . . . , N .
Thus, the closed-loop system that relates to the equilibrium point i is

M i : zk+1 = (A(sk) +B(sk)Ki)zk, i = 1, .., N, (13)

For each closed-loop system (24), we compute simultaneously the matrix
Pi ≻ 0 that satisfies the one-step decrease along the trajectories of the
system (24) requirement of the Lyapunov function, and as the feedback
gain Ki. Computing the pairs (Pi,Ki), i = 1, ..., N is equivalent to solving
a convex optimization problem [32].

Step 3 Transforming back to the initial state space, the domain of attraction for
each closed-loop system (2) relating to the equilibrium point xref,i is

Ri = {x ∈ R
n : (x − xref,i)

TPi(x− xref,i) ≤ 1}. (14)

Thus, given the desired equilibrium point, xref,i, the control law uk for
the system (2) is a function of the state vector xk, measured at the time
instant k. If xk is in the RoA Ri, the control action is of the form.

uk = Ki(xk − xref,i) + uref,i. (15)

The procedure is explained in more detail in the Appendix, while it is presented
in an algorithmic manner in Algorithm 1.

Algorithm 1 - Offline Controller Synthesis

1: for all xref,i, i = 1, . . . , N do
2: compute (xref,i, uref,i), i = 1, . . . , N by solving (9a)
3: compute Xi,Ui

4: compute Ri,Ki, Pi, ∀(xref,i, uref,i), i = 1, . . . , N
5: end for

Figure 4 shows a graphical representation of the domains of attraction in
the state space, for each operating point for the system (5). For example the
DoA of xref = [1 1]⊤ is highlighted. If any point inside the blue ellipsoid is
the initial state then an admissible control law exists that transfers the system
trajectory to the equilibrium point xref = [1 1]⊤.

Due to the unpredictable nature of incoming workload, it is essential to
design a control mechanism that ensures the performance of the system when-
ever an important change occurs. From the set of desired operating points
xref,i, i = 1, .., N , there is one operating point that is closest to the SLA re-
quirements. According to the SLA, for each consolidated application there is a
highest acceptable response time T ⋆

ref,i, i = 1, . . . , n. Thus, an accepted operat-
ing area is implicitly shaped on the state space where the state variables should
remain for all time intervals. From the set of feasible operating points, deter-
mined in subsection (3.4), we select the operation point, which its corresponding
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Figure 4: DoAs Ri of each operating point xref,i, i = 1, .., N .

DoA covers the largest part of the accepted operating area. This operating point
is denoted as (xref,i⋆ , uref,i⋆), its corresponding DoA Ri⋆ and feedback gain ma-
trix Ki⋆ . Every time step k the response time vector xk is measured, if this
value is not in Ri⋆ , then we have to choose the closest operating point that
contains it according to the following Euclidean distance metric,

min
xref,i

‖xref,i − xref,i⋆‖ (16a)

subject to

xk ∈ Ri, i = 1, .., N (16b)

which is a standard point location problem.
Because of the overlap of the DoA of the operating points in Figure 4 , the

system trajectory will move from one DoA to another, closest to Ri⋆ , until it
converges to the desired Ri⋆ . The online implementation of the control strategy
is described in an algorithmic fashion in Algorithm 2.

Algorithm 2 - Online Controller Implementation

1: if xk ∈ Ri⋆ then
2: uk = Ki⋆(xk − xref,i⋆) + uref,i⋆

3: else
4: Find Ri by solving (16a)
5: uk = Ki(xk − xref,i) + uref,i

6: end if
7: xk ← xk+1 = A(sk)xk +B(sk)uk

8: Go to line 1



Figure 5: Tested Diagram - VM i
j of ith application on jth server.

4 Evaluation

We have built a real testbed in order to evaluate the performance of our sys-
tem modeling and control framework. A server with 8-core Intel(R) Xeon(R)
CPU E5405, 8GB memory and Debian squeeze, two servers with 4-core Intel(R)
Xeon(R) CPU E31220, 8GB memory and Ubuntu 11.10 are used. Also XEN
HV:xen-hypervisor-4.0-i386 (4.0.1-4) is used to set up the VMs. Six services
were deployed, which consist of an application and a database tier. Each tier
is hosted on a VM and the topology of VMs is shown in figure 5. The CPU
capacity of database tier is fixed and only the capacity of the application tier
VMs is assumed as bottleneck and changes dynamically, which is a typical sce-
nario in cloud computing. We used real, highly variant and non-stationary
traces from [5] to create the incoming workload of every application. As it is
mentioned earlier, the timestamps of the incoming requests are used to build
the incoming workload. Also the data that are used for the evaluation of the
controller are different from the traces that were used for the identification of
the LPV model. These traces are still used by recent studies [38], [15] since
they are more realistic than benchmarks such as TPC-W [4] and RUBis [2] that
have stationary request generators. The workload predictor and the controller
are implemented using CVXPY [14], which a Python toolbox for convex op-
timization problems. We demonstrate an experiment where the upper desired
reference 90th percentile value of response time, defined by SLA, is Tref = 2sec.



According to the concept described in Section 3.5, the following target value
of the equilibrium point arises Xref = 1sec. We assume the prediction of the
incoming request rate λ̃i(k) as the LPV model parameter sk. The control values
are updated every 30 seconds. As is shown on Figure 5, every server hosts the
VMs of two applications. This implies that there are three decoupled systems
with n = 2 and (m = 1), which are described by system (5).

Figures 6a-6d illustrate the performance of the proposed framework for a
12-hour experiment (1440 samples). Indicatively we present the performance
of services App1 and App2 whose VMs share the first server in the application
tier of Figure 5. Figure 6a shows the 90th percentile value of response time for
both applications. The percentage of time intervals that the response time is
less than the target value Xref (blue line), is 98.78%. Also there are very few
time intervals whose response time violates the reference value Tref (green line).
Figures 6b and 6d indicate that it is essential to tackle resource allocation and
admission control as a common decision problem. When the incoming workload
is low the VM capacity is also low and it increases as the incoming load increases.
On the other hand, admission probability is close to one when the workload is
light whereas it decreases if more requests arrive. Figure 6c illustrates that
although the incoming request rate (blue dotted line with circle) is dynamic
and unpredictable, the existed predictor efficiently estimates the future values
of workload (red dashed line).

Figure 7 illustrates a short example of the control strategy presented in this
article. The red dots depict different operating points xref,i, uref,i, the red ellip-
soids the corresponding DoAs Ri and the blue dot and line correspond to the
target xref,i⋆ , uref,i⋆ , Ri⋆. The black solid line corresponds to the system trajec-
tory which begins from x0 = [4.3 3.9]⊤ far away from the desired operating
point, xref,i⋆ = [1 1]⊤. Applying Algorithm 2, the appropriate control law is
computed and by solving the point location problem (16a) the response time
vector enters the acceptable region (blue line) on state-space, x(k) ≤ Tref, after
a few steps.

We compare the proposed solution with study [26], which also uses LPV
modeling and MPC control without guaranteeing the feasibility of the oper-
ating point. We select this particular study because is closest to our control
perspective and it uses a popular and well-established control method. This
study also provides a trade-off between response time restrictions and energy
consumption adjusting the parameter α to the cost function J = α||x(k)||+(1−

α)
∑K+H−1

k=K ||u(k)||. We used the same incoming workload in order to compare
the two approaches and Figures 8a-8c show their performance for a 5-hour ex-
periment (600 samples). It can be seen that our method outperforms the MPC
controller. In particular, the MPC scheme results in a large percentage of re-
sponse violations, especially for App2, and it consumes more capacity resources
and rejects a significant portion of the incoming requests. Table 5 summarizes
the performance of the two control solutions. The MPC controller does not
perform very well because of the lack of a feasible equilibrium point that will
assure system stability. Also it is very sensitive to the values of the parameter



0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

hours

se
c

 

 
App1
Target
SLA

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

hours

se
c

 

 
App2
Target
SLA

(a) Response Time.

0 2 4 6 8 10 12
20

25

30

35

40

45

50

55

hours

C
P

U
%

 

 
App1

0 2 4 6 8 10 12
20

25

30

35

40

45

50

55

hours

C
P

U
%

 

 
App2

(b) VMs Capacity.

0 2 4 6 8 10 12
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

hours

 

 
App2

0 2 4 6 8 10 12
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

hours

 

 
App1

(c) Incoming Request Rate.

0 2 4 6 8 10 12
100

150

200

250

300

350

400

450

500

hours

re
q
/s

e
c

 

 
Incoming
Prediction

0 2 4 6 8 10 12
100

150

200

250

300

350

400

450

500

hours

re
q
/s

e
c

 

 
Incoming
Prediction

(d) Admittance Probability.

Figure 6: Overall Performance of Consolidated Applications.
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Figure 7: DoA of operating points (red lines and circles), DoA of the desired
operating point (blue line and square) and System Trajectory (black solid line).

α of the cost function. This results in the input oscillations in Figure 8b and
Figure 8c.

(%) Accepted RT Capacity Probability
AC+RA 98.55% 36.08% 96.69%
MPC 69.92% 45% 60.32%

Table 5: Performance of AC+RA vs MPC.

5 Conclusion and Future Work

A unified local level modeling and control framework for consolidated web ser-
vices in a server cluster was presented, which can be a vital element of a holistic
distributed control platform. Admission control and resource allocation were
addressed as a common decision problem. Stability and constraint satisfaction
was guaranteed. A real testbed was built and from a range of examples, in dif-
ferent operating conditions, we can conclude that both the identification scheme
and controller provide a high level of QoS. A novel component of this approach
is the determination of a set of feasible operating (equilibrium) points, which al-
lows the selection of the appropriate equilibrium point, depending only on what
our objectives are, such as maximizing throughput, minimizing consumption or
maximizing profit. Evaluation shows that our approach has high performance
compared to well-known solutions, such as queuing models and measurement
approach of equilibrium points.

For future work we intend to extend our work using this study as an element
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Figure 8: Comparison with MPC Controller.



of a general control framework, which also includes a global level controller that
distributes the incoming workload according to an optimization problem, either
minimizing the number of active severs or equalizing the amount of load on all
underlying servers. Additionally in this global level, we are able to construct
node controllers that co-operate with the others and determine the number of
VMs per server with availability guarantees.
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Appendix

In order to obtain a representation of the model that allows the development
of the subsequent results, the matrices A(sk), B(sk) of the system (2) can be
equivalently expressed as the convex combination of extreme subsystems defined
by the matrix pairs (Âi, B̂i), i = 1, ..., 2n, which correspond to the extreme values
of sk, i.e.,

A(s) =

2n
∑

i=1

mi(s)Âi, i = 1, . . . , 2n, (17)

B(s) =

2n
∑

i=1

mi(s)B̂i, i = 1, . . . , 2n, (18)

(19)

where mi(s) ≥ 0 i = 1, . . . , 2n and
∑2n

i=1 mi(s) = 1. This standard equivalent
representation corresponds to linear discrete-time systems with polytopic un-
certainties [10]. Since n is the number of consolidated applications and their
incoming request rate varies between its minimum and maximum value, the
total number of the matrix pairs (Âi, B̂i) is 2

n.
For each equilibrium point (xref,i, uref,i), i = 1, . . . , N , computed in subsec-

tion 3.4, we define the translated system

zk+1 = A(sk)zk +B(sk)vk,

where zk = xk − xref,i, vk = uk − uref,i. Also for the ith system (11), the state
and input constraints are transformed accordingly to z ∈ Xi, v ∈ Ui, where

Xi = {z ∈ R
n : ε− xref,i ≤ z ≤ xmax − xref,i}, (20)

Ui = {v ∈ R
(m+1)n : cmin − ci,jref ≤ tci,j ≤ cmax − ci,jref ,

i = 1, · · · , n, j = 1, · · · ,m,
∑n

i=1 tci,j ≤ CTj −
∑n

i=1 ci,jref , i = 1, · · · , n, j = 1, · · · ,m,

pmin − piref ≤ tpi ≤ pmax − piref }.

(21)

where tci,j = ci,j−ci,jref are the transformed VMs capacity inputs and tpi = pi−
piref are the transformed admission probability inputs. The above constraints
can be rewritten in the following form of linear inequalities,

z ∈ Xi = {z ∈ R
n : Ci(j)z ≤ 1, i = 1, . . . , N, j = 1, . . . , p} (22)

v ∈ Ui = {v ∈ R
(m+1)n : Di(j)v ≤ 1, i = 1, . . . , N, j = 1, .., q} (23)



where Ci(j) ∈ R
1×n and Di(j) ∈ R

1×(m+1)n are the rows of matrices Ci, Di

respectively which contain all the constraint inequalities for each system (11).
We consider a linear state-feedback control law gi(·) for each system i, i =
1, . . . , N (11), of the form gi(z) = Kiz, i = 1, . . . , N ,

M i : zk+1 = (A(sk) +B(sk)Kj)zk, i = 1, .., N, (24)

For choose quadratic candidate Lyapunov functions Vi(·), i = 1, . . . , N of the
form

Vi(z) = z⊤Piz. (25)

For each closed-loop system (24), we have to determine a positive definite matrix
Pi ∈ R

n×n that satisfies the one-step decrease along the trajectories of the
system (24), i.e., MHTSO BALE TA Ai Bi ME KAPELA PANTOU

(Âi + B̂iKi)
⊤Pi(Âi + B̂iKi)− Pi ≺ 0. (26)

To eliminate the non-linearities in (26), we set Qi = P−1
i and Yi = KiQi and

by pre and post multiplying eq. (26) with Qi we get

(ÂiQ+ B̂iYi)
⊤Q−1(ÂiQ+ B̂iYi)− Pi ≺ 0. (27)

Applying the Schur complement [11] we get the following equivalent form

[

Qi ÂiQi + B̂iYi

(B̂iQi + B̂iYi)
⊤ Qi

]

≻ 0, (28)

which is a linear matrix inequality with respect to Qi, Yi. Then we can compute
the gain matrix Ki and Qi, Pi for each system (24) M i, i = 1, ..., N, by solving
N convex optimization problems

min
Qi,Yi,ǫ

trace(Qi) (29a)

subject to
[

ǫQi ÂiQi + B̂iYi

(ÂiQi + B̂iYi)
⊤ Qi

]

≻ 0, (29b)

[

1 Ci(j)Qi

(Ci(j)Qi)
⊤ Qi

]

� 0, j = 1, . . . , p, (29c)

[

1 Di(j)Yi

(Di(j)Yi)
⊤ Qi

]

� 0, j = 1, . . . , q, (29d)

Qi ≻ 0, (29e)

0 ≤ ǫ < 1. (29f)

In the above problem, inequalities (29b) and (29e) ensure exponential stability
for the closed–loop system. Inequalities (29c) and (29d) guarantee state and in-
put constraint satisfaction. Parameter ǫ is a measure of the speed of convergence
of the closed loop system to the equilibrium point. The problem is convex and



can be solved using off-the-self software, e.g the Matlab Robust Control Tool-
box [1] or the SDPT 3.0 software toolbox [3]. The interested reader is referred
to, e.g., [11], [25, Appendix A], for further details.

The Lyapunov matrix and the gain matrix for each operating point are
finally computed as Pi = Q−1

i and Ki = YiQ
−1 respectively. Together with the

controller, the set
Siz = {z ∈ R

n : z⊤Piz ≤ 1}

is an admissible DoA for the closed loop system , i.e. it is the set which con-
tains all initial conditions that can be transferred asymptotically to each equi-
librium point without violating the constraints. Transforming back to the ini-
tial state space, the domain of attraction for this system is Ri = {x ∈ R

n :
(x − xref,i)

TPi(x − xref,i) ≤ 1}. while the control law for the initial system (2)
is given by uk = Ki(xk − xref,i) + uref,i. Since (25) is a Lyapunov function, Ri

is an ǫ−contractive for the closed-loop system (24) [10]. This property of the
set Ri ensures that for any x(0) ∈ Ri the system will be driven to the desired
operating point xref,i without violating the input and state constraints.

Remark 1 A modification to the offline controller synthesis and the online
controller implementation must be made for the case where no feasible input
vector uref,i,j exists for a desired xref,i, i.e., the problem (8) has no solution.

Firstly for each extreme system (Âj , B̂j), j = 1, . . . , 2n, problem (8) is solved
in order to compute feasible input vectors uref,i,j , j = 1, . . . , 2n for the desired
equilibrium point xref,i.

Next, for all extreme realizations (Âj , B̂j), the translated input constraints
Ui,j , j = 1, . . . , 2n are formulated as (23). We consider as the common input
constraint set Ui,c in the translated space to be the intersection of each input
constraint set, i.e., Ui = ∩2

n

j=1Ui, j. Then for each operating point Lyapunov
matrix Pi, the feedback gain matrices Ki and the DoA Ri are computed solving
a similar problem to (20).

Regarding the online controller implementation, a feasible input vector uref,i(sk)

has to be computed at each step for the desired operating point xref,i(sk) = xref,i.
In detail, the following linear programming problem is solved at each instant k.

min
ci,jk ,pik

,di,uref,i(sk)







n
∑

i=1

m
∑

j=1

wijci,j +

n
∑

i=1

wdi
di







(30a)

subject to

xref,i(sk) = A(sk)xref,i(sk) +B(sk)uref,i(sk), (30b)

cmin ≤ ci,jk ≤ cmax, i = 1, . . . , n, j = 1, . . . ,m, (30c)
n
∑

i=1

ci,jk ≤ CTj , j = 1, . . . ,m, (30d)

pmax − pik ≤ di, i = 1, . . . , n, (30e)

di ≥ 0, i = 1, . . . , n, (30f)

uk ∈ U, uk = Ki(xk − xref,i(sk)) + uref,i(sk). (30g)



The positive numbers wij , i = 1, . . . , n, j = 1, . . . ,m, and wdi,i=1,...,n, are weights
of the optimization cost function. Equation (30b) ensures that (xref,i(sk), uref,i(sk))
is the equilibrium point. Equations (30c)-(30e) ensure state and input constraint
satisfaction. Equations (30d) and (30e) are used to maximize the admittance
probability. Finally equation (30g) guarantees that the control law uk satisfies
the input constraints at every time interval. The above procedure allows to com-
pute a stabilization control law and a DoA that leads the system trajectory on
the operating point. For this case, the input constraint satisfaction is not guar-
anteed a priori. However, if the optimization problem (24) is feasible, the input
constraints are satisfied during the online implementation.


