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Deep Reinforcement Learning Algorithms for Steering an
Underactuated Ship

Le Pham Tuyen1, Abu Layek1, Ngo Anh Vien2, and TaeChoong Chung1

Abstract— Based on state-of-the-art deep reinforcement
learning (Deep RL) algorithms, two controllers are proposed
to pass a ship through a specified gate. Deep RL is a powerful
approach to learn a complex controller which is expected to
adapt to different situations of systems. This paper explains
how to apply these algorithms to ship steering problem. The
simulation results show advantages of these algorithms in
reproducing reliable and stable controllers.

I. INTRODUCTION

Ship steering problem [1] is a complicated task due to
highly nonlinear and continuous control under the distur-
bances such as wave, wind, and current. Some studies have
been focused on this domain to make controllers using some
approaches such as PID control, fuzzy logic control and
genetic algorithm [16][17][18]. Reinforcement Learning [13]
is also one of the approaches to produce a controller for
the ship. RL based methods interact with the environment
and train the controller’s parameters using a reward signal
at each time step. However, traditional RL algorithms suffer
some limits such as failing to deal with continuous control
tasks or inefficiency in using data samples during the learning
process.

Recent years, reinforcement learning takes advantages of
neural network researches and produces a new generation of
reinforcement learning algorithm called Deep Reinforcement
Learning (Deep RL). The new algorithms employ neural
networks inside and allow representing complex behaviors.
Some Deep RL algorithms can deal with continuous control
tasks such as Deep Deterministic Policy Gradient [2] and
Normalized Advantage Function [4]. Moreover, Deep RL
algorithms have a mechanism to use data samples efficiently,
which makes the learning process more stable without being
biased. This paper introduces two Deep RL algorithms,
which can be applied to produce stable and reliable controller
for ship steering task. The contributions are two-fold. First,
we summarize the procedures of two Deep RL algorithms:
Deep Deterministic Policy Gradient and Normalized Advan-
tage Function. Second, we apply two Deep RL algorithms
to produce controllers for steering the ship. The controllers
are expected to help a underactuated ship pass through a
specified gate.

The rest of the paper is organized as follows. Section
II reviews underlying knowledge such as reinforcement
learning and Markov decision process. Section III describes
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overall ship steering problem. Some Deep RL algorithms are
described in Section IV. The performance of algorithms is
reported in section V. Finally, section VI summarizes the
content of the paper and suggests new ideas for future work.

II. REINFORCEMENT LEARNING AND MARKOV
DECISION PROCESS

Reinforcement Learning (RL) is a part of machine learning
focused on interact with an environment, receives a reward
from the environment and learns from the received reward.
Usually, RL problems are modeled as a discrete-time Markov
Decision Process (MDP) with a tuple of 〈S,A,P, r, γ〉. It
includes a state space S; an action space A; a transition func-
tion P(st+1|st, at) that measures the probability of obtaining
the next state st+1 given a current state-action pair (st, at);
r (st, at) defines the immediate reward achieved at each
state-action pair, and γ ∈ (0, 1) denotes a discount factor. A
sequence of state-action pairs (st, at) creates a trajectory ξt
(also called an episode) with discounted cumulative reward
given by

R(ξ) =

T∑
t=0

γtr(st, at).

A RL algorithm tries to find an optimal policy π∗ in
order to maximize the expected total discounted reward.
Traditionally, the policy is represented by parameters follow
some structures such as linear basis function and radial basis
function [14]. Recent years, some new mechanisms allow
representing the policy as deep neural networks (DNNs). As
a result, DNN has become popular these days and a lot of
studies have focused on this topic.

Q-Learning is a well-known approach to find the optimal
policy. Q-Learning approach learns to maximize Q function
Qπ(s, a), which is the expected reward from state-action pair
(s, a) and follow policy π:

Qπ(st, at) = E[Rt|st, at].

The policy in Q-Learning is a greedy deterministic policy:

µ(s) = argmaxaQ(s, a).

In the case of continuous action domain, Q-Learning be-
comes difficult because it requires maximizing a continuous
function. To overcome this problem, Deep Deterministic
Policy Gradient (DDPG) uses the actor-critic framework [19]
to generate continuous action while Normalized Advantage
Function (NAF) has some tricks on Q-network to deal with
continuous action. All algorithms are introduced in section
IV-D and IV-E respectively.



III. SHIP STEERING PROBLEM

Ship Steering Problem, introduced in [1], is a continuous
state and action task. A ship starts at a randomly position,
orientation and turning rate and is to be maneuvered at a
constant speed through a gate placed at a fixed position.
Equation 1 gives the motion equations of the ship, where
T = 5 is the time constant for converging to desired turning
rate, V = 3 m/sec is the constant speed of the ship, and
∆ = 0.2 sec is the sampling interval. There is a time lag
between changes in the desired turning rate and the actual
rate, modeling the effects of a real ship’s inertia and the
resistance of the water.

x[t+ 1] = x[t] + ∆V sinθ[t]

y[t+ 1] = y[t] + ∆V cosθ[t]

θ[t+ 1] = θ[t] + ∆θ̇[t] (1)

θ̇[t+ 1] = θ̇[t] + ∆(r[t]− θ̇[t])/T

At each time t, the state of the ship is given by its position
x[t] and y[t], orientation θ[t] and actual turning rate θ̇[t].
The action r[t] is the desired turning rate of the ship. All
four state variables and also the action are continuous and
their range is shown in Table I. The ship steering problem
is episodic. In each episode, the goal is learning to generate
sequences of actions that steer the center of the ship through
the gate in the minimum amount of time. The sides of the
gate are placed at coordinates (850, 900) and (950, 900). If
the ship moves out of bound (x < 0 or x > 1000 or y < 0
or y > 1000), the episode terminates and is considered as a
failure.

Fig. 1. Ship Steering Domain

TABLE I
RANGE OF STATE AND ACTION FOR SHIP STEERING TASK

State

x
y
θ

θ̇

0 to 1000 meters
0 to 1000 meters
−180 to 180 degrees
−15 to 15 degrees/sec

Action r −15 to 15 degrees/sec

IV. DEEP REINFORCEMENT LEARNING ALGORITHMS
FOR LEARNING CONTROLLER

In this section, we introduce two state-of-the-art Deep RL
algorithms, Deep Deterministic Policy Gradient (DDPG) and
Normalized Advantage Function (NAF), which are used to
learn controllers for steering the ship. Even though they use
different techniques to update the controller, they are em-
ployed DNNs with parameters, which are updated during the
learning process and can represent complex behaviors. They
use a mechanism called experience replay for efficiently
reusing previous data samples without bias.

A. Deep Neural Network for Representing the Controller

Deep Deterministic Policy Gradient (DDPG) algorithm
maintains two deep neural networks, one for a critic and
one for an actor. As described in [2], the critic network is
constructed from an input layer, two hidden layers, and one
output layer. Besides, the critic network uses the rectified
linearity (ReLU) layer for all hidden layers. The input layer
receives a state and an action from the environment while the
output layer generates a Q-value. The actions only include
from the 2nd hidden layer. The Q-value is used to update
parameters of the actor network.

Fig. 2. Critic Network Model

The actor network is used to approximate an action from
the current state. It is also constructed from two hidden layers
and uses the rectified linearity (ReLU) layer for all hidden
layers. The input layer receives states from environment and
the output layer is a tanh layer to bound the actions.

Fig. 3. Actor Network Model

In contrast to DDPG, Normalized Advantage Function
(NAF) algorithm only uses a Q network. However, Q net-
work in NAF is modified to deal with continuous control.
Particularly, the output of the 2nd hidden layers is separated
into a state value term V and an advantage term A. The
intuition behind this model is described in the section IV-E.

As in DQN [3], a copy (called target network) of each
network in algorithms is created to maintain the stability of



Fig. 4. Q network in NAF

the learning process. The weights of these target networks
are updated by having them slowly follow the main network
as follows:

θ′ ← τθ + (1− τ)θ′

where θ′ and θ is parameters of the target network and the
main network respectively. τ is learning rate of the target
network (τ � 1). The update method makes sure that
the target network does not suddenly change by the main
networks

B. Learning Off-policy using Experience Replay Mechanism

For learning parameters of the neural networks, data
samples are collected and feed to the neural network for
doing some optimization tasks. However, an inefficient data
selection method may lead the learning process to be biased.
Experience replay is a mechanism to collect and select
data samples efficiently. In DQN, experience replay is im-
plemented by a cache R with a limited size. For each
learning step, a tuple of (st, at, rt, st+1) is stored in R. When
the cache is full, the oldest samples will be discarded. At
each learning step, a batch of tuples are randomly selected
from the cache and is used to learn the parameters of the
networks. The size of the cache is usually large to make
the selected batch of independent and identically distributed
(i.i.d) samples.

C. Exploration in continuous action spaces

For Deep RL in continuous action spaces, the policy
(µ(s|θµ)) is modeled by the neural network. Thus, to explore
in the action space, we must add a noise signal to the policy:

µ′(s) = µ(s|θµ) +N .

The added noise can be sampled from a uniform distribution
or any random process. In this paper, we use a random
process called Ornstein-Uhlenbeck [5], which is originally
used in the original papers.

D. Deep Deterministic Policy Gradient Algorithm

Deep Deterministic Policy Gradient [2] inherits charac-
teristics of a policy gradient method [7] and an actor-critic
method [8][19]. As described in section IV-A, the algorithm
employs two networks (actor network with parameter θµ and
critic network with parameter θQ) together with their target

Algorithm 1: Deep Deterministic Policy Gradient
Input: Main network and target network of critic

Q(s, a|θQ) and Q′(s, a|θQ′
); main network and

target network of actor µ(s, a|θµ) and
µ′(s, a|θµ′

); Experience replay R.
Initialize: Randomly initialize Q and µ; Initialize target
networks Q′ and µ′ with weights θQ

′ ← θQ and
θµ

′ ← θµ; Initialize R
for episode = 1, 2, . . .M do

Initialize: a random process N for action
exploration
Get initial observation state s1
for t = 1, 2, . . . T do

Get at = µ(st|θµ) +Nt
Execute at and observe rt and st+1

Store tuple (st, at, rt, st+1) in R
Sample a batch of N tuples from R
Compute
yi = ri + γQ′

(
st+1, µ

′
(
st+1|θµ

′
)
|θQ′

)
Update critic by minimizing the loss:

L =
1

N

∑
i

(
yi −Q

(
si, ai|θQ

))2
Update actor by using DPG:

∇θµµ|si ≈
1

N

∑
i

∇aQ
(
s, a|θQ

)
|s=si,a=µ(si)

×∇θµµ (s|θµ) |si
Update the target networks:

θQ
′
← τθQ + (1− τ)θQ

′

θµ
′
← τθµ + (1− τ)θµ

′

end
end

networks (parameters is θµ
′

and θQ
′

respectively). The actor
network approximates the action from the current state and
can deal with continuous action. The critic network approxi-
mates Q value from the current state-action pair. Parameters
of the actor network are updated using Deterministic Policy
Gradient [6] as follows:

∇θµµ|si ≈
1

N

∑
i

∇aQ
(
s, a|θQ

)
|s=si,a=µ(si)

×∇θµµ (s|θµ) |si
Parameters of the critic network are learned by minimizing
TD error as follows:

L =
1

N

∑
i

(
yi −Q

(
si, ai|θQ

))2
.

yi is approximated using target network of critic as follows:

yi = ri + γQ′
(
st+1, µ

′
(
st+1|θµ

′
)
|θQ

′
)

DDPG algorithm is summarized in Algorithm 1.



E. Normalized Advantage Function

Normalized Advantage Function (NAF) only uses one Q
neural network. To adapt with continuous control task, Q
network is decomposed into a state value term V and an
advantage term A:

Q(s, a|θQ) = A(s, a|θA) + V (s|θV )

The advantage A is parameterized as a quadratic function of
nonlinear features of the state:

A(s, a|θA) = −1

2
(a− µ(s|θµ))

T
P (s|θP )(a− µ(s|θµ)).

P (s|θP ) is a state-dependent, positive-definite square matrix,
which is parametrized by P (s|θP ) = L(s|θP )L(s|θP )

T ,
where L(s|θP ) is a lower-triangular matrix whose entries
come from a linear output layer of a neural network, with
the diagonal terms exponentiated. By this represent of Q-
network, the action that maximizes the Q function is given
by µ(s|θµ) and this represent can deal with continuous action
task.

Algorithm 2: Normalized Advantage Function
Input: Main Q Network and Target Q Network

Q(s, a|θQ) and Q′(s, a|θQ′
); Experience Replay

R.
Initialize: Randomly initialize Q; Initialize target
networks Q′ with weights θQ

′ ← θQ; Initialize R
for episode = 1, 2, . . .M do

Initialize: a random process N for action
exploration
Get initial observation state s1
for t = 1, 2, . . . T do

Get at = µ(st|θµ) +Nt
Execute at and observe rt and st+1

Store tuple (st, at, rt, st+1) in R
Sample a batch of N tuples from R

Compute yi = ri + γV ′(st+1|θV
′
)

Update critic by minimizing the loss:

L =
1

N

∑
i

(
yi −Q

(
si, ai|θQ

))2
Update the target network:

θQ
′
← τθQ + (1− τ)θQ

′

end
end

V. EXPERIMENTS

In this section, we use two algorithms introduced above to
learn the ship’s controllers. Two algorithms are implemented
in Python and use tensorflow library [15] to build deep neural
networks. Details about deep neural network follow original
papers [2][4]. Particularly, two algorithms use ADAM [9] to
learn the parameters of neural networks. The learning rate for
the actor network and the critic network in DDPG are 0.0001

and 0.001 respectively. The learning rate for Q network in
NAF is 0.001. The actor network has 200 units for each
hidden layer and the critic network has 400 and 300 units for
1st and 2nd hidden layer respectively. Parameters of the actor
network and the critic network are initialized from a uniform
distribution [3×103, 3×103] and [3×104, 3×104]. Parameters
of Q network in NAF are also initialized from a uniform
distribution [3 × 104, 3 × 104]. Two algorithms have some
sharing parameters such as discount factor γ = 0.99, the rate
of soft target updates τ = 0.001, the batch size is N = 256
and the size of experience replay is 106. Exploration in action
space follows Ornstein-Uhlenbeck process [5] with θ = 0.15
and σ = 1.0.
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(b) Trajectory of a random con-
troller.
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(c) Performance of DDPG con-
troller.
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(d) Trajectory of DDPG controller.
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(e) Performance of NAF controller.
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(f) Trajectory of NAF controller.

Fig. 5. Ship trajectory and performance of algorithms during the learning
process

The reward function is defined as follows:

r(s, a) = exp(−(
∆angle

π
)
2

) (2)

∆angle is angle created by the ship and the gate center. If the
ship towards the goal, ∆angle will small and the algorithm
receives a big reward. Otherwise, if the ship goes far away
from the gate, ∆angle is big and the algorithm receives a
small reward. ∆angle is in range of [−π, π]. Thus, at each
time step, the algorithms receive a reward signal in range
[e−1, 1]



A. Fixed Initial State
The first simulation is made with a fixed position and

orientation of the ship. Particularly, the ship starts at po-
sition (50, 50) m and orientation θ = π/2. Fig. 5 reports
trajectories of the ship and the performance of algorithms
during 100 episodes. The colors of trajectories are assigned
from purple to red to indicate the process of learning. Purple
color means the episodes at the beginning of the learning
process and the red color means the episodes at the end of
the learning process. With a random controller, the figure
does not show the improvement of the controller to control
the ship. However, with Deep RL controllers, almost latest
trajectories (red trajectories) help the ship reach the gate.
They mean that the Deep RL controllers have been learned
to control the ship.

After the learning process finished, stable controllers have
been made. Fig. 6 shows trajectory of the ship controlled
by learned controllers. Without exploration noise added, the
figure shows smooth trajectories towards the gate for two
algorithms.
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(a) Evaluate DDPG controller.
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(b) Evaluate NAF controller.

Fig. 6. Ship trajectory when using learned controllers

B. Random Initial State
This task challenges algorithms by allowing the ship to

start at any position or orientation. Because of random
initial state, the difficulty of this task has been increased.
As a result, the number of episodes for learning an optimal
controller is greater than the previous task. Performance and
trajectories during the learning process are reported in Fig. 7.
Similar to behaviors of the previous task, the ship controlled
by a random controller move randomly on the whole map
and never reach the goal intentionally. In contrast with the
random controller, the Deep RL controllers are updated and
can lead the ship towards the goal at the end of the learning
process. DDPG controller needs more iterations than NAF
controller to obtain a good controller (200 versus 100). In
addition, the performance report is also shown that Deep
RL algorithms achieve a higher cumulative reward than a
random controller. Trajectories of the ship follow optimal
controllers are shown in Fig. 8. Although the controllers are
only trained for a short time, they can help the ship reach
the gate quickly. When the controllers are trained for a long
time, they can adapt to more and more situations.

VI. CONCLUSION

In this paper, the ship steering problem is solved by using
some state-of-the-art deep reinforcement learning algorithms.
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(b) Trajectory of a random con-
troller.
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(c) Performance of DDPG con-
troller.
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(d) Trajectory of DDPG controller.
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(e) Performance of NAF controller.

0 200 400 600 800 1000

Distances (m)

0

200

400

600

800

1000

D
is

ta
nc

es
(m

)

(f) Trajectory of NAF controller.

Fig. 7. Ship trajectory and performance of algorithms during the learning
process
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(a) Evaluate DDPG controller.
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(b) Evaluate NAF controller.

Fig. 8. Ship trajectory when using learned controllers

Deep RL algorithms have been proven to help the ship to
pass a specified gate. The ship can start at any position with
any orientation and can reach the gate in a short time. There
has a complex scenario, which the ship needs to sequentially
pass some specified gates rather than one gate as setup in
this paper. For this scenario, the learned controller needs
to satisfy multiple objectives (pass multiple gates), which
is hard to achieve for a primitive Deep RL. An approach
to solve this scenario is using a hierarchical reinforcement
learning algorithm as describe in [10][11][12]. We want to
leave this scenario as a future work.
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