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eDIID, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy

fFaculty of Civil Engineering and Geosciences, Section of Structural Mechanics, Delft University of Technology, P.O.

Box 5048, 2600 GA Delft, The Netherlands

Abstract

The effect of through-thickness compressive stress on mode II interlaminar fracture toughness is inves-

tigated experimentally and replicated numerically. The modified Transverse Crack Tensile specimen

recently proposed by the authors is used, together with an experimental device designed to apply a

constant transverse compressive stress on the surface of the specimen. Experiments are conducted us-

ing IM7/8552 specimens for different compressive stresses, ranging from 0 to 100 MPa, covering all the

practical applications commonly encountered in the aeronautical industry (e.g., tightened filled holes

or bolted joints). It is shown that mode II interlaminar fracture toughness increases with the applied

compressive through-thickness stress. Finally, experiments are replicated using appropriate numerical

models based on cohesive elements that take into account frictional effects. A good agreement between

numerical predictions and experiments is found.

Keywords: Interlaminar fracture toughness, Mode II delamination, Compressive stress

1. Introduction

Composite filled holes and bolted joints are well known examples of scenarios where the applied

compressive stress (due to the clamping of the bolt) has a beneficial effect on the strength [1, 2, 3, 4].

The applied clamping pressure limits the propagation of the cracks that develop under the washer [4]

and provides a through-thickness restraint that is reflected in an increase of the strength [3] and in a5

change of the failure mode [5, 6].

Appropriate strength prediction methods for filled holes or bolted joints consist of Finite Element-

based numerical models based on progressive damage models [7, 8, 9, 10, 11]. The use of analytical
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and semi-analytical methods is limited to the case of two-dimensional stress fields [12, 13] (e.g., open

holes, pinned joints) that are unable to account for the complex triaxiality of the stresses in the10

neighbourhood of the hole. Even though the point- or the average-stress method [14] could be still

applied, the determination of the characteristic distance, dc, would be ineffective and complicated by

the fact that dc would now not only depend on the geometry, material and stacking sequence but also

on the value of the applied clamp, washer geometry, and hole clearance.

Progressive damage models for intralaminar [7, 15, 16, 17, 10, 11, 18, 19, 20, 21, 22] and interlaminar15

damage [23, 24] need the definition of both physically-based failure criteria and appropriate softening

laws to model the damage onset and the damage evolution, respectively. While the effect of stress

triaxiality on damage onset can be taken into account using one of the numerous three-dimensional

failure criteria available (e.g. [25, 26, 27]), the effect of the triaxiality on the definition of the softening

law (i.e on the fracture toughness) is not yet completely understood. It is reasonable to suppose20

that transverse compressive stresses influence the intra- and the interlaminar values of the fracture

toughness, but how? A partial answer to this question is sought in this paper for the case of mode II

interlaminar fracture toughness.

There is experimental evidence [28, 29] that mode II interlaminar fracture toughness, Gc
II , increases

with the applied compressive stress, σ33. It should be pointed out that mode II interlaminar fracture25

toughness is one of the key parameters when modelling the onset and propagation of interlaminar

cracks in bolted joints or filled hole specimens (with tightening). The presence of the bolt, in fact,

constrains the reciprocal movement of the plies; if a delamination originates from the border of the

hole it can only propagate at pure mode II, because the opening mode (mode I) is restrained by the

presence of the bolt. Neglecting the effect of the compressive stress yields a conservative prediction of30

the strength and, consequently, an increase of both weight and cost.

Despite its importance, the dependence of mode II interlaminar fracture toughness on through-

thickness compressive stresses was experimentally investigated in several works [28, 29, 30, 31, 32, 33,

34].

Rhee [30] performed fracture tests in a pressurised environment between 0.1 MPa and 200 MPa.35

Tests were performed on carbon/epoxy unidirectional laminates and an increasing of the fracture

toughness of about 25% was observed. This preliminary work was later extended to different material

systems, layups, and pressure ranges [31, 32, 33, 34].

Cartié et al. [28] investigated both mode I and mode II fracture toughness using a Double Cantilever

Beam (DCB) and an End Notched Flexural (ENF) specimens, respectively. Tests were conducted in40

a pressurised environment (up to 100 MPa). It was observed that while mode II interlaminar fracture

toughness increased with the applied hydrostatic pressure, mode I interlaminar fracture toughness was

virtually not affected. Moreover it was noted that for the material system investigated (IM7/977-2
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carbon-epoxy composite) mode II delamination fracture toughness increases up to 25% for an increase

in pressure from 0.4 to 90 MPa.45

It is also worth citing the work performed by Bing and Sun [29] who used a cracked off-axis

specimen tested in compression. Despite the simplicity of the test performed, the authors actually

measured the influence of σ22 on the intralaminar fracture toughness along the fibre direction. They

also compared their experimental results with those obtained from an ENF, implicitly assuming the

equivalence between the intralaminar fracture toughness along the fibre direction and the interlaminar50

fracture toughness.

It should be noted that the previous experimental attempts present some drawbacks: (i) the hydro-

static pressure does not represent a realistic stress state; and (ii) the ENF is not a suitable specimen for

applying through the thickness compression. Since not much data is available, and, moreover, there is

no established experimental procedure to measure the influence of the through-thickness compressive55

stress on mode II interlaminar fracture toughness, the main objective of this paper is to propose, and

to validate, a simple and effective test method to quantify this influence.

2. Designing the experimental set-up

In a previous investigation [35] it was demonstrated that the Transverse Crack Tensile test (TCT

test) response depends on the specimen geometry, local defects and asymmetries, leading to a non-60

simultaneous propagation of the four cracks that invalidates the use of simple analytical models and,

thus, of the test itself. In addition, crack propagation does not occur in pure mode II. To overcome

the intrinsic drawbacks of the original TCT test, the authors proposed a simple but effective solution:

the modified TCT sample that has the same geometry as a TCT, but it contains four precracks (in

red in Figure 1), created using release films during the manufacture of the laminate, that moves the65

crack tips far from the region around the central transverse notch. Taking into account those results,

the modified specimen is used here to measure the interlaminar fracture toughness as a function of the

applied compressive stress.

[Figure 1 about here.]

The geometry of the modified TCT is perfectly suitable for the present study, where a compressive70

stress (σ33 in Figure 1) is superimposed to the stress field due to the load P applied to the specimen.

Due to symmetry, it is reasonable to expect a constant through-thickness stress (equal to σ33) in the

region of the crack tips.

Compressive stresses are applied using the device shown in Figure 2(a), designed to apply a constant

and uniform compressive stress, σ33, during the test.75
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The specimen (denoted ① in Figure 2(b)) is constrained by two lateral steel grips (denoted ②)

kept together by M10 bolts (④) extending 150 mm across the central transverse crack. The grips are

sufficiently thick (25 mm) and stiff to ensure that possible out of plane curvature is minimized and

no spurious loads act on the specimen. The two lateral grips contain rectangular channels where the

specimen is located. In each channel, two rubber inserts (③) are placed to transmit the lateral load80

to the specimen. Strips of CHEMFAB R© CF205 (i.e. a PTFE-coated glass cloth with a static friction

coefficient, of fs =0.02–0.04, according to the manufacturer) are placed between the sample and each

part of the grip.

[Figure 2 about here.]

The PTFE-coated glass cloth reduces the friction on the specimens while the rubber inserts allow to

uniformly distribute the normal stresses over the area of interest1 even in presence of not perfectly

aligned surfaces2; they also allow to reduce the contact area. Reducing the contact area permits to

consider the through-thickness pressure as constant (this would have been difficult to ensure if the

entire surface of the specimen were in contact with the lateral grips) and reduces the torque that has

to be applied to the bolts for the same value of compressive lateral stress. It is evident that, if Fb is

the axial load of a single bolt, assuming that the bolts have the same preload, the lateral pressure, p,

is equal to:

p = −σ33 =
Fb nb

2w li
(1)

where nb is the bolts number, w the width of the specimen and li the in plane dimension of the insert85

in the longitudinal direction of the specimen. It is also necessary to ensure that the load applied to

the bolt remain constant during the test, compensating the loss of preload due to Poisson effects. This

is done by means of disk springs (⑤ in Figure 2(b)), as explained in detail in Appendix A.

3. Experiments

3.1. Materials and methods90

Unidirectional plates with in plane dimensions of 300×300 mm2 and a thickness of 4 mm were

manufactured with the layup, [08/0̃16/08], where the tilde denotes the cut plies. After curing in a

hot press according to the suppliers specification [36] the specimens were cut, using a water-cooled

1As shown in Figure 1 the pressure is applied over the region surrounding the crack tip; the inserts have a length of

20 mm and are placed with one edge 5 mm ahead of the crack tip and the other edge 15 mm behind the crack tip.
2i.e. the lateral surfaces of the specimens, and the internal surfaces of the grips that go in contact with the latter

ones; even if the specimen and the grips were manufactured with the standard tolerances, small misalignments may still

occur.
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diamond blade saw, to their nominal dimensions of 15×200 mm2. The relevant mechanical properties

of the unidirectional ply are shown in Table 1.95

[Table 1 about here.]

As explained in Section 2, the two lateral grips are mounted by means of M10 bolts. Bolt torque was

applied using a DB6N Tohnichi torque wrench with a precision of 0.1 Nm and a full scale of 6 Nm.

The formula that relates the axial load, Fb, to the torque applied to the bolt, Tb, reads:

Fb =
Tb

κD
(2)

where D is the diameter of the bolt, and κ is the torque coefficient usually taken equal to κ = 0.2

for steel bolts. Bolts instrumented with strain gauges were also used to confirm the value of κ and

therefore to ensure a correct calculation of the axial load applied to a single bolt. The signals from the

strain gauges were also monitored during the test to ensure that the desired compressive stress was100

kept during the entire experiment.

After mounting the two lateral grips, the specimen is installed in the Instron 4208 universal testing

machine, equipped with a load cell of 200 kN, as shown in Figure 3.

[Figure 3 about here.]

A crosshead speed of 1 mm/min was applied until unstable crack propagation occurs, identified by

the first peak in the load vs. displacement curve. This load, Pp, is used in the calculation of mode II

interlaminar fracture toughness. The Energy Release Rate (ERR) of the modified TCT specimens

reads [35]:

GII = σ2 H

2E1

(

1

ξ
− 1

)

(3)

where σ is the stress (defined as P/A being A the area of the cross section), 2H is the thickness of105

the specimen, E1 the Young’s modulus in the longitudinal direction of the specimen, and ξ is the cut

factor, ξ = Ĥ/H, defined as the ratio between the thickness of the uncut plies, 2Ĥ, and the thickness

of the specimen, 2H. Substituting the peak stress, σp, in Equation (3) yields the fracture toughness

Gc
II .

A total of five series of three specimens were labelled and tested by varying the bolt torque and, as110

a consequence, the lateral stress (i.e. 17 MPa, 34 MPa, 51 MPa, 85 MPa, and 102 MPa - see Table 2).

The results were compared to data from [35] (i.e. serie O - transversely unloaded) used as control

data.

3.2. Experiments and discussion

Table 2 shows the experimental results obtained for all the specimen tested, while Figure 4 shows115

the typical load-displacement curves.
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[Table 2 about here.]

It is worth noting that the load-displacement curve slightly changes when applying a high through-

thickness stress (Figure 4). In particular, it is observed that for the specimen of the type A (the

specimens with the lower σ33) the load displacement curve is linear until the first peak is reached. At120

this point, that corresponds to the unstable crack propagation, the load displacement curve exhibits

a substantial drop and the test is ended. This behaviour is also observable in specimens of type B

and C. Specimens tested with an higher lateral pressure, σ33, exhibit a slightly different behaviour.

The load displacement curve increases, almost linearly until a point where a change in the slope of the

curve is noticed (red arrow in Figure 4). The non-linearity occurs at a load that is of the same order125

of the peak load for the specimens that were tested with a lower lateral pressure. As showed in [35],

the unstable crack propagation in the modified TCT occurs for a crack length equal to length of the

fracture process zone, and this should happen also in the presence of a through-thickness pressure. In

fact, the pressure, being normal to the fracture surface, should not influence the ERR that can still

be calculated using Equation (3). The slight non-linearity of the load-displacement curves in Figure 4130

is believed to account for the gradual formation of the fracture process zone, allowed by the modified

TCT driving force curve (see [35]). It is then postulated that when lateral compressive stresses are

high enough, they interfere with the creation of the process zone, e.g. by frictional effects that lead

to an increase of the fracture toughness of the material. It should be observed that the first peak (i.e.

the load that correspond to the unstable crack propagation) is followed by a substantial drop of the135

load only when the transverse pressure applied is relatively low

[Figure 4 about here.]

From the peak load, the energy release rate can be obtained substituting the peak stress, σp, in

Equation (3). Figure 5 shows the fracture toughness, Gc
II , as a function of the through-thickness

stress, σ33.140

[Figure 5 about here.]

As suggested by other researchers [29, 37] the dependence of the fracture toughness on through-

thickness stress may be fitted with a linear law:

Gc
II = Gc

II0 (1 + η〈−σ33〉) (4)

where Gc
II0 = 1.585 N/mm is mode II fracture toughness when no through-thickness pressure is applied,

〈...〉 are the McAuley brackets, and η is an empirical parameter. For the material system investigated

the best fit was found with η = 0.0035 MPa−1 (coefficient of determination, R2 = 0.65).
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4. Post-mortem analysis145

The morphology of the crack surfaces was studied by direct observation of digital macro images

and through Scanning Electron Microscopy (SEM). Macro images were taken by using a digital 24

MPixels SLR camera equipped with a 40 mm focal length macro lens. The images were post-processed

and binary images were obtained by using an ad-hoc Matlab code with a cut-off level equal to 0.22 to

better highlight the actual condition of the delaminated surfaces. Scanning electron microscopy was150

done on the fractured surface by using a SEM Phenom World model Phenom Pro X and setting the

beam accelerating voltage to 15 kV. In the case of CFRP, gold coating was not necessary to obtain a

good image quality because of the electroconductivity of the carbon fibres. Figure 6a shows a macro

picture of the samples with different transverse load. To better highlight the actual condition of the

samples, the binary image is presented in Figure 6b. From the latter, it is possible to observe a brighter155

area extending from the crack tips to more remote zones, becoming denser in terms of white pixels

concentration as the transverse load increases.

[Figure 6 about here.]

By observing Figure 7 it is possible to highlight the differences between the brightest area and the

darkest area. Figures 7(a)-left show the surface of the samples not subjected to the transverse load.160

As indicated by the red arrow, in this zone, there is a mix of broken fibres and hackles. This scenario

changes by moving away from the crack tip (Figure 7(a)-right) where hackles dominate the surface

confirming the pure mode II failure. A similar morphology is observed in a remote position of the

fracture surface of the samples A (Figure 7(b)-left). On the other hand, fibres breakage is highlighted

on Figure 7(b)-right (red ellipses). By increasing the transverse load, fibre fracture is more evident165

and spreads over a larger area (Figure 7(c)).

[Figure 7 about here.]

5. Numerical modelling

With the aim of reproducing the experiments, a Finite Element (FE) model of the specimen was

implemented in Abaqus [38]. To reduce the computational effort, only one eighth of the specimen170

was modelled. The plies were meshed using C3D8R brick elements with a dimension of 0.5×0.5×0.5

mm3, while COH3D8 finite-thickness cohesive elements were used for the interface. A thickness of

0.01 mm was used for the interface elements as recommended in the Abaqus Documentation [38]. The

simulation was performed in two steps. In the first, a transverse pressure was applied to the specimen,

trying to reproduce the effect of the lateral grips at the beginning of the test (see Figure 8(a)). In the175

second step this pressure is maintained and a longitudinal displacement is applied to the specimen;
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this will cause (i) the reaching of damage onset in the cohesive elements (see Figure 8(b)); (ii) the

reaching of the peak load (see Figure 8(c)); (iii) suddenly followed by an unstable crack propagation

(see Figure 8(d)).

[Figure 8 about here.]180

The dependence of mode II fracture properties on the transverse stress, σ33 is introduced using two

different approaches, and in particular: via i) a VUSDFLD (user defined field) and, ii) a VUMAT (user

defined material) subroutines.

5.1. User defined field

The application of a negative transverse stress produces a change in the softening law, as shown185

in Figure 9. To compute the new softening law the appropriate value for the effective shear strength,

τsh, and fracture toughness are required.

[Figure 9 about here.]

Following Turon et al. [39] the effective shear strength, τsh, is not considered a fully independent

material property but instead a function of the fracture toughness for mode I and II, and the normal

strength τN , as:

τsh = τN

(

Gc
II

Gc
I

)
1

2

(5)

Substituting Equation (4) in Equation (5) yields:

τsh = τN

[

Gc
II0 (1 + η〈−σ33〉)

Gc
I

]
1

2

(6)

Finally, the normal strength, τN , in pure mode I is calculated as [40]:

τ̄N =

√

MEGIc

Nele
(7)

where E is the Young’s modulus, le the size of the element along the direction of the crack propagation

(0.5 mm), M is a dimensionless parameter that depends on the adopted cohesive zone model [40, 41],

and Ne is the number of elements within the cohesive zone, that was chosen to be equal to Ne = 5 [40].

Using Equation (7), the effective strength in pure mode I, τN , is calculated as [40]:

τN = min
(

τ̄N , Y ud
T

)

(8)

where Y ud
T is the transverse tensile strength for the unidirectional laminate (Y ud

T = 62.3 MPa as

reported in [9]). The parameters used for the delamination onset and propagation are shown in190

Table 3. A detailed description of these parameters and of the cohesive damage model may be found

in [38, 24] and it is not reported here for the sake of conciseness.
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[Table 3 about here.]

The VUSDFLD subroutine allows the introduction of solution-dependent material properties (i.e. the

effective shear strength, τsh, and mode II fracture toughness, GIIc), as a function of a field variable,195

i.e. the transverse stress σ33. It is worth noticing that τsh and GIIc are computed as a function of the

σ33 up to failure onset. When damage occurs, τsh and GIIc are taken as constants; to avoid the change

of the cohesive law during the softening, and consequent problems in the energy regularization.

5.2. User defined material

Several numerical models have been introduced in the past to couple the effect of friction and200

interface damage [42, 43, 44, 45].

Alfano and Sacco [46] proposed an approach to combine interface damage with friction, using the

damage evolution law proposed by Mi et al. [47] and a simple Coulomb friction law. Since any cohesive

zone model and friction law can be used, the Coulomb friction law combined with the cohesive zone

model proposed by Turon et al. [39] is used here, similar to the implementation by Van de Meer and205

Sluys [48].

The methodology proposed by Alfano and Sacco [46], briefly reported below, assumes that a Rep-

resentative Elementary Area (REA) of the interface can be divided into an undamaged and a damaged

part. The relative displacement ∆ experienced in both parts is equal. The interface traction can be

divided into an undamaged component, τu, and a damaged component, τd. The homogenized interface

traction over the REA, τ , is given by:

τ = (1− d)τu + dτd (9)

where the term (1− d)τu comes from the cohesive law and the term τd represents friction and contact

on the damaged surface. The undamaged component follows a linear elastic law:

τu = K∆ (10)

where K is the diagonal stiffness matrix. Following Turon et al. [49], K33 = Kn and K11 = K22 = Ksh,

hence the stiffness matrix reads:

K =











Ksh 0 0

0 Ksh 0

0 0 Kn











(11)

The damaged component of the interface traction is computed after division of the relative displacement

into an elastic part, ∆de and an inelastic part ∆di. The traction in the damaged part τd, is related

9



  

to ∆de = ∆−∆di as:

τd =











Ksh 0 0

0 Ksh 0

0 0 Kn





















∆1 −∆di
1

∆2 −∆di
2

−〈−∆n〉











(12)

The following friction function is introduced:

φ = µτdn + τdsh (13)

where µ is the friction coefficient, and τdsh is given by:

τdsh =
√

(τd1 )
2 + (τd2 )

2 (14)

The evolution of ∆di is defined by the following non-associative relationship:

∆̇di = λ̇















∂φ

∂τd1
∂φ

∂τd2

0















= λ̇















τd1
τdsh
τd2
τdsh

0















(15)

with the Kuhn-Tucker conditions λ̇ ≥ 0 , φ(τ) ≤ 0 and λ̇φ(τ) = 0. Summarizing, the cohesive interface

law reads:

τ = (1− d)











Ksh 0 0

0 Ksh 0

0 0 Kn





















∆1

∆2

∆n











+ d











Ksh 0 0

0 Ksh 0

0 0 Kn





















∆1 −∆di
1

∆2 −∆di
2

−〈−∆n〉











(16)

The cohesive interface law depends on the friction coefficient; in the following a value of µ = 0.1 is

used.

To formulate the damage evolution law, the mixed-mode norms of the tractions, τ , and the dis-

placement jumps, λ, have to be defined (see Figure 10).210

[Figure 10 about here.]

Following [24, 50] the following definition for the mixed-mode norm of the displacement jump is pro-

posed:

λ =
Ksh∆

2
sh +Kn∆

2
n −Kn〈−∆n〉

2

√

K2
sh∆

2
sh +K2

n∆
2
n −K2

n〈−∆n〉2
(17)

The damage activation function is given by:

F (∆) = H(∆)− rd ≤ 0 (18)

where H(∆) and rd are respectively a monotonic loading function and the threshold function, given

by:

H(∆) = min

(

λ−∆o

∆f −∆o
, 1

)

(19)
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rd = max (1,maxs [H(∆)]) 0 < s < t ∀t (20)

where ∆o and ∆f are the displacement jumps corresponding to delamination onset and propagation

under mixed-mode conditions, respectively (see Figure 10). The Benzeggagh and Kennane criterion [51]

is used to define these parameters:

∆o =

√

Kn(∆
o
n)

2 +
[

Ksh(∆
o
sh)

2 −Kn(∆
o
n)

2
]

βη

Kβ

(21)

∆f =
Kn∆

o
n∆

f
n +

[

Ksh∆
o
sh∆

f
sh −Kn∆

o
n∆

f
n

]

βη

Kβ∆o
(22)

where Kβ is a mode-dependent interfacial stiffness defined as:

Kβ = Kn(1− β) + βKsh (23)

and β is the local mixed mode ratio defined as:

β =
Ksh∆

2
sh

Ksh∆2
sh +Kn〈−∆n〉2

(24)

Finally, the damage variable is given by:

d =
rd∆

f

rd∆f + (1− rd)rd∆o
(25)

5.2.1. Mechanical response of the interface

The model previously described is tested in this section using the material properties reported in

Table 4. Three loading cases, corresponding to a) pure tension and pure shear, b) constant compressive

stress followed by shear, and c) constant compressive stress followed by cyclic shear, are analysed in215

the following.

[Table 4 about here.]

a) Pure tension and pure shear are applied to the interface

The traction-displacement jump curves for pure mode I and mode II are shown in figure 11. The

maximum strengths in mode I and mode II are respectively τn = 40 MPa and τsh = 70 MPa. The220

dissipated energy in pure mode I and pure mode II were calculated and found to be equal to the

fracture toughness in mode I, GIc, and mode II, GIIc, respectively.

[Figure 11 about here.]
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5.3. Numerical results

A comparison between the numerical predictions of the different implementations (i.e. VUSDFLD225

and VUMAT) and between the numerical predictions and the experiments is presented in Figures 14

and 15. In Figure 14 the stress vs. displacement curves are shown for different values of the applied

transverse stress (in the range 0 MPa≤ −σ33 ≤110 MPa with pressure increments of 10 MPa). The

typical linear displacement up to the point corresponding to damage onset, followed by a non linear

relation up to the point at which the fracture process zone is completely developed, is observed for230

all the cases simulated. The VUMAT represents the rise of the load, due to the friction between the

fracture surfaces, that occurs after crack propagation has happened. This effect is substantial when

high transversal stresses are applied and is highly representative of the physics of the problem observed

during the experiments. The use of the VUSDFLD is not able to replicate this behaviour, and after

unstable crack propagation is reached a drop in the load-displacement curve is observed for all the235

cases. Nevertheless the increase of the compressive stress results in an increase of the value of the

fracture toughness used in the cohesive law (Figure 9), therefore increasing the peak load. It can be

concluded that the use of a user defined field subroutine, represents a simple, yet effective, method for

taking into account the pressure-dependent nature of the fracture properties.

[Figure 12 about here.]240

Finally, Figure 15 shows the comparison between the predicted values of the peak stresses and the

experimental results (experimental values and Confidence Interval at 95%). A good agreement between

the predictions and the experimental results is observed.

[Figure 13 about here.]

6. Concluding remarks245

A modified TCT specimen recently proposed by the authors was used to measure the dependence

of mode II interlaminar fracture toughness on through-thickness compressive stress. A simple and

effective experimental device has been designed to apply the through-thickness stress and to avoid loss

of pressure due to Poisson’s effects. The main conclusions may be summarised as follows:

i) The tests conducted between 0 and 100 MPa showed that mode II interlaminar fracture toughness250

increases linearly with the applied through-thickness pressure.

ii) For the IM7/8552 material system the empirical parameter that describes this linear dependence,

η, is found to be equal to η = 0.0035 MPa−1.

iii) Two different numerical approaches were implemented to take into account the pressure depen-

dent nature of the problem investigated (i.e. VUSDFLD and VUMAT) and both are able to take into255
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account the increasing of the peak load necessary to propagate the crack in the modified TCT. The

experimental results of this work will be used to validate and/or feed progressive damage models for

the interlaminar crack propagation (i.e. cohesive elements formulation). It is envisaged that their use

will be relevant when modelling the behaviour of bolted joints or filled holes with tightening.
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Appendix A: Disk washers selection

The load of a disk spring (also known as disk washer or Belleville washer) reads [52]:

Fw =
4E

1− ν2
t4

K1D2
e

K2
4

sw
t

[

K2
4

(

h0

t
−

sw
t

)(

h0

t
−

sW
2t

)

+ 1

]

(26)

where De is outer diameter, t is the thickness of the spring, h0 is height of the cone of the disk spring

without contact surfaces (h0 = l0−t, l0 being the unloaded overall height of the individual disc spring),

sw is the spring deflection, and K1 and K4 are two auxiliary parameters. K4 takes the value of 1 for

disc springs without contact surfaces, while K1 reads:

K1 =
1

π

(

δ−1
δ

)2

δ+1
δ−1

− 2
ln δ

(27)

with δ = De/Di, where Di is the inner diameter. The load-deflection curve of a disk spring strongly

depends on the ratio of the cone height to the thickness, h0/t, as can be seen in Equation (26). If

the ratio is small (h0/t ≈ 0.4 for the springs of A series in DIN 2093 [53]) the characteristic shape of

the spring is approximately linear while for increasing ratios the spring characteristic curve becomes270

more and more regressive (h0/t ≈ 0.75 and h0/t ≈ 1.3 for the springs of B and C series in DIN

2093 [53]), i.e. the load increase less than linearly with deflection. The disk springs can be stacked

in parallel and/or in series allowing one to design the most appropriate load displacement curve for

the correct application. In particular, the deflection of the set of spring disks, s, equals the deflection

of the single disk multiplied by the number of the disk in series, s = ns sw, while the force of the set275

of springs, F is equal to the force of the single disk multiplied by the number of parallel disks in the

set, F = np Fw. In the present case the number of washers stacked in parallel was chosen in order to

balance the load applied to the bolt, Fb = np Fw, for sw ≈ 0.7h0. It is worth noting that according
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to [53] the effective response of the disk washer corresponds to the theoretical curve progression, as

predicted by Equation (26), only for sw < 0.75h0. For larger values of sw a substantial difference is280

observed between the theoretical and the effective curves; as a matter of fact, close to the flat position

(sw → h0), a progressively rising force curve is observed and the characteristic curve of the spring

cannot be considered regressive. The number of washers in series was chosen in order to make the

characteristic curve of the set of disk springs more regressive, increasing the deflection for the same

load, Fb, and consequently rendering the load less sensitive to the lateral movements of the grips. This285

is necessary to compensate, during the test, the contraction of the specimen, because of Poisson effects,

in order not to lose the pre-load. A minimum number of four series was used for all the specimens

tested; our calculations shows that in the worst conditions the load variation on a single bolt was less

than 2% of the imposed pre-load. Disk springs of the C series were used in the experimental campaign.
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Table 1: Properties of the cured Hexcel IM7-8552 unidirectional lamina

E1 [MPa] 171420
E2 [MPa] 9080
G12 [MPa] 5290
ν12 [–] 0.32

Table 2: Test matrix and experimental results

specimen σ33 σp Gc
II Ave(Gc

II) STDV(Gc
II) CI95% (Gc

II)
‡

label [MPa] [MPa] [N/mm] [N/mm] [N/mm] [N/mm]
O1†

0

517 1.56

1.59 0.11 0.17
O2† 498 1.45
O3† 538 1.69
O4† 535 1.67
A1

-17
555 1.80

1.63 0.17 0.41A2 531 1.64
A3 500 1.46
B1

-34
550 1.76

1.93 0.14 0.35B2 590 2.03
B3 583 1.98
C1

-51
555 1.80

1.99 0.17 0.41C2 599 2.09
C3 597 2.08
E1

-85
568 1.89

2.00 0.10 0.26E2 599 2.09
E3 587 2.01
F1

-102
605 2.14

2.13 0.06 0.15F2 612 2.18
F3 594 2.06

† Data reported in [35]
‡ Confidence Interval at 95%

430

Table 3: Interlaminar material properties

Material property Value or calculation method Ref.
K [N/mm3] Penalty stiffness 106 [54]
τN [MPa] Effective strength in pure mode I Eq. (8) [40]
τsh [MPa] Effective strength in pure mode II Eq. (6) [39]
GIc [N/mm] Mode I fracture toughness 0.28 [55]
GIIc0 [N/mm] Mode II fracture toughness when σ33 = 0 1.59 [35]
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Table 4: Material properties of the interface

GIc [N/mm] GIIc [N/mm] τn [MPa] τsh [MPa] K [N/mm3] η [–] µ [–]

0.75 1.5 40 70 1× 106 1.45 0.2
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Figure 1: Specimen: geometry, coordinate system and loading.

(a) Assembly.

1

2

3

4

5

(b) Exploded view: ① specimen, ② lateral grips, ③ teflon inserts, ④ M10 bolts, ⑤ disk
washers

Figure 2: Technical drawing.

435

440

b) The interface is subjected to constant compressive stress followed by shear displacement

The traction-displacement jump curves for different applied compressive stresses are shown in Fig-
ure 12. The mechanical response is characterized by three distinct regions:445

(i) Firstly, the interface presents a linear elastic behaviour until a stress higher that the τsh is
reached;

(ii) Secondly, the stress continues to increase non-linearly until a maximum strength is reached;
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Figure 3: Experimental set-up.
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Figure 4: Typical load vs. displacement curves.
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-100 -80 -60 -40 -20 0

G
c I
I
[N

/m
m
]

0

0.5

1

1.5

2

2.5

experiments
error bars (95% IC)
Gc
II = Gc

II0(1 + η 〈−σ33〉); η = 0.0035

Figure 5: Mode II interlaminar fracture toughness vs. through-thickness stress.
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Figure 6: Macro images of samples subjected to different transverse loads: (a) real image (b) binary image
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Figure 7: SEM micrographs of the fracture surfaces for different transverse compressive stresses.
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(a) before loading

(Avg: 75%)
S, S11
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(b) At damage onset
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(c) At peak load

(Avg: 75%)
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(d) At unstable crack propaga-
tion

Figure 8: Numerical results (σ33 = −50MPa).

Figure 9: Mode II cohesive law under transverse compressive stress.
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Figure 10: Parameter of the bilinear constitutive equation [50].

Figure 11: τ −∆ curves for pure mode I and mode II
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Figure 12: τ −∆

(iii) Finally, the stress decreases until a plateau value of τ = µσn is reached: at this point the element
is completely damaged and can only carry load through friction.450

c) The interface is subjected to constant compressive stress followed by cyclic shear loading

The traction-displacement jump curve is shown in Figure 13(a),and to support its interpretation, the
evolution of damage and frictional sliding is also reported in Figure 13(b). The mechanical response
during the cyclic loading is characterized by the following regions:

AB: The interface presents a linear elastic behaviour until partial damage with frictional sliding455

occurs;

BC: The element is unloaded with the original element stiffness and no damage propagation;

CD: Frictional sliding occurs with no damage evolution;

DE: Damage evolution restarts;

EF : The element is loaded with the original stiffness and with no damage propagation;460

FG: Frictional sliding occurs with no damage evolution;

GH: Damage develops until the element is completely damaged and is only able to carry load through
friction.

465
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(a) τsh vs. ∆sh.
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(b) Damage and sliding evolution.

Figure 13: Mechanical response of the interface during cyclic loading.
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(a) VUSDFLD.
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Figure 14: Numerical prediction of the stress vs. displacement curves obtained using a user defined field and a user
material. The highlighted points indicate the loads at which the fracture process zone is completely developed.
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Figure 15: Numerical predictions and experiments of the peak stress vs. applied transverse stress.
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