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ABSTRACT 

 

A multiple crack weight technique with a level set method is proposed to model multiple cracks 

using a coarse mesh-free nodal discretization. A new level-set structure is presented to handle 

multiple cracks and their propagation using the maximum tangential principal stress criterion. 

The level sets are updated with respect to the new crack tip positions. The problem of modelling 

interacting cracks in isotropic and bi-materials is studied using a new variant of the element-

free Galerkin method. The stress intensity factors (SIFs) and energy release rates for interacting 

cracks in isotropic and homogenous materials, including a crack at a bi-material interface are 

determined using the standard interaction integral. Case studies involving crack-crack 

interactions, doubly and triply kinked cracks are analyzed to demonstrate the simplicity and the 

effectiveness of the proposed approach. 

 

KEY WORDS: Element-free Galerkin method, multiple cracks, level set method, crack-crack 

interaction, interface cracks, stress intensity factor 

 

1. INTRODUCTION 

 

Multiple cracks originate in close proximity due to stress corrosion cracking [1,2], creep [3], 

thermal fatigue, and may occur in, for example, lap joints and rivets [4], power plant 

components and nuclear power plant cooling systems [5]. An accurate assessment of life 

prediction requires the determination of the stress intensity factors (SIFs) under such situations. 

 

Although the finite element method (FEM) and boundary element method (BEM) are often 

used to model interacting cracks, they require extensive meshing in the region consisting of 

multiple crack tips. In the case of a propagating crack, singularities occur at re-entrant corners 

and at a crack tip. This makes the re-meshing computationally costly. To overcome this problem 

with meshing, special elements like quarter point [6], variable order [7] and multi-point [8,9] 

singularity elements have been implemented in FEM. Subsequently, the extended finite 

element method (XFEM) [10,11] eliminated some of the difficulties associated with meshing 

and re-meshing. Nevertheless, the enrichment functions used in this method are also dependent 

on the material and nature of the crack considered. To make the method independent of 

material, orientation of crack and loading, the generalized finite element method (GFEM) [12] 

was introduced where a local solution obtained from global-local analysis was used as the 

enrichment function. Meanwhile, meshfree methods (MMs) have gained popularity in the 

analysis of crack propagation problems. The shape functions of the MMs are generally higher 



order continuous [13] than that of the FEM. Therefore, unlike mesh-based methods, MMs do 

not require extensive discretization to capture the singular field at the crack tip. 

 

The element-free Galerkin (EFG) method [14,15,16,17], one of the popular formulations in 

MMs, is used in the present work. There are two popular approaches to model the crack: (1) 

The partition-of-unity approach, also known as the eXtended element-free Galerkin (XEFG) 

method [18], based on the XFEM, where additional degrees of freedom are introduced to model 

the crack; and (2) where the weight functions of the nodes, whose domain of influence consists 

of the crack tips, are modified. Some of the methods based on the latter approach are: visibility 

method, diffraction method and transparency method. In this work, a combined method [19] is 

used, which consists of the partition-of-unity approach, to model the discontinuity in the crack 

faces using a Heaviside function, and the diffraction method to modify the weight function to 

model the crack tip.  

 

Duflot et al. [20,21] modelled multiple cracks by multiplying the regular weight functions with 

the square root of the distance from the crack tip. Singh et al. [22] proposed a modified intrinsic 

meshfree method for modelling multiple cracks. They biased the enrichment by the proximity 

of the Gauss point to a particular crack tip. Shi et al. [23] demonstrated the accurate modelling 

of the interacting cracks using the partition-of-unity based EFG method. The enrichment 

functions used in the approaches above are dependent on the crack geometry and material 

properties. Modelling an interface crack or a re-entrant corner/wedge crack interacting with 

other cracks requires significant alteration using the above formulations. The distance-based 

enriched weight function method, developed by Barbieri et al. [24], overcomes some of the 

difficulties with the other formulations. However, they did not validate their method for 

interacting cracks. The multiple crack weight (MCW) technique was introduced by Muravin & 

Turkel [25] to model multiple interacting cracks. Calculating the parameters of this MCW 

technique is difficult in the presence of many arbitrary oriented cracks.        
 

Level set method (LSM) was developed by Osher et al. [26] for modelling the motion of 

interfaces. It has been used for a wide range of applications [27] such as image processing, 

computational geometry, optimization, computational fluid dynamics and computer graphics. 

LSM has been used to represent the crack location including the location of crack tips within 

the context of XFEM [28]. The combination of LSM and numerical methods such as XFEM 

and MMs provided a simple way of modelling crack growth in two and three dimensions [29]. 

Any surface of discontinuity, in this case a crack, is represented by a signed distance function 

that is determined by a set of nodes. As the crack propagates, the level set function is updated 

by an evolution equation [30,31,32]. Usually, MMs nodes themselves act as nodes to store level 

set functions. This removes the need for explicitly representing a crack. In this work, a 

background grid consisting of finer discretized nodes are defined to store the vector level set 

corresponding to a crack. Simple algebraic equations are used to update the vector level-set 

function in the background nodes.    

   

In this work, the modified MCW technique is used in conjunction with the vector level sets to 

model the interaction of multiple cracks using the proposed EFG method. This technique is 

broadened to model kinked cracks that involve re-entrant corners/knee singularity. A general 

procedure that uses a recursive function to model many cracks using the diffraction method is 

described. To demonstrate the efficiency and accuracy of the proposed approach, case studies 

involving multiple crack interactions, crack-microcrack interactions, interface crack-

microcrack, double and triple kinked cracks have been solved. All cases are investigated using 

linear elastic fracture mechanics (LEFM) principles. There exist many SIF extraction 

techniques [33,34] within the framework of MMs; the M-integral/interaction integral is used 

in this work to compute the SIFs. The results are compared with existing results in the literature. 



The aspect of shielding and amplification of the energy release rate (ERR) for a crack 

interacting with a microcrack is also presented. 

     

2. DISCONTINUITY MODELLING USING MODIFIED EFG METHOD 

 

In the displacement-based EFG method, the displacement at location x  within a support domain 

of n  nodes, ( )u x , can be represented as 

 
n

I I

I=1

( ) = Φ ( )u x x u   (1) 

where IΦ ( )x  are the nodal shape functions and Iu  are the nodal displacement vectors. The 

shape functions are developed using the moving least squares (MLS) interpolation technique 

[35]. In this work, the crack tip is modelled using the diffraction method. The region away from 

the crack tip is modelled with a Heaviside function to introduce displacement discontinuity 

across the crack faces as shown in Fig. 1. This eliminates the need of special enrichment 

functions that are problem dependent [36]. 

 

 
Fig. 1. Nodal discretization with enriched nodes in the region around the crack tip. 

 

Accordingly, the displacement approximation in the proposed EFG method in the case of a 

crack (strong discontinuity) and inclusion boundary (weak discontinuity) present in a 

representative geometry (Fig. 2), takes the form of, 

 

 
( ) ( ) ( )

( ) = Φ ( ) Φ ( ){ H( ( ))}+ Φ ( ) (x)
j b
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where the function 1 1(x) F (x) F (x )I I   , is employed for displacement continuity across the 

interface, with I

(x) (x)

F (x) Φ ( ) Φ ( )
c c

I I I I

I w I w

ζ x ζ x
 

   . Iζ  is the signed distance of node I from 

the interface. Ia  and Ib  are nodal enriched degrees-of-freedom associated with the Heaviside 

function and level set function [36] respectively. The set ( )jw x  and ( )bw x  consist of the 

Heaviside enriched and level set enriched nodes with a displacement continuity function. 

 

In the case of a geometry with cn  cracks and mn  material interfaces, the displacement ( )u x  is 

given by 

 
( ) 1 ( ) 1 ( )

( ) = Φ ( ) Φ ( ){ H( ( ))}+ Φ ( ) (x)
c m

j b
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n n n n n

I I I I I I I
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x x x

u x x u x a x x b   (3) 

The proposed variant of the EFG method can be used to model any number of cracks and is not 



limited by the type of material, loading or orientation of the cracks. To improve the accuracy of 

the numerical method, a higher order Gauss integration is used in the background triangular 

cells [19].  

 
Fig. 2.  Nodal discretization for a domain with a crack in a bi-material problem. 

3. REFORMULATION OF MULTIPLE CRACK WEIGHT (MCW) FUNCTION 

 

 
Fig. 3 Diffraction method for a single crack. 

 

The diffraction method [13,16,19,34] is one of the ways of modelling a crack using the EFG 

method. This method is based on the analogy that light diffracts around sharp corners. Here, the 

weight function of a node that has a crack tip in its domain (
Id ), has its influence over a region 

dictated by the diffraction space associated with a point ‘light’ source at the node and the crack 

acting as an opaque object. This ensures the generation of smooth shape functions, which in 

turn yield a smooth strain field. An important aspect of the method is to find the shortest distance 

between the source node and a generic point. In the case of a single crack (Fig. 3), depending 

on a generic point location, ( , )x yg , the location of the crack tip, c
x , and the nodal location, 

Ix , the distance, 
rd , between Ix  and g  is modified by the relation  

 1 2
0

0

s + s ( )
= s ( )

s ( )

λ

rd
 
 
 

g
g

g
  (4) 

where 0s ( ) = - Ig g x . A value of 2 is chosen for parameter λ . 1s  is the distance from the node 

I at location Ix  to c
x . 2s ( )g  is the distance from c

x  to g . In all case studies in this presented 

paper, a cubic weight function [13,34], ( )w r , is used, 
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  (5) 



where /r Ir d d . The surface plot of the cubic spline function is shown in Fig. 4.    

 
Fig. 4 Cubic spline weight function.  

 

Because of Eq. (4), the normal circular domain of influence is truncated as shown in Fig. 3. 

The shadow region, where ( ) 0w r  , near the crack is caused by the higher values of 
rd  i.e. 

1rd  . 
rd  will be equal to 0s ( )g  if the line-of-sight (LOS) from Ix  to g  is not obstructed by 

the crack.    

 

When multiple cracks are located in close proximity, it is necessary to use very high refinement 

to ensure that no two (or multiple) crack tips are influenced by a single node. On the other 

hand, the MCW technique enables coverage for multiple crack tips by a single node, mitigating 

the need for high nodal density. Modelling multiple crack tips through the diffraction method 

is possible because of the higher order continuous nature of the EFG shape functions derived 

using the MLS approach. 

 

 
Fig. 5 Multiple crack weight (MCW) technique. 

 

Fig. 5 shows a case of multiple interacting cracks where all the crack tips are located within 
Id  

of a node I whose weight function is diffracted around each of the crack tips. In the MCW 

technique, 1s
 
in Eq. (4) is modified by  
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where 
c

c

nx is the location of crack tip cn  (1 cn n  ). n  is the total number of cracks whose tips 

are influenced by the node I . For instance, in Fig. 5, 
1 2 3

1 1 1 1s s s s    and 
2 3s ( ) = - c

g g x . This 

definition is slightly different from what was used by Muravin and Turkel [25].  

1 2s s ( ) g  is the shortest path from the node to a sampling point g . 1s  is the distance from the 

node to the closest intercepting crack tip location and 2s ( )g  is the distance from that crack tip 

to the Gauss point. A method to compute the parameters 
1s  and 

2s ( )g  is presented in the 

following section. This is facilitated by the level set method, adopted for MMs to help study 

the problem of modelling multiple cracks and their propagation. 

 

4. LEVEL SET METHOD FOR 2D CRACK  
 

The level set method is used to represent the crack location. This is facilitated by a signed 

distance function ( )f x , which contains the signed normal distance from a grid point x  to the 

crack. A crack is represented as a zero level set of the function, ( )f x , Fig. 6. The end points 

of the crack, i.e. crack tip locations, are kept in store separately.  

 

 
Fig. 6 Level set description for a crack. 

The sign of the level set function, ( )f x , is +ve if x  lies above the crack and –ve if it lies below 

the crack. The sign information is given by ( ( ))H f x  where H  is the Heaviside function. Since 

the area of interest is localized to the crack, the level set computations are restricted to the 

region that surrounds the crack. This region is called a ‘narrow band’ and is indicated in grey 

(Fig. 6). In this work, the narrow band region is denoted by  . The crack is identified first and 

the level set functions are computed at the grid points in a predetermined region on both sides 

of crack. In the present work, the half width ( fr ) of the narrow band is taken as 1.1 Id  which 

is slightly longer than the domain of influence for a regular meshfree node. 

Generally, the level set data are stored at the grid points that coincide with the meshfree nodes. 

Since coarser meshfree nodal discretization is used in this work, significant error can occur 



during the activation of level set data at the new grid points [18]. Therefore, a background-

refined arrangement of grid points with closer spacing, different from that of meshfree nodes, 

is used as storage locations. As the crack grows from O to O’ (Fig. 7), new grid points are 

activated. These activated grid points are added to the set p . 

 

 
Fig. 7 Meshfree node and level set grid points. 

 

4.1 Level set for a kinking crack 

 

At every grid point, Ix , that lies in the narrow band, a vector level-set function, ( )If x , and the 

sign of the level set function ( )If x  is stored; for a 2D case, ˆ ˆ( )I I Ix i y j  f x  where 
Ix  

and 
Iy are x and y components of the function ( )f x . Then, the signed distance function ( )f x  

can be obtained using the relation: ( ) ( ) ( ( ))I I If H fx f x x . A compound object ( )If x  

defined as ( ) { , , ( ( ))}T

I I I If x y H f  x x  is stored at a grid point that lies inside the narrow 

band. If there are N  grid points in the entire geometry, then the structure of the level set 

database is given by  

 

3

. . . .

. . . . {1,2,..., }

. ( ( )) . . .

i

i

i N

x

f y i N

H f


 
 

  
 
  x

  (7) 

Initially all information about level set grid points contains zeroes only. If any grid point is 

found to lie within the narrow band of a starter crack, then these grid points are activated and 

the object ( )f x  is stored at these locations. Let p  denote the set that consist of grid points 

inside  , then ( ) {0,0,0}T

if i p  x  . Consequently, if any element of the third row of the 

object f  is zero, then the corresponding grid point does not lie in the narrow band region. As 

the crack extends, the new grid points that fall in the extended narrow band are activated with 

the level set data ( )f x , which are easily obtained by some geometric relations for 2D problems 

[18].  

 

5. LEVEL SET METHOD FOR MULTIPLE NEIGHBOURING CRACKS 

 

Fig. 8 shows the narrow band region for a set of three cracks; 1, 2 and 3. The vector level-set 



distance function from a point Ix  that is common to the narrow band of cracks 1 and 2 is 

shown. The level set object ( )If x for a three-crack system can be represented as 

1 2 3( ) [ ( )] [ ( )] [ ( )]
T

I I I If f f f   x x x x  , where 3( ) {0,0,0}T

If x  since 
Ix  does not lie in 

the narrow band of crack 3. For a set of n cracks, the structure is given by  
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3

[ ]

[ ]

[ ]n

n N

f

f
f

f


 
 
 


 
 
  

  (8) 

Eq. (8) is the extension of Eq.(7) for multiple cracks. This level set structure contains the 

information about all the cracks in the given geometry through the grid points located in the 

narrow band region. The narrow band   for a set of n cracks is given by
1 2 ... n       , 

where 
i  is the narrow band region associated with crack i .  

 
Fig. 8 Level set function for multiple cracks. 

5.1 Extrapolating level set function to a generic point 

 
During the evaluation of the global stiffness matrix, it is necessary to determine the sign 

associated with a generic point such as a Gauss point corresponding to a particular crack. This 

information is needed for Heaviside enrichment of the nodes that lie in the narrow band. One 

approach is the use of the closest point projection [18] technique for extrapolation through the 

vector level-set distance function,  If x , which is a signed normal vector distance from a 

point, Ix , to the crack. This technique is implemented by identifying the grid point, Ix , that is 

closest to the Gauss point, .g  Then,  If x  is extrapolated and the sign at g  can be obtained 

using  

 
   

    ( ( )) ( ( ))sign / .

I I I

I Ι I IH f H f

  



v f x x g

g x f x f x v
  (9) 

If the level set grid discretization is coarse, or the slope of the current crack advance vector 



increases, or the magnitude of the current crack advance vector is small, then the extrapolation 

according to Eq. (9) will be less precise. To increase the accuracy of the extrapolation, a 

procedure involving triangular coordinates is used as shown in Fig. 9. This is done by 

identifying three closest level-set grid points that form a triangle. The triangular or barycentric 

coordinates of Gauss point g  is found. The signed level-set distance function ( )f g can be 

found using the following relation. 

 
1 1 2 2 3 3( ) ( ) ( ) ( )f L f L f L f  g x x x   (10) 

 

 
Fig. 9 Extrapolation based on triangular coordinates from level set grid points. 

 

The Heaviside function ( ( ))H f g  at g  is +1 and -1 when g  is above and below the crack 

respectively. In the absence of three grid points that form a triangle, the 1D extrapolation 

described in Eq. (9) is used to determine the sign at g . The extrapolation described above can 

also be used in the case of a curved crack, because the segment of the curved crack lying within 

the triangle can be approximated by a straight segment. 

5.2 Determination of diffracted region  

 

 
Fig. 10 Barrier crack. 

 

In the diffraction method, a light ray emitted from a source node diffracts around the crack tip 

and some part of the region behind the crack would form the shadow region. As mentioned in 

Section 3, the main aspect of this method is to find the shortest distance between the source 

node and the generic point g  and use this information in Eq. (4) to determine the modified 

distance. Whether g  falls in the shadow region or not depends upon the position of the crack 

tip, the source node and the location of g . Let line-of-sight (LOS) be a straight line drawn from 

a node I located at 
Ix  to g (Fig. 10). Any crack extended infinitely, if it intersects the LOS, is 

considered a potential crack. Let cP
 
be defined as a set of potential cracks. Whether a crack 



labelled 
cn  is a potential crack or not can be obtained through the following relation based on 

the sign of the level-set distance function, ( )cn
f x , corresponding to crack

cn , 

 

 ( ( )) ( ( ))c cn n

IH f H fx g   (11) 

( ( ))cn

IH f x and ( ( ))cn
H f g can be obtained from Eq. (10). The inequality in Eq. (11) holds true 

only if node I and g  are on the opposite sides of crack 
cn .  

5.2.1 Shadow region for single edge crack  

 

Only some cracks in the set cP  truly intercept the LOS vector from  I x g  and create a 

shadow in part of the region around the crack tip. Such cracks are termed as barrier cracks in 

this work. Barrier cracks are always a subset of potential cracks. For example, in Fig. 10, the 

potential edge crack labelled 
cn  is also a barrier crack.  

 

Fig. 11(a) shows the Boolean of Eq. (11), based on the sign of any generic point and sign of 

source node I at Ix  within its Id . However, the region denoted by A does not actually lie in 

shadow, as any generic point in A is directly visible to node I. Therefore, additional 

mathematical expressions are needed to identify a barrier in a list of potential cracks.   

 

A potential crack will become a barrier for a particular ( , )Ix g  combination if the LOS vector 

 I x g lies between the two vectors - the crack front vector 
cnV and  

c

c

I nx x . This is given 

mathematically by 
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V x g V x x

x x x g x x V
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where   and  represent the cross and dot product respectively. The first expression implies 

that the rotational direction from 
cnV  to  I x g  is the same as from 

cnV to  
c

c

I nx x . The 

second expression implies that the rotational direction from  
c

c

I nx x  to  I x g  is the same 

as from  
c

c

I nx x  to 
cnV . Eq. (12) will not be true when g  lies in region A. Both expressions 

of Eq. (12) are applicable only to identify barrier cracks in a list of potential cracks.  

 
               (a)                                                                (b) 

Fig. 11 (a) Boolean of Eq. (11). (b) Boolean of Eq. (11) and Eq. (12). 



 

As a result, Eq. (11) and Eq. (12) show the true shadow region as shown in Fig. 11(b). Any 

point in the darker region is not directly visible to the source node I ; therefore the weight 

function of node I  gets diffracted in this region. In fact, the same conditions can also be used 

for application of the ‘visibility’ method of modelling a crack.  

If a crack is a barrier crack, then  1s I c

c

n
 x x  and  2s ( )

c

c

n
 g g x ; 

1 2s s ( ) g  is the shortest 

route from the node I to g . If it is not a barrier crack, then  1 2 os s ( ) s ( ) I   g g x g . These 

values are substituted in Eq. (4) and Eq. (5) to get the profile of the weight function of node I.    

5.2.2 Shadow region for two neighbouring cracks 

  

In a multi crack system, when multiple cracks intercept a LOS, the shortest route may have to 

pass through many barrier crack tips. Such tips are termed as junctions in this work. To 

determine whether the route passes through a particular tip depends on the location of the 

source node and/or the previous junctions. 

 
Fig. 12 A two-crack system. 

 

Consider an example of a two-crack system, in which the node I at 
Ix  has both crack tips, 1

c
x  

and 2

c
x  within its domain of influence with radius 

Id (Fig. 12). In the first step, for the ( , )Ix g  

combination, both cracks, 1 and 2, are potential cracks, but crack 2 is not a barrier crack. The 

shortest route to g  has to first pass through the crack tip 1

c
x , as it is closer to 

Ix . Consequently, 

the route kinks at 1

c
x  and tries to reach point g . Now, the crack tip 1

c
x  becomes the junction 

i.e. 1

c
x

 
 behaves like a proxy source node.  

A tip of a particular crack can behave only once as a junction; the shortest route cannot go 

through any junction more than once. Let cL  be a set consisting of crack labels whose tips 

behaved as junctions. Initially 
cL  will be a null set.  

Since 1

c
x  becomes a junction, crack 1 is added to the set cL . At this point, the problem is 

redefined i.e. to find the shortest distance between the junction 1

c
x  and g . If a straight line is 



drawn from 1

c
x  to g , it gets obstructed by crack 2 and the shortest route to g  will kink at 

c

2x  

which becomes a junction (Fig. 13). As there are no cracks to intercept the LOS i.e. the ray 

from 2

c
x  to g , 

2s ( )g  is computed. Therefore, the shortest route consists of distances 
1

1s , 
2

1s  and 

2s ( )g . It is to be noted that crack 2 was not a barrier crack initially, but it becomes a barrier for 

the redefined problem.  

 

 
Fig. 13 Determination of shortest route from a crack tip junction. 

5.3 Procedure for finding shadow region for multiple cracks 

 
The problem of determining the parameter, 1 2

1 1 1 1 1s (s s s ...s )n   , continues until there are no 

more cracks to obstruct the route. This principle to determine the shortest route from a source 

node to a generic point, in the case of many cracks, remains the same as in the case of double 

cracks.   

 

General procedure to find the diffracted region 

1. Determine the family of potential cracks cP
 
such that 

c cP L  .  

2. Sort the cP , in ascending order, based on the proximity of the node ( Ix ) to the crack tips. 

3. Loop through all the cracks in the sorted cP . 

a. If a crack labeled 
cn  is a barrier crack, then obtain the new proxy node 

c

nc
x and compute 

1sn
- ( n  here being the iteration number). 

b. Exit the loop when cP  is a null set or have run through all the cracks in cP . Else, go 

back to step 1. 

4. Calculate 2s ( )g in the end. 

Example - A five crack system  

 

To illustrate this procedure, a five-crack arrangement with the location of source node 
Ix  and 

Gauss point g  is shown in Fig. 14(a). In the first iteration, a LOS is obstructed by crack 1, 4 

and 5. Since crack 1 is the closest, the route gets kinked at 1

c
x

 
, which becomes the new junction 

for the next iteration (Fig. 14(b)). In the second iteration, the LOS from 1

c
x  to g  is obstructed 



first by crack 3; crack 2 does not interrupt LOS. So, the route gets kinked again at the tip 3

c
x

(Fig. 14(c)). In the third iteration, the LOS from  3

c
x  to g  gets obstructed by crack 5. Therefore, 

the route gets kinked at the tip 5

c
x

 
and finally there is no obstruction for the LOS from 5

c
x  to g

(Fig. 14(d)). 

 

 
(a)             (b) 

 
(c)            (d) 

Fig. 14 Shortest distance between node and a sampling point (a) Iteration 1 (b) Iteration 2 (c) 

Iteration 3 (d) Iteration 4. 

5.4 Examples of shadow regions arising from multiple crack arrangements 

 

Fig. 15(a) and Fig. 15(b) show the diffracted region and the weight functions of a node Ix  in 

the presence of two parallel cracks. The grey and black asterisk markers indicate the region 

with non-zero and zero weight function, respectively. The zero weight-function regions 

correspond to the shadow region cast by the crack. The weight function gets truncated near the 

crack tip regions of the cracks as shown in Fig. 15(b). The procedure Section 5.3 requires that 

no source node contain both crack tips of a single crack in its domain of influence.   



 
(a)                                  (b) 

Fig. 15 Diffracted region in (a) an arrangement of two parallel cracks. (b) truncated weight 

function of the node Ix . 

In the second case (Fig. 16(a)), the source node Ix  is located just below crack 1. Therefore, the 

region below crack 1 has a non-zero value of the weight function. The region above crack 1 

close to its tip also has a non-zero weight function due to diffraction. The weight function gets 

truncated because of the diffraction method, in the presence of crack tips that act as sharp 

corners (Fig. 16(b)). 

 
(a)                                  (b) 

Fig. 16 Diffracted region in (a) an arrangement of four cracks. (b) truncated weight function 

of the node Ix . 

To illustrate further for a hypothetical case, a case of multiple cracks, in close proximity, with 

the diffracted regions, is shown in Fig. 17. 

 
Fig. 17 Diffracted region in an arrangement of multiple cracks. 

xI  crack 1 

xI 

xI 



5.5 Shadow region for a kinking crack 

 

 
(a)                                 (b) 

Fig. 18 Diffraction in case of kinked crack. 

Eq. (12) is not applicable for kinked cracks because a kink location (Fig. 18(a) and (b)) can 

affect the LOS. In other words, the kinks of the same crack come up as a barrier for the LOS. 

In order to determine the shortest route, it is also necessary to check whether the LOS from a 

source node or a kink point, including a crack tip such as  , {0,1,2,..., }c k  k nx  to a generic 

point, is obstructed by segments between two kinks.  

 
Fig. 19 Intersection of two line segments. 

We define the kth kink vector 
, , 1V c k c k

k

 x x and express the kth kink segment in the parametric 

form as , 1 , , 1( )c k c k c kt  x x x , where t ( 0 1t  ) is a scalar parameter. Similarly, the LOS can 

also be expressed in the parametric form as ( )u s g s , where s  can be a source node or kink 

points and u ( 0 1u  ) is a scalar parameter. In order to find the intersection point of kth kink 

segment and the LOS, we set , 1 , , 1( ) ( )c k c k c kt u     x x x s g s (Fig. 19) and solve t  and u  
values. The parameters t  and u  can be expressed as 

  

 
        

        

, , ,

, , , , ,

c k 1 c k c k 1

I

c k 1 c k c k 1 c k c k 1

I

t

u

 

  

      

      

x x g s g s x x

x x x x g s x x

  (13) 

Whether the kink vector Vk  actually intersects can be found by the condition 0 1t   and 

0 1u   of Eq. (13). 

 

 

 
Fig. 20 shows an example of a multiple kinking crack. The LOS from 

Ix  to g  is intercepted 



by the kink segments 1Vn   and 2Vn  meeting at , 2c n
x . Geometrically, this means that the kink 

, 2c n
x  is located below the LOS and the sign of g   i.e. 1( ( ))H f g  is -ve for the kink , 2c n

x  to 

behave as a junction. 

 

 
Fig. 20 Step-by-step crack propagation; g  is below the crack. 

Consider Fig. 21, where the sign of g  is +ve, i.e. g  lies above the crack. The kink segments

2Vn   and 3Vn  intersect the LOS. , 3c n
x  is located above the LOS, and therefore behaves as a 

junction.  

 
Fig. 21 Step-by-step crack propagation; g  is above the crack.  

In both the above-mentioned cases, the shortest route becomes 
1,1 1,2

1 1 1s s s  . The positioning 

of kink location  , {0,1,2,..., }c k  k nx  with respect to the LOS and the sign of g  with respect 

to the crack, will determine if ,c k
x can act as a junction.   

In the case of multiple kinks within the domain of influence (radius
Id ) of node at 

Ix , a 

particular kink location  , {0,1,2,..., }c k  k nx  acts as a junction only if it satisfies 0 1t   

and 0 1u   (Eq. (13)) and the following condition. 

 

 ,k( ( )) ( ( ))cncH H fx g   (14) 

where   is the equation of the LOS  given by the form 0y-mx-b  ; m  is the slope and b  is 

the y-intercept. 

For kinked cracks, the general procedure described in Section 5.3 is modified by taking into 

account the intra-crack barriers due to kinks. Based on this, the diffracted region for a single 

and double kinked crack is shown in Fig. 22(a) and Fig. 22 (b) respectively. 



 
(a)                                 (b) 

Fig. 22 Diffraction region in case of (a) single crack. (b) double crack.   

In the case of a kinking crack, there is also a knee singularity at the kink in addition to the crack 

tip singularity. In order to capture this interaction effect, the diffraction node’s influence is 

restricted to two kink locations. The procedure described in this section may also be used for 

straight cracks, but is computationally cumbersome in comparison to the approach described 

in Section 5.3. 

 

 

6. INTERACTION INTEGRAL TO EXTRACT SIFs 

 

In the present work, mixed mode SIFs are computed through the popular interaction 

integral/M-integral [37]. For a crack in a homogenous material in absence of thermal load and 

crack face loading, the interaction integral is given by 

 

 
,1 ,1 1 ,( )aux aux aux

ij i ij i ik ik j j
A

I σ u σ u σ ε δ q dA    (15) 

where A  is the area of integration as shown in Fig. 23(a). q is a scalar function which has a 

value of unity on the contour 1S  and zero on 2S . ij  is the Kronecker’s delta. The integration 

is carried out by shrinking the area oA  to zero. 
aux

ijσ , aux

ikε  and aux

iu  are auxiliary state values 

that correspond to the theoretical crack tip solution in a homogenous material. 

 

 
Fig. 23. (a) Area for domain integral. (b) Domain of integration for interface crack. 

 

 

For a crack in an isotropic and homogenous material, interaction integral/M-integral is equal 

to  



 
*

(2 2 )aux aux

I I II IIK K K K
I

E


  (16) 

where *E  is E  for plane stress and 
2/ (1 )E -ν  for plane strain. E  and ν  are Young’s modulus 

and Poisson’s ratio respectively. IK  is evaluated by setting aux

IK to unity and aux

IIK  to zero. 

Similarly IIK  is evaluated by setting aux

IIK to unity and aux

IK  to zero. 

 

In case of interface crack in bi-materials as shown in Fig. 23(b), subjected to mechanical load, 

the interaction integral is given by  

 
2

,1 ,1 1 ,

1

( )
m

aux aux aux

ij i ij i ik ik j j
A

m

I σ u σ u σ ε δ q dA


    (17) 

aux

ijσ , aux

ikε  and aux

iu  are crack tip solution for auxiliary state with an interface crack [38]. The 

SIFs can be computed using the following relation. 

 1 2

2

(1/ 1/ )(2 2 )

2cosh ( )

* * aux aux

I I II IIE E K K K K
I

πε

 
  (18) 

ε  is given by 

 1 2 1

2 1 2

1 1 1
ln ln

2 1 2

β κ μ μ
ε

π β π κ μ μ

   
    

    
  (19) 

where m  is the shear modulus and m  is the Poisson’s ratio, m = 1 and 2. β  is one of the 

Dundurs’ parameters. The energy release rate for the interface crack is related to the complex 

SIF by  

 2

* * *

1 2

1

cosh ( )

1/ 1/ 1/

2 2

1 2

*

K +K
G

E πε

E E E



 

  (20) 

7. CASE STUDIES 

 

The modified EFG method has been applied to a number of problems involving interacting 

cracks. The nodal domain of influence (radius Id ) is set to 1.75 times the regular nodal spacing. 

The SIFs are obtained using the interaction integral technique, in all the case studies reported 

in this section, and the results are compared with those in the literature.  

7.1 Double edge cracks 

 
Fig. 24(a) shows a finite plate with double-edge collinear cracks. The plate is subjected to 

tensile traction of 1MPa. A state of plane strain is assumed. The SIFs are calculated for two 

plate geometries / 1L w   and / 3L w   with crack length-to-width ratio of  / 0.8a w  and 

/ 0.9a w . The computed mode I ( IK ) and mode II ( IIK ) SIFs are normalized by σ πa : 

ˆ ˆ/( ), /( )I I II IIK K σ πa K K σ πa  . Unless specified otherwise, the materials are assumed to 

be isotropic with Young's modulus 210E GPa  and Poisson's ratio 0.3ν  . 

 



  
            (a)     (b) 

Fig. 24 (a) Double-edge collinear cracks. (b) Nodal Discretization. 

Regular nodal discretizations of 21 21  (Fig. 24(b)) nodes for / 1L w   and 21 61  nodes for 

/ 3L w   are used. This is similar to the nodal discretization used by Muravin et al. [25]. 

However, the bandwidth of the resulting stiffness matrix in the present case is lower than the 

latter due to a lower value of Id . The proposed method does not require a higher value of Id  

due to the utilization of Heaviside enrichment functions to model the discontinuity of the 

displacement across the crack edges. The jump enriched nodes are enriched with Heaviside 

functions. The weight functions of the diffracted nodes get truncated due to the presence of 

cracks. However, the classical EFG method, where only visibility or diffraction method is used, 

needs extra nodes along the crack edges or higher value of Id  to avoid an ill-conditioned 

stiffness matrix.  

 

The normalized mode I SIF ( ˆ
IK ) is compared with the results obtained by [25] and the 

analytical solutions of Bowie [39]. The error is computed based on the results of Muravin & 

Turkel [25]. The comparison in Table 1 shows that there is an excellent agreement though 

coarser nodal discretization and low Id  was employed in the present study.  

 

Table 1 Comparison of normalized SIF for double-edge cracks. 

/a w  /L w  
ˆ

IK  

[25] 

ˆ
IK  

[39] 

ˆ
IK   

 Present Method 
% Error* 

0.8 1 1.6111 1.5806 1.6085 -0.161 % 

0.8 3 1.5497 1.5649 1.5454 -0.278 % 

0.9 1 2.1326 2.1133 2.1231 -0.446 % 

0.9 3 2.1016 2.1133 2.0993 -0.109 % 

* % error is with respect to Muravin and Turkel (2006) results. 

7.2 Four neighbouring cracks 

 
In this example (Fig. 25(a)), a finite plate has four cracks whose crack tips lie in close proximity. 

The plate is subjected to a tensile load of 1MPa. A state of plane strain is assumed. The SIFs 

are calculated for 4L   and crack length-to-width ratio / 0.45a w . There is a strong 



interaction among the four crack-tip singular stress fields. In order to capture such a complex 

field accurately, the classical EFG needs a fine nodal discretization in the region encompassing 

the crack tips. However, the MCW function reduces the complexities involved. 

 

 
(a)                                           (b) 

Fig. 25 (a) Finite plate with four cracks under uniform tensile loading. (b) Interaction integral 

domain with Gauss points. 

The end coordinates of cracks B, C and D are (2.2,0.2), (3,1); (2.2,0), (3.2,0); and (2.2,-0.2), 

(3,-1) respectively. The singular stress field at the tip of edge crack A interacts strongly with the 

neighbouring crack-tip stress fields of crack B, C and D. The SIFs are obtained using the 

interaction integral whose integral domain is a square of edge length 0.2a . The distribution of 

Gauss points for numerical integration is indicated by the dots shown in Fig. 25(b). 

  

Table 2 shows a comparison of the computed normalized mode I SIFs at the tip of crack A with 

the published data by Muravin & Turkel [25] for three nodal discretizations. It is to be noted 

that satisfactory results are obtained even with a very coarse nodal density and low Id . 

Table 2 Comparison of normalized SIFs for edge crack interacting with three neighbouring 

cracks. 

Nodal Discretization ˆ
IK [25]

 

ˆ
IK  

Present Method 
% Error 

21 21  

2.80114 

2.7789 -0.793 % 

41 41  2.7963 -0.171 % 

81 81  2.8020 0.032 % 

 

7.3 Cross cracks and star cracks 
 

Fig. 26(a) and Fig. 26(b) show cross cracks and star cracks in a square plate of width 4w   

units subjected to bi-axial loads. The normalized mode I SIFs are obtained for various /a w  

ratios. In order to increase the accuracy and capture the singular field accurately in this case, 

the region around the crack tip is slightly refined. This process is not cumbersome as in the 

case of mesh-based methods. Further, the usage of a Heaviside function to model a crack 

reduces the need to add any extra nodes along the crack, like in the case of pure diffraction 

based approach. 



 
            (a)                                     (b) 

Fig. 26 (a) Cross cracks. (b) Star cracks. 

 

Table 3 Comparison of normalized SIFs for cross cracks in square plate. 

/a w  
ˆ

IK  

[40] 

ˆ
IK  

[24] 

ˆ
IK  

Present Method 
% error* 

0.1 0.8641 0.8655 0.8563 -1.059 % 

0.2 0.8800 0.8837 0.8837 0.000 % 

0.3 0.9092 0.9126 0.9132 0.060 % 

0.4 0.9537 0.9670 0.9583 -0.901 % 

0.5 1.0223 1.0370 1.0273 -0.938 % 

0.6 1.1300 1.1450 1.1361 -0.781 % 

0.7 1.2866 1.3300 1.3182 -0.884 % 

0.8 1.4857 1.6500 1.6550 0.300 % 

0.9 - 2.4400 2.4650 1.025 % 

 * % error is with respect to the results of Barbieri et al. [24] 

 

Table 3 shows a comparison of the computed normalized mode I SIF ( ˆ
IK ) for the case of cross 

cracks. The present results are in good agreement with the results obtained by an enriched 

meshfree method based on the reproducing kernel particle method (RKPM) [24].  

Fig. 27 shows a comparison of the normalized SIFs for a star crack with the results obtained 

using the EFG method [25] and XFEM [41]. ˆ A

IK   /A

IK σ πa
 
denotes the normalized mode 

I SIF for crack tip A. ˆ B

IK  /B

IK σ πa  and ˆ B

IIK   /B

IIK σ πa  denote the normalized mode I 

and mode II SIFs for crack tip B. The comparison shows that the obtained SIFs are in good 

agreement with the published numerical results.   



 
Fig. 27 Variation of normalized SIFs for star crack with /a w  . 

7.4 Crack-microcrack interaction 
 

Fig. 28(a) shows two stacked microcracks interacting with a macro edge crack in a plate under 

uniform tensile load. The results are obtained for various /h l  ratios. Only the semi-stack height 

( h ) is varied. The geometric specifications are: 20mmw , / 5L w  , / 0.5a w  and 

2 / 0.05l a  . 

 

The region encompassing the microcracks is refined (Fig. 28(b)) to increase the accuracy of 

the normalized SIF ( 0/I IK K ), where 0IK  is the mode I SIF of the macro crack without the 

microcracks. 

Fig. 29 shows that the obtained SIF agrees satisfactorily with the exiting results in the literature 

[42,8]. There is a shielding effect at the macrocrack tip when the distance between the 

macrocrack and the microcracks are small. The shielding effect decreases with the increase in 

/h l  ratio and vanishes beyond the distance of 3.5 /h l .     

 
                    (a)                                               (b) 

Fig. 28 (a) Single edge crack with two stacked microcracks (microcrack length not to 

scale).(b) Nodal discretization. 

 

Present study 



 
Fig. 29 Comparison of variation of normalized mode I SIF with /h l  ratio. 

7.5 Interface crack-subinterface crack interaction 

 

Fig. 30(a) shows an interface crack interacting with a subinterface crack in a bi-material plate 

subjected to uniform tensile load. The geometric specifications of the plate are: 150mmw , 

/ 4/3L w  , / 2 /15a w , / 0.2c a   and 1.27mmh  . The material properties of the ceramic-

metal bi-material plate correspond to S45C steel ( 1 206GPaE  , 1 0.3ν  ) and Si3N4 

( 2 304GPaE  , 2 0.27ν  ). For analysis, plane stress conditions are assumed in this case. 

 
(a)         (b) 

Fig. 30 (a) Bimaterial plate with interface crack and a subinterface crack under tensile 

loading. (b) Normalized ERR variation with /d c ratio. 

 

The complex SIF ( 1 2K iK ) associated with the interface crack is obtained using the interaction 

integral [38].  

 

Fig. 30(b) shows the variation of the normalized energy release rate (ERR) 0/G G  with /d c

ratio. 0G  is the ERR of the interface crack in the absence of a subinterface crack. As the 

subinterface crack approaches the interface crack tip from the left, the shielding effect is 

observed. 0/G G  reaches a minimum when the crack tip 1 is close to the interface crack tip. The 

ratio  amplifies rapidly as  increases and reaches a maximum when the crack tip 2 

coincides with the interface crack tip. Then, it decreases and approaches to unity after . 

0/G G /d c

/ 4d c 



The effect of shielding or amplification is experienced by the interface crack even when the 

subinterface crack is at distances , which is several times its length . Similar trends were also 

observed by Ouinas et al. [43].   

7.6 Double and triple kinked cracks 

 

Fig. 31(a) and Fig. 31(b) show double and triple kinked cracks in rectangular plates under 

tension. These kinds of zigzag cracks may develop due to stress corrosion cracking. They can 

also be due to the extension of a mixed mode crack. It involves the interaction of knee point 

singular fields with the crack tip singular field. In the first case (Fig. 31 (a)), the first kink OA 

makes an angle of o

1 45   with the -axis. The second kink, AB, makes an angle of 
2  with 

OA.  

 
        (a)                    (b) 

Fig. 31 (a) Double kinked cracks. (b) Triple kinked cracks. 

, ,  and . 

 

Fig. 32(a) and Fig. 32(b) shows the variation of normalized mode I  and mode II 

SIFs  respectively with 2  obtained using nodal discretization strategies such that 

the diffraction nodes affect one kink and two kinks locations. An example of a case when a 

diffracted node affects a single kink in a propagating crack is shown in Fig. 18. In such a case, 

its weight function gets truncated at the two sharp corners: crack tip and the kink. When the 

diffracted node affects two kinks, then its weight function gets truncated at three sharp corners: 

crack tip and two kink locations.  

 

 

The results obtained by both the strategies are in agreement with each other except at the 

extremities of the plot. This may be due to the interaction of the kink singularity field with the 

crack tip singularity field.  

 

The normalized mode I SIF reaches its maximum at o

2 45    where the mode II SIF is zero. 

This agrees with the maximum tangential stress (MTPS) criterion [44,45] which dictates that 

a crack will propagate in the direction of zero shear stress or . 

h l

1x

1mma  / 0.5a w / 2L w  1 2 3 0.04l l l a  

 /IK σ πa

 /IIK σ πa

0IIK 



 
Fig. 32 For for double kinked crack with  (a) Normalized mode I (b) Normalized mode II 

SIF. 

 
Fig. 33 Variation of normalized mode I and mode II SIFs for triple kinked crack problem with 

.  

 

Fig. 33 shows the variation of normalized mode I and mode II SIFs at crack tip C with 3  for 

three values of 2 . It is observed from each subplot that the maximum value of mode I occurs 

when  at the tip C. This is the angle in which the crack is likely to propagate further. 

 

7.7 Multiple crack propagation 

 
Fig. 34 shows a plate subjected to uniform end displacement at the top edge. The plate has two 

2θ

3θ

0IIK 



holes and two cracks. The material properties are E=2×105 N/mm2 and . This problem 

has been previously studied using FEM [45,46] and XFEM [47]. In the present study, the holes 

are modelled using level set enrichment. The MTPS criterion is used to determine the angle of 

crack propagation. The crack extension length, or kink length, is set to 0.5mm. Two sets of 

nodal configuration are used: 40×20 and 32×16 with refinement at the crack tip using 9×9 

nodes such that diffraction node influences at least one kink point. The level set grid point 

distribution is 640x320. However, a narrow band centering crack is only activated for analysis. 

 
Fig. 34 Plate with two holes and two cracks subjected to tensile displacement. 

Fig. 35  shows the crack paths, predicted by the present EFG method, are in good agreement 

with those obtained using FEM and XFEM. Initially, the crack is attracted by the nearest hole 

and then at a certain point, the two cracks are close enough to interact. This interaction effect 

leads to repulsion of the crack, which is well captured by the present method. Although the 

number of nodal degrees-of-freedom of the EFG method is significantly lower than that of the 

mesh-based methods, the results are accurate by virtue of the higher order continuous nature 

of the EFG shape functions. Furthermore, the nodal degrees-of-freedom are reduced by the 

usage of the diffraction methodology for kinked cracks.     

 
Fig. 35 Crack propagation in a plate with two holes. 

8. CONCLUSIONS 

 
The proposed variant of the EFG method integrates the use of level set method and diffraction 

methods for modelling multiple interacting cracks. This approach has been extended to model 

0.3



kinked cracks that have knee singularity. The level sets for multiple cracks are extrapolated to 

a generic point through triangulation of nearest level set coordinates. These level sets are 

updated at each step of crack propagation. Based on the simulations, the following conclusions 

are drawn.  

1. A very high nodal density is not required to obtain an accurate SIF of a crack interacting 

with neighbouring cracks using the proposed approach within the framework of EFG 

method. It is observed that even with coarser nodal density, the error is less than 1% and the 

solutions converged with increase in nodal density. 

2. The proposed approach offers a computationally advantageous way of modelling crack 

propagation through step-by-step analysis.  

3. The crack-crack interaction phenomenon scales the SIFs depending upon the proximity of 

the interacting crack tips. In the case of bi-material interface-subinterface crack interaction, 

the shielding and amplification effect of the energy release rate is observed. 

4. The SIFs and energy release rate obtained using the interaction integral for various problems 

involving crack-crack and crack-microcrack interactions are in good agreement with the 

published results. 
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