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Abstract 

The radiosensitising efficacy of gold is well established, however, there remain several 

significant barriers to the successful clinical translation of nano-sized gold particles (AuNPs). 

These barriers include: retaining stability in relevant biological sera, demonstrating 

effectiveness at clinically relevant AuNP concentrations and identifying the biological context 

where significant benefit is most likely to be achieved. Herein we have developed a AuNP 

preparation, stress-tested to provide effective protection from salt and serum mediated 

agglomeration. Furthermore, the core AuNP is co-functionalised with two biologically derived 

peptides designed to enhance endocytosis and promote endosomal escape, thus maximising 

intracellular AuNP surface area. In summary, these investigations demonstrate restored AuNP 

internalisation using the co-functionalised preparation that generated significant 

radiosensitisation, in both in vitro and in vivo models, at clinically viable treatment 

concentrations. Furthermore, we have identified an underpinning biological mechanism in the 

inherent radical scavenging capacity that could be used to predict radiosensitising efficacy.   

 

Keywords: Gold nanoparticles, endocytosis, radiosensitisation, reactive oxygen species, DNA 

damage 

 

 

 

 

 



Introduction 

Gold nanoparticles (AuNPs) are proven radiosensitisers at kilovoltage (keV) and megavoltage 

(MV) photon energies, an effect attributed, in part, to the high mass absorption coefficient of 

gold.(1-3) To date, most studies have focused on the impact of nanoparticle size, shape, charge 

and elasticity on internalisation efficacy, with several authors indicating 50 nm AuNPs are most 

avidly endocytosed.(4-6) Endocytosis of AuNPs exceeding 10 nm predominantly occurs via 

the endosomal-lysosomal degradation pathway, while direct pinocytosis dominates for sub 10 

nm particles.(4,7) Achieving sufficient target cell AuNP uptake represents a major barrier to 

clinical translation. With this in mind we have developed a novel multi-functional AuNP, 

designed to promote intracellular uptake and overcome endosomal entrapment, thereby 

improving the radiosensitising capability.(4,8) To date, the majority of radiosensitising AuNP 

studies rely on treatment up to 1% wt/wt AuNP/tumour.(9) However, the practical implications 

of up-scaling to these concentrations for clinical use would prove prohibitive on a cost and 

potentially toxicity basis.(10) Furthermore, ‘as-synthesized’ AuNPs aggregate at physiological 

conditions, requiring the addition of stabilizing moieties. Polyethylene glycol (PEG) is the most 

widely studied due to existing regulatory approval (MHRA and EMA) and a proven ability to 

increase systemic circulation time. This stabilising effect is possible as PEG limits nanoparticle 

opsonisation through the inhibition of non-specific absorption.(11) Despite these obvious 

advantages, PEG also severely hinders internalization, an effect referred to as the “PEG 

dilemma.”(12) No optimal PEG chain length has been definitively established, but ≤5000 MW 

PEG is thought to provide the required stability while minimising the negative impact on 

endocytosis.(13) 

 

Herein, AuNPs were synthesised and co-functionalized with 5000 MW PEG, conferring 

stability and improved in vivo circulation times. Furthermore, synthetic derivatives of two 

natural peptides were used to overcome biological barriers.(14) The peptide RME derived from 

viral origins, contains a string of cationic lysine residues that promote internalization. 

Furthermore, the free thiol group within the N-terminal cysteine residue permits robust 

chemisorption (enthalpy ~126 kJ/mol) of the RME peptide to the AuNP surface.(15,16) A 

second peptide H5WYG remains unprotonated at physiological pH, but undergoes profound 

conformational restructuring due to histidyl protonation under mildly acidic conditions found 

within the endosome.(17) This remodeling effect is further enhanced by the presence of a 

tryptophan-histidine bridge (WH) that confers strong alpha-helicity capable of destabilizing 

the endosomal membrane in a process known as the proton sponge effect.(18,19) Combining 



these functional groups, we aimed to develop a AuNP capable of conferring significant 

radiation enhancement at a clinically relevant concentration.  

 

Breast cancer was chosen as an exemplar tumour model based on the results of the EORTC 

trial and the recommendations of the Early Breast Cancer Trialists’ Collaborative Group 

(EBCTCG).(20,21) The EORTC trial assessed the clinical benefit of a radiation boost (16 Gy) 

following conventional breast conserving therapy plus radiotherapy (50 Gy).(21) The results 

indicate that increasing the total administered dose by 30%, results in 39.2% reduction in the 

10-year recurrence rate, significantly reducing the requirement for salvage mastectomies. 

While encouraging, patients receiving the radiotherapy boost had a 2.6 fold greater risk of 

developing severe fibrosis and an elevated risk of ischemic heart disease, particularly for 

patients with cancer of the left breast. Darby et al (2013) reported that the mean dose to the 

heart was 6.6 Gy for women with tumours in the left breast, and that with each subsequent 1 

Gy increase to the heart the risk of a major coronary event increased by 7.4%.(22) In this 

context AuNPs hold real potential, delivering increased radiosensitivity, while limiting 

physical radiation dose delivered. Further evidence for this was recently presented in vivo 

where breast tumours doped with 0.5 mg AuNP generated radiation dose enhancement 

equivalent to three doses of cisplatin (IC25 – 4 mg/kg) without inducing intrinsic toxicity.(23) 

While our study focused on breast cancer, most tumours routinely treated with IR (ionising 

radiation) could potentially benefit, with AuNP radiosensitisation previously demonstrated in 

prostate, glioma and head and neck cancers.(24-26) Herein we provide a robust characterisation 

of AuNP synthesis and physical properties, as well as comprehensive assessment of stability 

and biological efficacy in vitro and in vivo including an insight into key radiosensitising 

mechanisms. 

 

Methods  

 

Materials  

Chloroauric acid (HAuCl4.3H2O), PEG-SH (5000 MW) and sodium citrate were obtained from 

Sigma Aldrich (UK). The 0.01 wt.% chlorauric acid and 1 wt.% sodium citrate solutions were 

prepared using distilled water. RME peptide (sequence CKKKKKKSEDEYPYVPN) and 

H5WYG peptide (sequence GCGLFHAIAHFIHGGWHGHHGWYG) were purchased from 

BIOMATIK (USA). Peptides were synthesised to >99% purity, lyophilized in acetate salt with 

trifluoracetic acid constituting <1%.   



 

Synthesis and Functionalization of gold nanoparticles 

The Turkevitch/Frens AuNP synthesis method has been widely employed since the 1950’s and 

a schematic is available in Zhoa et al.(27,28) Briefly, 13 ± 2.15 nm (Supplementary Figure 1) 

citrate capped nanoparticles (AuNP-C) were produced by reducing 400 ml of boiling 0.01 wt.% 

chloroauric acid using 9 ml of 1 wt.% sodium citrate solution, as described in our previous 

publication.(29) To prepare 50% PEG capped AuNPs (AuNP-P), 10.68 μg/ml 5000MW PEG-

SH was dissolved in 1 ml distilled water and added to the citrate reduced AuNPs.(30) The 

colloid/PEG solution was vigorously mixed for 8 h at room temperature allowing PEG/citrate 

exchange. Excess unconjugated PEG was removed by centrifugation (12000 RCF for 90 min). 

Single peptide preparations (50% PEG / 50% peptide) functionalised with RME (AuNP-R) or 

H5WYG (AuNP-H5) were produced by adding 4.4 and 7.86 μg/ml of free peptide respectively. 

Finally the co-functionalised preparation (termed dual peptide, AuNP-DP) was produced by 

adding 2.23 μg/ml of free RME peptide (dissolved in 1 ml of distilled water) and 3.93 μg/ml 

of H5WYG peptide to AuNP-P, mixed for 8 h, then washed to remove excess unconjugated 

peptide. 

 

AuNP characterization 

Nanoparticle size, charge and polydispersity were determined by dynamic light scattering 

(DLS) using a Malvern Nano Zetasizer ZS Series. Fourier transform infrared spectroscopy 

(FTIR) spectra were recorded in the range of 400-4000 cm-1 at a resolution of 4 cm-1 on a 

Varian 640-IR FTIR spectrometer. UV-Visible spectra were recorded using a Perkin Elmer 

Lambda 35 in the range 400-600 nm at 0.1 nm increments. Stress testing AuNP stability in 

high ionic solutions (1 M NaCl) was conducted by UV/Vis measurement of the characteristic 

plasmon peak over 24 h. Serum stably was established using DLS following a 24 h incubation 

medium containing 10% or 40% foetal calf serum.   

 

Cell culture and AuNP delivery 

MDA-MB-231 and MCF-7 human breast cancer cell lines were cultured in Dulbecco’s 

modified eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS). Normal 

breast epithelial cell line MCF-10A were cultured in DMEM/F-12 supplemented with 5% horse 

serum, 20 ng/ml epidermal growth factor, 0.5 mg/ml hydrocortisone, 100 ng/ml cholera toxin 

and 10 µg/ml insulin. Cells were maintained at 37°C, 95% air/5% CO2 and sub-cultured every 



3-4 days to maintain exponential growth. Unless specifically stated, all AuNP treatments were 

performed at 25 µg/ml for 24 h.  

 

Inductively coupled plasma atomic absorption spectroscopy (ICP-AAS) 

AuNP uptake was quantified using ICP-AAS as previously described.(24) Data is normalized 

to AuNP-P, to represent the fold-increase in nanoparticle internalisation following peptide 

conjugation. 

 

In Vitro Cytotoxicity 

AuNP induced toxicity was assessed using both the WST-1 assay and xCELLigence platform. 

Briefly, 2x104 AuNP treated (25 µg/ml) cells were washed twice with PBS prior to the addition 

of 10% WST-1 for 4 h. Cell viability was determined by changes in absorbance at ʎ 440 nm 

relative to untreated controls. Concentration dependent toxicity was assessed using the 

xCELLigence platform as previously described (ACEA, US). (31)  

 

CytoViva analysis of cells with internalized AuNP-DP 

Cytoviva enhanced darkfield/hyperspectral microscopy permits the optical observation and 

spectral confirmation of nanoparticles, where AuNPs appear bright due to their high scattering 

cross-section. Hyperspectral imaging permits capture and recording of unique reflectance 

spectra (compared against untreated controls) on a pixel-by-pixel basis, providing confirmation 

of internalisation and intracellular localization. 3x104 cells were seeded into a 4-well chamber 

slide (Corning-US), treated with AuNPs, then fixed with 10% Formalin.  

 

AuNP induced radiosensitivity 

Survival fractions were generated by clonogenic assay, as previously described.(24) Samples 

were irradiated with doses between 0-6 Gy using a 160 kVp X-ray cabinet source. Sensitiser 

enhancement ratio (SER) was calculated by fitting the surviving fraction data to the linear 

quadratic model, establishing the area under curve (mean inactivation dose - MID) at a 

surviving fraction of 0.1, then dividing the MID of AuNP treated cells against corresponding 

controls. 

 

DNA Damage Analysis 

7.5 x104 cells were seeded, left to adhere, then treated with AuNPs for 24 h. AuNP treated cells 

were irradiated (1 Gy), then returned to the incubator for 4 h allowing partial DNA repair. Cells 



were fixed and permeabilised using 100% methanol at -20C, then blocked using 2% FBS in 

PBS at room temperature. Primary H2aX (1:300 in PBS) and secondary antibody (1:400 in 

PBS) incubations were performed at room temperature prior to mounting using 

VECTASHIELD plus DAPI at 0.75 µg/ml. H2aX foci for 100 cells per condition were scored. 

 

Radiation and AuNP induced Reactive Oxygen Species (ROS) 

In the presence of ROS 2’,7’–dichlorofluorescin diacetate (DCFDA) is oxidised to fluorescent 

2’, 7’–dichlorofluorescein (DCF). 1.5 x 104 cells were seeded and allowed to adhere for 24 h. 

Medium containing 5 μM DCFDA was added for 40 min allowing internalisation, and replaced 

with fresh media.  Cells were irradiated with a 2 Gy dose and ROS levels measured using a 

fluorescent plate reader at 495/529 nm. To detect ROS levels following AuNP and IR 

treatment, cells were first pre-treated with AuNP for 2 h, during the last 40 min 5 μM DCFDA 

was added. 

 

Western Blotting for SOD2 

Whole cell lysates were collected by adding 150 μl Laemmli buffer (Sigma) to adherent cells 

following AuNP and/or 2 Gy IR treatments. Western blotting was then performed as previously 

described.(32) Primary antibodies were used at 1:1000 (anti-SOD2 and anti-β-actin, Thermo-

Fisher Scientific) in 5% blocking buffer at 4 °C. Secondary antibody was used at 1:5000 in 1% 

blocking buffer for 1 h. Densitometry analysis was performed using Image J.  

 

In vivo tumour growth delay model 

All animal experiments were carried out in accordance with QUB institutional regulations and 

the Animal (Scientific Procedures) Act of 1986, conforming to the current United Kingdom 

Co-ordinating Committee on Cancer Research (UKCCCR) guidelines.  

BALB/C SCID mice (6–8 week-old) were used to develop a sub-cutaneous (s.c.) MDA-MB-

231 tumour xenograft model. Mice were anesthetized using isoflurance (3% in O2) and 1.5x106 

MDA-MB-231 cells injected into the rear dorsum. Tumours were grown to approximately 100 

mm3, at which point animals were randomly assigned to one of four experimental groups; 

untreated, AuNP-DP only, IR only (4 Gy), AuNP-DP + 4 Gy. AuNP-DP (6 mg/kg) was 

delivered by direct intra-tumoural injection equating to 150 g Au per 25 g animal. In vivo 

radiation treatments were delivered using a small animal radiation research platform (SARRP 

- Xstrahl). Tumours were imaged by CT and treated using two parallel beams delivering 4 Gy 



225 kVp x-rays.  Upon recruitment to the study animal weights and tumour volume were 

recorded three times weekly. Tumour volume was measured in three orthogonal dimensions. 

Experimental endpoints for individual animals were defined by tumor volume exceeding 400 

mm3 or animals losing more than 10% of their maximum body weight. 

 

Results  

 

AuNP Characterization 

DLS was used to establish size and surface charge (Figures 1A&B) characteristics. Following 

PEG conjugation hydrodynamic size increases to 28.7 nm ± 0.89 nm, towards the optimal range 

for uptake.(5) Nanoparticle size increased slightly (AuNP-DP: 36.6 nm ± 3.07) following 

peptide conjugation with the AuNP-H5 preparation exhibiting the most significant increase to 

45.9 ± 0.92 nm.  Comparable sizing between nanoparticle preparations indicate a mixed 

monolayer configuration between PEG and the bioactive peptides.(29) Citrate AuNPs possess 

a strong negative charge at -31.5 mV, which reduces to -7.2 mV after PEG conjugation. Both 

the RME and H5WYG peptides alone further reduce the negative surface charge, remaining 

anionic. However, the combination of both peptides (AuNP-DP) yields an overall cationic 

particle with a net charge of 6.5 mV.  

The position of surface plasmon peak shifts from 518 nm for the AuNP-C, to 521.5 for AuNP-

P and further to 254.6 nm after conjunction with both peptides (Figure 1C). This measured 

upshift in peak position of 2-3 nm is consistent with AuNP functionalization.(33) Samples 

functionalized with PEG together with only the RME or H5WYG peptides displayed ʎmax 

positions of 524 and 524.3 nm respectively.   

The FTIR Spectra of washed and dried, AuNP-P, RME and H5 peptides alone and AuNP-DP 

are shown in Figure 1D. A comparison of the FTIR spectra of AuNPs before and after 

PEGylation is detailed in our previous publications.(29,30) The presence of PEG on the AuNP-

P sample is confirmed by a peak at 1,106cm-1 (C-O-C stretching) and narrowing of the C-H2 

peak (2,850cm-1) indicative of ethylene glycol moieties (29, 30, 34, 35)  

Peptide groups elicit characteristic amide bands in several regions. Characteristic Amide A 

resulting from N-H stretching vibrations at ~3500 cm-1 are evident on the spectra of the free 

H5WYG peptide and on the AuNP-DP sample, indicating the presence of H5WYG on the 

surface. A small broad peak is also visible in the spectra of the RME sample in this region. The 

Amide band I resonates between 1600-1700 cm-1, is associated with C=O stretching and is 

sensitive to conformation.(36) Amide I peaks are observed in the H5WYG and RME spectra 



at 1666 and 1680 cm-1 respectively. The series of features in the 1690-1620 region on the dual 

peptide samples is consistent with the presence of the peptides. The spectra of the AuNP sample 

capped only with PEG shows no activity in this region. The presence of the RME peptide on 

the dual peptide sample is further supported by peaks at 982 and 850 cm-1 (N-H wagging), 

which are visible on the spectra of both the RME peptide and dual peptide samples. 

The FTIR data combined with the UV-Vis and Zeta measurements strongly supports the 

successful conjunction of both peptides to the surface. This is further reinforced by Figure 3A 

illustrating superior internalization using AuNP-DP. 

 

UV-vis was also used to demonstrate nanoparticle stability in strong ionic fluids (1 M NaCL) 

(Figure 2A). Importantly, both AuNP-P and AuNP-DP show no change in their UV-spectral 

profile over time, indicating stability in excess of physiologically relevant concentrations. In 

contrast AuNP-C shows a rapid reduction in absorbance almost immediately, indicative of 

irreversible agglomeration. Serum stability (Figure 2B) was assessed by changes in particle 

size. DLS measurements indicate significant (p<0.001) particle agglomeration of AuNP-C in 

medium containing 10 % serum, an effect totally abrogated following PEG conjugation. 

Indeed, protection against non-specific protein absorption was also conferred peptide 

conjugated variants including AuNP-DP. 

 

AuNP cellular uptake 

While PEG provides effective protection against agglomeration, it is widely acknowledged to 

impair cell internalisation.(37) Figure 3A represents ICP-AAS data, used to quantify 

intracellular Au per cell following AuNP treatment. In all cells, intracellular AuNP levels failed 

to exceed 0.3 pg Au/cell following AuNP-P treatment. Conjugation of either the RME or 

H5WYG improved AuNP internalisation; however, nanoparticle uptake was maximally 

restored following conjugation with both peptides, yielding an 12.08, 16.3 and 8.3 fold increase 

over AuNP-P in MCF-10A, MDA-MB-231 and MCF-7 cells respectively, corresponding to 

4.14 pg/cell in MDA-MB-231 cells.   

 

AuNP Induced Cytotoxicity 

WST-1 assay (Figure 3B) was used to assess the short-term impact of AuNP treatment on 

viability. At 25 μg/mL, no significant cytotoxicity was observed from any AuNP preparations 

(Supplementary Figure 2 AuNP-R and AuNP-H5). Using xCELLigence, concentration 

dependent cytotoxicity of AuNP-DP was assessed over 72 h (Figure 3C and 3D). 



Biocompatibility was observed up to 300 μg/mL, after which higher exposure concentrations 

significantly reduced viability. 

 

CytoViva Imaging 

Intracellular distribution was investigated using enhanced darkfield and hyperspectral imaging 

(HSI) (Figure 4). Enhanced darkfield images (Panels A,C,E) of high intensity bright areas 

potentially represents AuNPs, absent from control samples. Clusters are located within the peri-

nuclear region of the cell and more diffusely distributed throughout the cytoplasm. Using pixel-

by-pixel hyperspectral filtering against untreated controls, false positives are eliminated, 

producing a spectral map confirming the intracellular locality of AuNP-DP (mapped in red). 

Hyperspectral images generate maximum intensity projected images which compress z-plane 

data, therefore AuNPs which appear to co-localise with the cell nucleus are likely cytoplasmic, 

located above or below the nucleus.  

 

In vitro AuNP Induced Radiosensitivity 

Colony forming assays were used to determine the radiosensitising potential of the AuNP 

preparations (Figure 5 A-C).  In normal MCF-10A cells, no radiation dose enhancement was 

observed with AuNP-P, and a modest, but significant (p=0.003) SER of 1.19 recorded using 

the fully functionalised AuNP-DP. Conversely, highly significant sensitisation was observed 

in MDA-MB-231 cells with AuNP-P and AuNP-DP generating average SERs of 1.25 (p=0.01) 

and 1.54 (p<0.001) respectively. Importantly, radiosensitisation was significantly increased at 

higher radiation doses, where a 4 Gy SER of 3.19 was obtained. In MCF-7 cells, no significant 

radiosensitisation was observed using the MID which incorporates data from the full survival 

curve. However, like the MDA-MB-231 cell, AuNP-DP significantly sensitised MCF-7 cells 

to higher dose fractions producing a SER of 2.57 at 6 Gy. Similar radiosensitisation survival 

effects, although less pronounced at higher radiation doses, were obtained using the single 

peptide (AuNP-R and AuNP-H5) preparations (Supplementary Figure 3A-C).   

 

Underpinning mechanisms  

As AuNP-DP resulted in maximum nanoparticle internalisation, and the greatest radiation dose 

modifying effects, subsequent mechanistic and in vivo studies focused on the AuNP-DP 

formulation. To establish if AuNP-DP radiosensitisation is due to elevated DNA double strand 

damage (DSB), γ-H2aX foci were quantified (Figure 6A). In both cancer cell lines, 

incorporation of AuNP-DP significantly (p<0.01) increased DNA damage yields by 1.7 fold 



over radiation alone. Interestingly, despite greater AuNP internalisation AuNP-C induced less 

DNA DSB, producing a 1.2 and 1.4 fold increase in DNA lesions in MDA-MB-231 and MCF-

7 cells respectively.   

DCFDA, a fluorescent dye was used to measure AuNP stimulated ROS following radiation 

treatment. Unsurprisingly, radiation alone (2 Gy) elevated ROS levels in both MDA-MB-231 

and MCF-7 cells (Figure 6B and 6C). However, the extent of the response markedly differed 

between cell lines. MDA-MB-231 saw a rapid spike in ROS yields (5.4 fold) within 30 min, 

while the response was less pronounced (2.4 fold) in MCF-7 cells.  A similar response was 

observed in cells pre-treated with AuNP-DP prior to radiation treatment. ROS experiments 

were expanded to assess both the endogenous and treatment induced levels of key ROS 

scavenging proteins including catalase, glutathione and superoxide disumatase (SOD-2). Basal 

and treatment induced expression of catalase and glutathione remained unchanged between 

both MDA-MB-231 and MCF-7 cells, however, significant differences in the expression of 

SOD-2 were observed (Figure 6 D-F). Normalised against MDA-MB-231 cells, MCF-7 have 

on average 2.45 fold high basal expression of SOD-2. However, following AuNP treatment 

SOD-2 expression levels were significantly (AuNP-DP – p<0.01) increased in MDA-MB-231 

cells. No AuNP related upregulation in SOD-2 was observed in MCF-7 cells where the basal 

level expression was already high.  To determine the timing of this response, samples from 

MDA-MB-231 cells were collected at various time points over a 24 h period (Figure 6 G-I). 

Expression levels of SOD-2 following AuNP-DP treatment gradually increased from 4 h post 

treatment, to a maximum 4.6 fold (p<0.01) increase 24 h post exposure (Figure 6H), with a 

similar response observed in irradiated cells doped with AuNP-DP (Figure 6I).   

 

Xenograft tumour delay model 

An MDA-MB-231 xenograft tumour model was used to assess the in vivo radiosensitising 

ability of AuNP-DP (Figure 7 A-D). This tumour model was selected due to the underlying 

biology highlighted in figures 4 and 5, which indicate a likely benefit from including AuNPs. 

Figure 7A represents the mean animal weight per treatment group. Despite slight daily 

fluctuations, no animal dropped below the 10% threshold, indicating minimal treatment 

toxicity. Once recruited, untreated control tumours reached the experimental endpoint in just 

9.8 days (Figure 7B). Direct inject of AuNP-DP alone had no impact on tumour growth. 

Analysis of the mean tumour growth data indicate that while there was a significant difference 

between control and both IR only (p<0.05) and AuNP-DP + IR (p<0.001) treated animals, no 

significant difference between IR only and AuNP-DP +IR was observed. Similarly, Kaplan-



Meier survival analysis supported this finding, with a trend (p=0.081) towards increased 

survival, evidenced by a separation of the IR and AuNP-DP + IR curves (Figure 7C).  Analysis 

of tumour growth to 300 mm3 reveals a different picture (Figure 7D). Unsurprisingly, IR 

significantly (p<0.05) delayed tumour growth by 3.39 days compared to untreated controls, 

however, in this instance AuNP-DP in combination with IR highly significantly (p<0.001) 

impaired tumour progression by 6.7 days relative to animals receiving 4 Gy only (Figure 7D). 

 

Discussion 

While the biocompatibility, tunable surface chemistry and therapeutic potential of AuNPs are 

well established; the number of multi-functional (>2 moieties) therapeutic particles remains 

low.(4,38) Physical AuNP characterisation provides evidence of successful conjugation 

(Figure 1). AuNP-DP size was measured as ~40 nm, close to the optimal size range for clathrin-

mediated endocytosis.(5,39) An important benefit of PEG is increased nanoparticle 

homogeneity and stability, of which polydispersity index (PDI) is a direct measure.  AuNP-P 

and peptide conjugated derivatives had low PDI measurements (0.28 – 0.35), indicative of a 

stable colloid.(40) PEG also affords protection against ionic and serum mediated 

agglomeration (Figure 2 A&B).(41) Despite the obvious advantage of incorporating PEG, 

stealth molecules negatively affect cell interaction, attributed to steric hindrance.(42) This is 

demonstrated with the near abolition of intracellular Au using AuNP-P. RME and H5WYG 

peptides were grafted in an attempt to restore AuNP uptake, while retaining the stabilizing 

effect from PEG. The net positive charge conferred by the six-lysine residues of RME peptide 

promotes internalisation through non-specific electrostatic interaction with phospholipid cell 

membranes, enhancing uptake up to 17-fold over AuNP-P. This data was further supported by 

evidence of intense peri-nuclear AuNP-DP accumulation using hyperspectral imaging (Figure 

4). AuNP-DP (+6.5 mV) exhibited good biocompatibility producing little to no reduction in 

viability in MCF-10A and MCF-7 cells, using concentrations < 300 μg/ml. 

In general, AuNP radiosensitisation studies correlate higher intracellular Au levels with greater 

radiosensitisation.(43) However, despite comparable AuNP-DP internalisation minimal 

radiosensitisation was observed in MCF-7 and MCF-10A cells until higher (>4 Gy) radiation 

doses. This suggests that a positive correlation between intracellular Au and radiosensitisation 

represents an overly simplistic view of the underlying mechanisms. Subsequent functional 

assays sought to establish this through probing mechanistic and cell line variations. Of further 

interest is the effect of AuNP-DP on the α/β ratio; the dose that represents an equal contribution 

towards cell death from both direct DNA damage (α) and indirect damage (β). Clinical studies 



indicate that many breast cancers could benefit from hypofractioned treatment plans due to its 

relatively low α/β ratio estimated at 3.8 Gy.(44) Importantly, AuNP-DP reduces the α/β ratio 

of MDA-MB-231 and MCF-7 cells by 2.5 and 6.1 fold respectively, implying that AuNP-DP 

enhances cell death primarily via indirect, biologically mediated mechanisms.  

Non-resolved DNA double strand break damage is the main cause of radiation-induced death. 

The recruitment and phosphorylation of DNA damage repair protein histone H2XA acts as a 

marker of DNA DSB lesions.(45) Four hours post irradiation (1 Gy), cells treated +/- AuNP-

DP were scored for DSB lesions, permitting non-complex lesion repair.(46) Consistantly 

AuNP-DP treated cells yield more unresolved γH2aX foci compared to IR only and AuNP-C. 

Citrate capped AuNPs are avidly endocytosed, more efficiently that any PEG modified 

preparation, however, persistent DSBs are lower than recorded with AuNP-DP treated cells. 

This effect is attributed to the H5WYG peptide, which promotes endosomal escape.(47) 

McMahon et al (2011) modelled nanoscale secondary electron deposition following AuNP 

ionisation.(48) Internal nanoparticle ionisation events lack sufficient penetrance to confer 

Auger mediated effects, while surface ionisations deposit high doses in very close proximity 

to the nanoparticle (~10 nm). It was hypothesised that the combined endosomal escape and 

PEG stabilising properties of AuNP-DP increase the internal AuNP surface area, driving 

interactions with cell cytoplasmic organelles such as the mitochondria, inducing redox related 

stress, and thus enhancing nanoparticle efficacy. To test this hypothesis, DCFDA was used to 

measure AuNP induced ROS, with expression levels of key ROS scavenging proteins also 

quantified. Both MDA-MB-231 and MCF-7 cells saw a time dependent increase in ROS levels 

post exposure, with the magnitude of effect greatest in MDA-MB-231 cells. SOD-2 basal levels 

were variable, with MCF-7 cells expressing higher initial levels. Interestingly, both AuNP and 

radiation treatment promoted SOD-2 expression in MDA-MB-231 cells. The low basal levels 

of SOD-2 in MDA-MB-231 cells renders them sensitive to the effects of elevated superoxide. 

Assessing SOD-2 expression levels over 24 h revealed that it took up to 8 h post AuNP or IR 

treatment for SOD-2 elevation. Therefore, it is likely that the time lag between nanoparticle-

induced ROS production (early event 30 min – 1 h) and the cells biological response (elevated 

SOD-2) is sufficient to allow significant ROS driven damage. 

In the clinical context, AuNPs could be directly administered to the tumour bed after 

lumpectomy or mastectomy, prior to intraoperative radiotherapy. As such we elected to directly 

inject AuNP-DP to determine if the radiosensitising efficacy identified in vitro translated to the 

in vivo setting. Landmark studies highlighting the radiosensitisation potential of AuNPs have 

typically used in vivo dosing in excess of 2 g/Kg Au.(49,50) However, due to the higher 



endocytotic potential AuNP-DP was administered at 6 mg/kg. This concentration was based 

on our previous study using small (<4 nm) DTDTPA-grafted AuNPs, which exhibited a lower 

internalisation potential.(24) A pre-determined experimental end-point of tumour volume 

developing to four times initial treatment volume was applied. Solely using this criteria 

suggests that AuNP-DP confers no statistically significant (p=0.13) advantage in terms of 

tumour growth delay compared to radiation alone, a result mirrored by the Kaplan Meyer 

survival curve (Figure 7C: IR verses IR + AuNP-DP p=0.081 Mantel-Cox test). This result is 

strongly influenced by the treatment scheduling. A fixed experimental endpoint fails to account 

for the pronounced tumour delay observed during the first 12 days post treatment and the data 

presented in Figure 7D. Extrapolating from the radiation sensitivity data (Figure 5B) at 4 Gy, 

AuNP-DP generates a dose enhancement factor (DEF) of 3.2, indicating that the combined 

effect of IR +AuNP-DP treatment is equivalent to an approximate dose of 12 Gy. On the basis 

that a single 4 Gy fraction resulted in a 3.4 day tumour growth delay compared to the untreated 

tumours, applying the estimated dose fraction of 12 Gy in the presence of AuNP-DP, a growth 

delay of 10.2 days should result. This was indeed the observed outcome with a measured 

combined growth delay of 10.88 days. This encouraging result outlines the potential for AuNPs 

to prove effective within a specific cohort of tumours that exhibit lower basal ROS scavenging 

capacity. Furthermore, as the impact of the combined treatment was front loaded post 

treatment, the full potential of AuNP-DP is yet to be realised through scheduling and radiation 

dose fractionation studies. 

 

These investigations report the successful synthesis of a novel multifunctional AuNP that 

demonstrates significant internalisation and radiosensitisation. Furthermore, SOD-2 is 

identified as a key mediator of inherent radioresistance between cell lines. Importantly, in vitro 

observations translated to effective tumour growth delay in vivo. Using the example of breast 

cancer, the significance of the in vivo radiosensitisation should not be underestimated, given 

the known doubled edged sword effects conferred by a radiotherapy boost for patients with left 

sided breast cancer.     
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Figure 1 – AuNP physical characterization.  A) Hydrodynamic size and B) zeta potential of 

the various AuNP preparations. C) UV/Vis spectra of the AuNP preparations D) FTIR spectra 

of free peptide compared against AuNP-P and AuNP-DP indicating successful conjugation.  

 

Figure 2 – A) Stability of nanoparticles over time in 1 M NaCl. Experimental replicates were 

sampled from multiple batches (n=4). B) Stability of AuNP preparations, assessed by change 

in size following incubation in foetal calf serum (10% or 40%) (n=3).  



 

Figure 3 – AuNP internalisation and cytotoxicity. A) – Uptake data quantified using ICP-

AAS and normalised against AuNP-P (n = 5). B) WST-1 assay indicates minimal cytotoxicity 

following a 24 h incubation with AuNPs at 25 µg/ml. C & D) – Dose dependant cytotoxicity 

of AuNP-DP in cancer cell lines MDA-MB-231 (C) and MCF-7 (D) (n=3). Statistical analysis 

was performed using a one-way ANOVA with Bonferroni-correction. 

 

Figure 4 – CytoViva imaging of AuNP-DP in breast cells. Enhanced darkfield images (A,C 

& E) show cells co-stained with DAPI. Clusters of AuNP-DP appear as bright regions due to 

their high cross-scattering. Spectral angle mapping (B, D & F) paints AuNP-DP containing 

pixels red confirming AuNP uptake. Enhanced darkfield were acquired using a x100 objective, 

with HSI digitally focused on the central field of view.  

 

Figure 5 – In vitro radiosensitisation of AuNP-DP. Clonogenic survival assays of AuNP-DP 

in (A) MCF-10A, (B) MDA-MB-231 and (C) MCF-7 cells following incubation at 25 µg/ml 

for 24 h. Annotated sensitizer enhancement ratios (SER) were calculated using the mean 

inactivation method and compared against IR alone (n=3). Statistical significance determined 

by two-way ANOVA. 

 

Figure 6 – AuNP induced oxidative stress.  A) DNA double strand breaks were quantified 

by scoring γH2aX foci following a 1 Gy dose. B&C) – ROS quantified using the fluorescent 

dye DCFDA over time following IR (2 Gy) alone or AuNP-DP plus IR in (B) MDA-MB-231 

and (C) MCF-7 cells. D-F) Western blotting for SOD-2 in cancer cell lines, show the basal 

level and AuNP induced expression in (D&E) MDA-MB-231 and (D&F) MCF-7 cells. G-I) 

MDA-MB-231 cells were selected due to the SOD-2 induced response and probed to establish 

time (G&H) and radiation (2 Gy; G&I) dependent effects. Data represent the mean of three 

independent experiments. Statistical analysis was performed using a one-way ANOVA with 

Bonferroni-correction. 

 

Figure 7 – Xenograft tumour delay model with AuNP-DP. Animals were randomly 

allocated into four treatment groups: untreated (n=6), AuNP-DP only (n=5), IR only (4 Gy; 

n=5) and AuNP-DP + IR (4 Gy; n=6). A) – Mean animal weights. B) Mean tumour growth 

characteristics of the four treatment groups until the experimental endpoint of 400 mm. B) 

Kaplan Meyer survival curve based on tumour growth to experimental endpoint. Statistical 



analysis determined using the log-rank test. D) Treatment efficacy defined by the delay in time 

taken for tumours to develop to 300 mm3. Statistical analysis was performed using a one-way 

ANOVA with Bonferroni-correction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 


