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Abstract We discuss the extended parallel pattern set identified within the
EU-funded project RePhrase as a candidate pattern set to support data in-
tensive applications targeting heterogeneous architectures. The set has been
designed to include three classes of pattern, namely i) core patterns, modelling
common, not necessarily data intensive parallelism exploitation patterns, usu-
ally to be used in composition; ii) high level patterns, modelling common,
complex and complete parallelism exploitation patterns; and iii) building block
patterns, modelling the single components of data intensive applications, suit-
able for use–in composition–to implement patterns not covered by the core
and high level patterns. We discuss the expressive power of the RePhrase
extended pattern set and results illustrating the performances that may be
achieved with the FastFlow implementation of the high level patterns.

Keywords Parallel design patterns, data intensive computing, stream
computing, algorithmic skeletons

1 Introduction

We live in a world driven by information: electronic devices, manufacturing
equipment and information systems produce data, either automatically or as
a result of user interaction, and so applications for managing data intensive
computations are becoming ever more important. At the same time, the no-
table improvement in the hardware available for data processing has prompted
the development of new, highly demanding algorithms and applications.

In this scenario, Data Intensive Computing is gaining importance as a
means of collecting, analysing and unveiling the knowledge that this data
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encapsulates. Clearly, this possibility constitutes a valuable opportunity for
many businesses and scientific applications.

However, the design, development and tuning of efficient data intensive
applications still represents a very challenging task. Of necessity, these appli-
cations must be designed and implemented as parallel applications. In addition
to the usual problems related to parallel computing, these applications also
confront the programmer with the problem of efficiently managing consider-
able amounts of data, often available as streams dictating precise performance
constraints.

Parallel design patterns have been identified as a viable mechanism to sup-
port parallel programmers in the difficult task of designing and implementing
efficient and portable parallel applications [7,23]. Several existing and widely
used programming frameworks provide the programmer of parallel applica-
tions with ready to use parallel patterns. Google mapreduce [13], Hadoop [31]
and OpenMP basically provide a single pattern while Intel Thread Build-
ing Blocks [26] and Microsoft TPL [24] both provide a larger set of patterns.
The programming frameworks developed as algorithmic skeleton programming
frameworks include comprehensive sets of parallel patterns provided as ready
to use programming abstractions: FastFlow [3,10], Muesli [19], SkePU [18],
SkeTo [17]. In some cases the programming frameworks may be used to tar-
get different kinds of architectures. For example, Muesli targets workstation
clusters, shared memory multicores and GPUs and FastFlow targets multi-
cores, GPUs and provides partial support to target clusters of workstations as
well as FPGAs (through TPC [20]). Although some of the pattern frameworks
mentioned above have been explicitly designed to support data intensive ap-
plications, there is no broadly accepted definition of the set of patterns needed
to support data intensive applications.

Within RePhrase, an EU H2020 funded project begun in April 2015, we
aim to define a set of parallel patterns supporting the development of efficient
data intensive applications on heterogeneous hardware platforms. In particu-
lar, we provide a set of parallel design patterns as ready to use programming
abstractions fully compliant with standard C++ (11 and subsequent standard
releases) paired with a set of tools to support pattern introduction in existing
or new C++ code via refactoring and to check and ensure certain properties
of the resulting parallel code. Fig. 1 summarises the overall approach of the
RePhrase project.

In this paper we introduce the parallel pattern set identified within the
RePhrase project. Our contribution consists in the presentation of a compre-
hensive parallel pattern set along with some preliminary results demonstrat-
ing the expressive power of the patterns, together with performance results
achieved with a FastFlow implementation of these patterns. The rest of the
paper is organised as follows: Sec. 2 introduces the data intensive computing
paradigm. Sec. 3 describes the full set of patterns included in the RePhrase
extended pattern set. Sec. 4 discusses the expressive power and usability of the
pattern set. Finally, Sec. 5 presents some preliminary results from the pattern
set implementation using FastFlow.
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Fig. 1: RePhrase methodology workflow overview

2 Data Intensive Processing

As discussed in Sec. 1, Big Data is one of the top trending IT topics of today.
It is characterised by the so-called 3Vs [21]: variety, volume and velocity. Va-
riety refers to the nature and structure of the information. Volume refers to
the magnitude of data produced. Finally, velocity refers to the frequency of
data generation and to the dynamic aspects of the data in general. Different
processing paradigms tackle various combinations of these aspects.

Pure Data Parallel systems tackle volume and variety: they process large
masses of data, usually in an off-line fashion. Typically applications range
across scientific sectors: examples include the analysis of massive data com-
ing from scientific experiments [33], and studies of human digital traces (e.g.
GPS traces) to discover and understand patterns in human mobility [25] or to
support health care assistance [29]. Frameworks in this field take inspiration
from Google’s Map Reduce [13]. Notable open source implementations include
Apache Hadoop1 and more recently Apache Spark2, which is gaining attention
due to its versatility and efficiency.

In turn, Data Stream Processing (DaSP) deals with the velocity and vari-
ety aspects of the “Big Data Challenge”. According to the DaSP paradigm,
applications receive a continuous flow of data that has to be processed on
the fly, usually with performance requirements in terms of bandwidth and/or
latency [8,6]. Examples in this field include financial applications that try to
spot revenue opportunities by analysing live market data [5], Intrusion De-
tection Systems that monitor network traffic in real-time to identify possible
attacks [34], social media analytics that gather users’ news feeds and try to de-
tect notable events [30]. Generally, applications are expressed as compositions
of core functionalities in directed flow graphs, where vertices are operators
(that encapsulate user defined logic) and arcs model streams, i.e. unbounded
sequences of data items (tuples) sharing the same properties in terms of name

1 http://hadoop.apache.org/
2 http://spark.apache.org/

http://hadoop.apache.org/
http://spark.apache.org/
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and type of attributes. Examples of solutions in this sphere include Apache
Storm3, Apache Flink4 and IBM InfoSphere Stream5.

At times both aspects of data intensive processing can be present, allowing
systems to serve a wider range of workloads and use cases. This approach is
sometimes referred as Lambda Architecture [22]. In the RePhrase pattern set
we include patterns that address both these aspects.

3 The RePhrase pattern set

Initially, the RePhrase set included two kinds of pattern:

– a set of core patterns, that comprises classical primitive parallelism ex-
ploitation patterns and may be specialised by means of a set of parameters
to implement various applications using the pattern in slightly different
ways; and

– a set of high level patterns, representing common, complex and specialised
parallel patterns.

The first class includes, for example, pipeline and parallel for/map patterns,
while the second includes examples such as divide&conquer and Google mapre-
duce patterns. Subsequently, taking into account the industrial use cases em-
ployed to assess the project results, we extended the pattern set with

– some further high level patterns, and
– with a collection of small building block patterns suitable for use, in compo-

sition, to model those data intensive patterns not captured by the RePhrase
high level patterns.

It is worth pointing out that the “building block” patterns may, with rela-
tively little effort, be used to implement the high level patterns in the RePhrase
pattern set. However, due to the general purpose usefulness of these high level
patterns, we preferred to provide them as primitives. This simplifies the im-
plementation of parallel applications using the high level patterns and allows
inclusion in their implementation of well-known optimisations, that would have
been more difficult to include via the building block approach.

In the remainder of this section we introduce the patterns included in the
RePhrase pattern set. The patterns are divided into classes according to the
kind of parallelism exploited (data, task, stream, etc.). The description of the
types of the patterns includes only the functional and code parameters, for
the sake of simplicity.

3 http://storm.apache.org/
4 http://flink.apache.org/
5 http://www-03.ibm.com/software/products/en/ibm-streams

http://storm.apache.org/
http://flink.apache.org/
http://www-03.ibm.com/software/products/en/ibm-streams
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3.1 Stream Parallel “core” patterns

Stream parallel patterns employ parallelism in the processing of different items
belonging to one or more input data streams. An input data stream is charac-
terised by having a type6 and by being able to provide items (to be computed)
one after the other with a given inter-arrival time. We will denote the type of
a stream of data items of type α by α stream. A stream may be finite–in this
case the last item of the stream will be the special item eos–or infinite. The
infinite streams usually originate from an input device, e.g. a network card.
Our core stream parallel patterns all process a single input stream to produce
a single output stream.

Pipeline (pipe): the pattern computes in parallel several stages f1, . . . , fn on
a stream of items, where fi : αi−1 → αi and (pipe f1 . . . fn) : α0 stream →
αn stream. Each stage processes data produced by the previous stage in the
pipe and delivers results to the next stage. For each stream item x an item
fn(fn−1(. . . f1(x) . . .)) is eventually delivered in the pipeline output stream.
Pipeline stages are executed in parallel.

Task-Farm (farm): the pattern computes in parallel a given function f : α→
β over all the items appearing in an input stream and so (farm f) : α stream→
β stream acts on input of type α stream delivering the results on the output
stream of type β stream. Computations on different stream items are indepen-
dent.

Stream Filter (filter): the pattern computes in parallel a filter p : α →
{true, false} over an input stream of type α stream, that is, it passes to the
output stream only those input data items x such that p(x) = true. p must
be a pure function and (filter p) : α stream→ α stream.

Stream Accumulator (accumulator): The pattern “sums up” using a binary
function ⊕ : α × α → α all items from the input stream and delivers the
result to the output. The function used to sum up values (⊕) may be any
binary function of type ⊕ : α × α → α, although commutative and associa-
tive functions will provide much better and more scalable implementations.
(accumulator ⊕) : α stream→ α.

Stream Iteration (iteration): the pattern iterates the computation of an-
other pattern over one or more items appearing on the input stream, and deliv-
ers results on the output stream. The pattern has type iteration (α stream→
α stream)× (α→ bool)→ (α stream→ α stream). The first parameter is the
nested pattern, the second is the function used to redirect output item x to
the input of the nested pattern (true) or to the output of the iteration pattern
(false).

6 in the following we use Greek letters to denote data types. The expression x : α is used
to denote an object x whose type is α while the expression f : α → β is used to denote a
function f computing a result of type β out of an input of type α.
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3.2 Data Parallel “core” patterns

Data parallel patterns employ parallelism in the processing of different items
or (possibly overlapping) partitions of items belonging to a single “collection”
data item. The key point in this case is the existence of two (logical) func-
tions decomposing a single input data collection (of type α collection) into a
collection of collections (decomp: α collection → (α collection) collection) and
building the result out of the collection of subresults (comp: β collection→ γ).
Data parallel patterns process a single collection at a time, but nothing pre-
vents them being used to operate on a stream of collections to produce a stream
of collections.

Map (map): this pattern computes a given function f : α→ β over all the data
items of an input collection whose elements have type α (map f : α collection→
β collection). Therefore the decomp function (logically) returns a set of α sin-
gletons out of the α collection input and the comp rebuilds a β collection out
of the collection of singleton results. Given the input collection x1, . . . , xN ,
the output collection is f(x1), . . . , f(xN ). Since each data item in the input
collection is independent of the other items, all the elements can be computed
in parallel.

Reduce (reduce): the pattern “sums up” all the data items of a collection
of items of type α using a binary function ⊕ : α × α → α which is usually
associative and commutative (reduce ⊕ : α collection → α). Given the input
collection x1, . . . , xN , the reduce computes x1 ⊕ . . .⊕ xn.

Stencil (stencil): the pattern decomposes an input collection (x : α collection)
to a set of as many sub collections (y : α collection) as the original collection
component count. Each sub collection hosts a distinct item of the original col-
lection along with a set of neighbour items. A function f : α collection→ β is
used to compute in parallel the new values of the output z : β collection.

3.3 High Level Patterns

High level patterns model more complex parallel computations. All are used
to compute the result relative to a single input, although they may be used in
composition with stream parallel patterns to compute a stream of results from
a stream of inputs. We informally specify the intended parallel semantics.

Divide and Conquer (dac): the pattern computes a problem for which a) the
solution for some base cases are known and b) non-base case problems may be
divided into a collection of sub-problems and c) the solution of the non-base
case problems may be computed from the solutions of the sub-problems. The
type of the pattern is dac : divide × conquer × isBaseCase ×SolveBaseCase ×
α → β with divide : (α → α collection), conquer : (β collection → β),
isBaseCase : (α→ bool) and solveBaseCase : (α→ β)
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Mapreduce (mapreduce): the pattern computes the Google mapreduce [13]
using two functions f : α → β × κ and ⊕ : β × β → β, where κ is the key
type, and has type mapreduce f ⊕ : α collection → (β × κ) collection. The
first function (f) is used to map all the items in the input collection to 〈key,
value〉 pairs, while the second (⊕) is used to compute a unique value out of
the value entries in 〈key, value〉 pairs with the same key value.

Pool pattern (pool): the pattern models the evolution of a population of in-
dividuals. Iteratively, selected individuals are subject to evolution steps. The
resulting new individuals are inserted in the population or discarded accord-
ing to their fitness score. The process is iterated up to a given number of
iterations (or up to a given computation time) or up to the point that an indi-
vidual with a given fitness is inserted in the population. Low fitness individuals
may be removed from the population to keep the population size constant at
each iteration. The type of this pattern is thus pool sel evol fit merge term :
α collection → α collection where sel : α collection → α collection, evol :
α → α, fit : α → β, merge : α collection × α collection → α collection,
term : α collection→ bool.

Image convolution pattern (convolve): this pattern computes image convo-
lution according to some input kernel parameter and has type convolve :
α mat × int mat → α mat. A kernel parameter is an N ×N matrix (usually
3× 3 or 5× 5) of integer values. The image convolution is obtained from the
source image processing each pixel at position i, j by taking the N ×N values
centred at i, j, multiplying each of the values by the corresponding value of
the kernel and summing up the results to get the new i, j pixel of the resulting
matrix. Image convolution may be used to obtain different effects with differ-
ent kernels, ranging from image blurring to image enhancement, embossing,
sharpening, etc. The image convolution pattern may obviously be implemented
using a stencil pattern, but it is provided as a first class pattern due to its
wide usage.

Windowed stream farm (windowedSF): the pattern computes functions on win-
dows of stream item values, and has type windowedSF : α stream× (α vec→
β) → β stream. In particular, this pattern implements a computation that
outputs items on the output stream corresponding to the evaluation of a given
function over successive, consecutive windows of items appearing on the in-
put stream. The windows have a length (number of items to be listed in the
window) and an overlap factor (number of items in window wi also appearing
in window wi+1). The number of items in a window may be defined either
as an actual number (count-based windows) or as a time interval, that is,
as the items appearing in the input stream within the given interval of time
(time-based windows).
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Keyed stream farm (keyedSF): the pattern computes functions on windows of
stream item values, and has type keyedSF : α stream× (α vec→ β)× (α→
γ key)→ β stream. Each input item belongs to a unique class called key (with
type γ key); that is, the physical stream can be viewed as a multiplexing of
several logical streams, each of which conveys items with the same key value.
This pattern implements a computation that outputs items on the output
stream corresponding to the evaluation of a given function over successive,
consecutive windows of items appearing on the same logical input stream. The
windows have a length (number of items to be listed in the window) and an
overlap factor (number of items in window wi also appearing in window wi+1).
The number of items in a window may be defined either as an actual number
(count-based windows) or as a time interval, that is as the items appearing
onto the input stream within the given interval of time (time-based windows).

3.4 Data intensive building block patterns

The patterns in this class are further divided into patterns used to gener-
ate/collapse data streams and in patterns used to process existing streams.

3.4.1 Stream generate/collapse patterns

Stream generator pattern (streamgen): this pattern is used to generate a
stream from an internal (e.g. a stateful function) or external (e.g. a disk file)
data source and has type streamgen : ()→ α stream7.

Stream collapser pattern (streamdrain): this pattern is used to “consume”
all the items appearing on its input stream and has type streamdrain :
α stream→ ().

Data splitter pattern (datasplitter): the pattern is used to generate a stream
of items out of the components of a data collection (possibly from the pattern
input stream) according to a user-defined strategy and has type datasplitter :
α collection→ β stream, where β is either α or α collection.

Data merger pattern (datamerger): the pattern is used to gather items ap-
pearing onto an input stream in a data collection according to a user defined
strategy and to deliver the data collection onto the pattern input stream and
has type datamerger : α stream→ (α collection) stream.

3.4.2 Stream processing patterns

Stream filter pattern This is the same filter pattern as is included in the
core stream patterns (Sec. 3.1. It is listed here as logically it belongs to the
stream processing subclass of the data intensive building block patterns.

7 where () is the “no parameter” (void) type
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Stream merger pattern (streamMerger): this pattern is used to merge two or
more input streams into a single output stream according to a pre-defined or
user-specified merge policy and has type streamMerger : (α stream) collection
→ α stream.

Stream tupler pattern (streamTupler): this pattern processes items from a set
of input streams to produce a tuple on a single output stream with exactly one
item from each of the input streams and has type streamTupler : α1 stream×
. . .× αm stream→ (α1 × . . .× αm) stream.

Stream splitter pattern (streamSplitter): this pattern directs the items ap-
pearing on a single input stream to one of the different output streams accord-
ing to a pre-defined or user-defined split policy and has type streamMerger :
α stream→ (α stream) collection.

Stream detupler pattern (streamDetupler): the pattern processes tuples ap-
pearing on an input stream. Each tuple is used to generate items on different
output streams according to a parameter policy and has type streamDetupler :
(α1 × . . .× αm) stream → α1 stream × . . . × αm stream. Default policies are
provided including:

– scatter (tuple components to different output streams, in order)
– unicast (tuple components to the same output stream, one after the other,

where the stream is identified through a user supplied function)

4 Expressive power of the RePhrase pattern set

We discuss the expressive power of the RePhrase extended pattern set from
two viewpoints:

– the class of data intensive applications supported; and
– the programming effort required to code a data intensive application using

the patterns in comparison with that required to program the applications
using traditional, “non-patterned” programming frameworks.

4.1 Applications supported

The three different kinds of pattern provided within the RePhrase extended
pattern set all support different, partially overlapping, classes of applications
(see below).

We have recently implemented the Parsec8 benchmarks using FastFlow [12],
the library we use to provide the application programmer with RePhrase pat-
terns (see Fig. 4). We have also already confirmed the possibility of imple-
menting all of the Cowichan problems [32] using the RePhrase pattern set.
In addition, and obviously, the pattern set covers all the parallel needs of the
RePhrase use case set [27].

8 http://parsec.cs.princeton.edu/

http://parsec.cs.princeton.edu/
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High level patterns Each of the high level patterns in the RePhrase extended
pattern set supports a complex and complete set of well-know parallel pat-
terns. In general each pattern may also be implemented using a (composition
of) core pattern(s) although this alternative is not necessarily more efficient
or easier to implement. As an example, a divide and conquer pattern may be
implemented using a task farm pattern where the workers are able to compute
all of the specific phases (divide, test base case, solve base case, conquer) and
the tasks produced while dividing are routed back from collector to emitter
for further processing. The implementation of the divide and conquer pattern
in FastFlow follows a similar strategy, but implements a number of optimisa-
tions such that a high degree of efficiency is achieved in the implementation
of a wide range of divide and conquer kernels and applications. The divide
and conquer pattern thus supports the implementation of a variety of parallel
algorithms, ranging from non-data intensive algorithms to data intensive ones
including sorting of large datasets or computation bound algorithms such as
Strassen dense matrix multiplication. The pool pattern is particularly suited
to evolutionary computing applications. It has been demonstrated to be useful
in the exploration of complex space search algorithms, in the implementation
of genetic algorithm based applications and in the implementation of iterative
algorithms modelling approximation of complex solutions through progressive
refinement. Despite the fact we assume slightly different I/O mechanisms in
the RePhrase pattern set, the Google mapreduce pattern has already been
demonstrated useful in a number of different applications, and we do not
spend more space here to justify its inclusion in the pattern set. Finally, the
key and windowed stream farm patterns have been shown to efficiently sup-
port financial applications processing a data intensive stream of records and
may naturally support those applications, e.g. from social networks, processing
large sets of records available across single or multiple data streams to infer
more structured information about the stream contents and behaviour.

Core patterns Core patterns, alone or in composition, may be used to sup-
port those applications and kernels where embarrassingly parallel, staged (i.e.
pipelined) or iterative parallel components are present. They have been in-
cluded in the RePhrase pattern set but have already been present in several
other programming frameworks (including [17,18,19,26,10]). The class of ap-
plications supported includes numerical applications, video processing appli-
cations, soft computing and AI applications up to learning and massive data
processing applications.

Building block patterns The building block patterns included in the RePhrase
pattern set must be used in composition to model the parallel patterns needed
for data intensive applications that are not supported by either high level or
core patterns. As such, they provide support for the implementation of any
generic streaming network built out of an arbitrary number of data sources
and data drains with an arbitrary number of processing nodes, transforming,



RePhrase pattern set 11

Fig. 2: Sample data streaming network with RePhrase building block and core
patterns: Apache Storm website picture (left, from http://storm.apache.

org/) and sample RePhrase building block outline (right).

filtering, merging, splitting and collapsing stream (portions). The set of pat-
terns in the building block class have clearly been inspired by the kind of
computations usually supported by programming frameworks such as Storm
and Flink. A data processing network such as that in Fig. 2 may be easily
built by combining our building block and core patterns.

4.2 Programming effort

The programming effort required to implement data intensive parallel applica-
tions varies according to the application at hand and to the targeted parallel
programming framework.

A mapreduce application programmed on top of Hadoop simply requires
specification of the code for the map and reduce “functions” along with some
input data and the Hadoop framework turns these minimal inputs into an
efficient, running application. In contrast, if you wish to program yourself the
mapreduce pattern using MPI, the amount of code required increases substan-
tially. On the other hand, if you wish to program a non-mapreduce application
on top of Hadoop you may end up concluding that either this is not possible at
all, or that the effort needed to mutate the mapreduce pattern into the actual
pattern to be implemented is too great.

The programming effort required of the programmer using the RePhrase
patterns is similar to that required of the Hadoop programmer developing a
mapreduce application. RePhrase patterns are provided using plain C++ pro-
gramming abstractions (higher order functions or classes) that may be instan-
tiated with suitable functional and non functional parameters to implement
the particular instance of the pattern required by the application programmer.

We discuss two simple examples here, relative to the use two of the main
“technologies” adopted and developed within RePhrase: the FastFlow struc-
tured parallel programming environment and the GrPPI C++ pattern inter-
face. FastFlow is one of the target back-ends considered within RePhrase and

http://storm.apache.org/
http://storm.apache.org/
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// FASTFLOW two stage pipeline

auto f1 = [](T1 * x)->(T2*) { ... };

auto f2 = [](T2 * x) { ... };

struct Stage1 : ff_node_t<T1,T2> {

T2 * svc(T1 * x) { return (f1(x)); }

};

struct Stage2 : ff_node_t<T2> {

void * svc(T2 * x) { return(f2(x)); }

};

int main(int argc, char * argv[]) {

...

ff_Pipe pipe(Stage1,Stage2);

...

pipe.run_and_wait_end();

...

}

// GrPPI two stage pipeline

auto f1 = [](T1 x) { ... };

auto f2 = [](T2 x) { ... };

int main(int argc, char * argv[]) {

...

parallel_execution_ff ff_mode{};

pipeline(ff_mode, f1, f2);

...

}

Fig. 3: Pipeline sample code snippets in FastFlow and GrPPI

it is begin currently developed and maintained at the Universities of Pisa
and Torino9. GrPPI is a C++11 specific pattern interface designed within
RePhrase to provide a target framework-agnostic way of expressing patterns
[14]. It provides “functional style” patterns that can be used within standard
C++ programs and uses several different back-ends to execute the pattern
code in parallel, including OpenMP, Intel TBB and FastFlow. The overhead
introduced by the GrPPI is negligible, w.r.t. to the usage of the back-end mech-
anisms to implement the same patterns, as GrPPI is provided as a header only
library and its implementation adopts all the standard meta programming
mechanisms, resulting in a large compile time effort but in a modest run time
overhead.

Fig. 3 presents code snippets illustrating FastFlow and GrPPI pattern usage
examples:

– In FastFlow a pipeline pattern with sequential stages may be expressed
by declaring a ff_pipeline object and then adding stages (lambdas or
ff_node_t objects wrapping a function object). Once the object has been
declared, execution may be triggered by invoking the run_and_wait_end()
method of the ff_pipeline object (see code snippet in Fig. 3 (left)).

– Using GrPPI a pipeline pattern may be declared and run as a function with
parameters that denote the kind of target parallel programming framework
and the stages to be used in the pipeline (this is a variable length list of
callable object) (see code snippet in Fig. 3 (right)).

Overall, the extended pattern set provides significant support for the par-
allel applications programmer in the implementation process by making avail-
able the patterns as ready to use objects and functions that the programmer

9 http://calvados.di.unipi.it/fastflow

http://calvados.di.unipi.it/fastflow
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Fig. 4: FastFlow RePhrase patterns vs. standard programming frameworks:
results on Parsec benchmarks. LOC (lines of code, top), code churn (number
of changed lines, middle) and execution times on an Ivy Bridge Xeon server
(bottom). (FF = FastFlow, TBB = Intel Thread Building, OMP = OpenMP,
OMPSS = OpenMP SuperScalar [15])

may freely and immediately use to program the parallel part(s) of his/her
application. However, it is worth noting that the RePhrase methodology (as
depicted in Fig. 1) aims at introducing patterns into applications by means of
the RePhrase refactoring tools. Places where patterns may be introduced are
determined by using the pattern discovery tool which identifies those locations
and those portions of code that may be turned into parallel pattern instances.

In terms of LOC (lines of code), the programming effort required to use
the native FastFlow pattern interface is comparable to that required by similar
programming frameworks (e.g. Intel TBB [26]) but certainly FastFlow requires
a greater number of lines of code with respect to pragma based programming
frameworks such as OpenMP. However, we must point out that the FastFlow
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programming interface provides many more patterns than OpenMP. For those
natively supported in OpenMP–e.g. parallel for/map–LOC is better (lower)
in OpenMP, but those that are not natively supported in OpenMP require a
comparable or even larger LOC in OpenMP compared to FastFlow (see Fig. 4).
A completely different perspective comes from the use of GrPPI [14]. In this
case the LOC count is balanced even when comparing the RePhrase framework
with pragma based frameworks such as OpenMP, due to the fact the GrPPI
profitably leverages those new features recently added to the C++ standard
that de facto support functional style abstractions. It is worth pointing out
that, while pragma based patterns require some intervention on the compiler
toolchain, the RePhrase wrapper approach implemented in GrPPI works with
(pre-compiled or source header only) libraries.

Targeting GPUs As far as GPU targeting is concerned, the RePhrase pattern
set offers different possibilities. On the one hand, GrPPI will eventually pro-
vide a C++/Thrust implementation of those patterns that may be fruitfully
executed on a GPU (e.g. data parallel patterns such as the map or reduce pat-
terns) [14]. In this case, the only GPU specific change that will be needed in
the code is the specification of the GPU specific parallel_execution_thrust
parameter in the GrPPI pattern call (this is the substitute of the ff_mode pa-
rameter in the GrPPI code of Fig. 3 (right)). On the other hand, FastFlow
offers the possibility to use GPUs through the main data parallel patterns,
using minimal changes in the code. Consider a map pattern.

The typical changes required are just two (see Fig. 5). First, the function
to be computed in the GPU kernel has to be specified using suitable macros
to support on-the-fly kernel code generation. The macro has parameters such
as the name of the function, the type of the input parameter, the name of
that parameter and the code itself used to transform the parameter into the
kernel result. Second, the programmer must supply an object with a setTask

method specifying the pointers to the input and output data and the data
size.

Use of the map requires code similar to that needed to call the same map
targeting the CPU cores. Fig. 5 (right) shows a main using a farm pattern
whose workers are map patterns executed on the GPU. The left part of the
figure shows the GPU specific code needed to use the GPU map.

5 Experimental results

In this section we present some experimental results obtained with the high
level patterns in the RePhrase extended pattern set. Most of the results are
relative to the native FastFlow implementation of the patterns as GrPPI does
not introduce a significant performance penalty.
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FFMAPFUNC(mapF, unsigned int, in,

return in + 1;

);

class cudaTask: public

baseCUDATask<unsigned int,

unsigned int> {

public:

void setTask(void* t) {

if (t) {

cudaTask *t_ = (cudaTask *)t;

setInPtr(t_->in);

setOutPtr(t_->in);

setOutPtr(t_->out);

setSizeIn(inputsize);

}

}

unsigned int *in, *out;

};

...

int main(int argc, char* argv[]) {

...

ff_farm<> farm;

Emitter E(streamlen,inputsize);

Collector C(inputsize);

farm.add_emitter(&E);

farm.add_collector(&C);

std::vector<ff_node *> w;

for(int i=0;i<nworkers;++i)

w.push_back(

new FFMAPCUDA(cudaTask, mapF)());

farm.add_workers(w);

farm.run_and_wait_end();

...

}

Fig. 5: Targeting GPUs in FastFlow: Farm with GPU Map workers

5.1 Divide & Conquer

We implemented the Divide&Conquer (DAC) parallel pattern in various back-
end environments, such that, while maintaining the same source code, the pro-
grammer can exploit the potential of different frameworks and target architec-
tures (see Fig. 6a). We proposed three different implementations for multicore
architectures based on OpenMP compiler annotations, Intel TBB and FastFlow
parallel programming libraries. The experimental analysis, performed on a 24-
core Intel server, showed that the reduced effort in programming does not come
at the expense of significant performance penalties. The experimental study
has been carried out by comparing the pattern-based solution with hand-made
parallelisations using the same back-end runtime. These results pave the way
for further development of this work. First, the set of back-end implementa-
tions can be further extended, including an MPI implementation for targeting
distributed systems, and a CUDA/OpenCL-based implementation for GPUs.
Second, we recognise that an important role in achieving a good level of per-
formance is played by the cutoff value, i.e. the point at which we stop the
recursion and solve the problem sequentially to better exploit the cache hier-
archy and/or limit the runtime support overhead. This value depends on the
structure of the specific parallelised application and on the kind of platform
used. As proposed in [16], using information from the application collected at
runtime (without relying on user hints), it is possible to automatically derive
the cutoff technique that is best suited for the application.
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Fig. 6: Experimental results related to the RePhrase pattern set

5.2 Stencil

In [2] we discussed the FastFlow implementation of a loop-of-stencil-reduce
pattern, targeting iterative data parallel computations on heterogeneous mul-
ticores. We showed that various iterative kernels can be easily and effectively
parallelised by using the Loop-of-stencil-reduce on the available GPUs by ex-
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ploiting the OpenCL capabilities of the FastFlow parallel framework. We fo-
cused on capturing stencil iteration as a pattern, and on its integration in the
established FastFlow pattern framework. The pattern proved to be quite effi-
cient on modern multicore architectures. Fig. 6b shows the completion times
achieved on a 24 core Sandy Bridge machine when executing a video denoiser
application using the stencil pattern [4].

5.3 Window-based Streaming Patterns

Data stream processing applications process unbounded data streams coming
from a plurality of sensor devices. Input items received at high speed are usu-
ally accumulated by updating an internal state of the pattern (e.g., a sliding
window containing the most recent data) and by applying a user-defined func-
tion periodically, e.g., at each window triggered according to the activation
semantics (time-based, count-based or hybrid). When the input stream con-
veys data items belonging to different logical sub-streams, natural parallelism
can be exploited among the computations on windows of different sub-streams.

The keyedSF pattern has been adopted in our previous work [11,9] in order
to parallelise a high-frequency trading application. The application is fed by a
continuous stream of financial ticks that can be trades, i.e. closed transactions
with a price, a stock symbol and a volume (number of stocks), and quotes, that
is buy or sell proposals with a proposed price, a stock symbol and a volume.
The goal of the application is to automatically discover trading opportunities
by analysing the market feeds in near real-time. The computation maintains
a sliding window of the most recent data items of each stock symbol (sub-
stream) and executes a continuous query at each new window activation. We
used count-based windows of 1000 tuples with a refresh slide of 25 new data
items. The query computes a least squares curve fitting using the well-known
Levenberg-Marquardt algorithm.

From the performance viewpoint the scalability of this parallel pattern de-
pends greatly on the frequency distribution of the sub-streams, because all
the windows of the same sub-stream are computed sequentially. Several ex-
periments were performed to evaluate the performance of this pattern under
various conditions. Fig. 6c shows the result of an experiment performed on
an Intel Ivy Bridge dual-socket multicore workstation featuring 24 cores. The
figure depicts the maximum stream rate that the pattern is able to sustain
without being a bottleneck by running the application with as many threads
as there are cores. We also report the peak performance achieved with a single-
threaded implementation of the whole application. While the scalability is al-
most ideal with a uniform (Uniform in Fig. 6c) probability distribution among
stock symbols, in more realistic scenarios with a realistic skewness (Real) and
a heavy skewness (Skewed), the scalability of the keyedSF pattern drops sig-
nificantly due to load imbalance.

The figure also shows the performance achieved under the same execution
conditions by an alternative implementation based on the windowedSF pattern.
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In this case the pattern exploits parallelism among windows within the same
logical sub-stream by suitably scheduling data items to worker threads in
such a way as to execute in parallel consecutive windows with the same stock
symbol. The result is a pattern more sophisticated in its data distribution, i.e.
an emitter thread is in charge of multicasting each data item to a subset of
the workers. However, the performance and load balancing is not affected by
the frequency of the sub-streams (the pattern works well also with one stock
symbol in the extreme case). This behaviour is evident in the figure, where
the peak rate with this second solution is the best under a heavy skewness,
while with the uniform distribution and in the real skewness case the keyedSF

pattern is the winner owing to the more efficient point-to-point distribution of
data items to the worker threads.

5.4 Pool

In [1] we designed and implemented implementations of the different variants
of the pool pattern in C++/FastFlow, as well as in Erlang/skel [28]. Both im-
plementations have been used to run experiments on top of state-of-the-art
shared memory multicore servers. A full set of experiments has been discussed
assessing the features of the pool pattern as well as the efficiency and scalability
of the pattern when used to implement various parallel applications. In par-
ticular, we have demonstrated that reasonable performances may be achieved
with modest programming effort while noting that, in certain cases, manual, ad
hoc optimisation of the parallel code taking into account the specific target ar-
chitecture features may lead to further minor performance improvement. The
typical performance figures achieved are exemplified in Fig. 6d. In this case we
plot the completion times achieved in the execution of a synthetic benchmark
when the number of processing elements (threads) used in the different phases
of the pool pattern implementation vary. In particular, the triples (x, y, z) on
the x-axis represent the number of threads used in the selection, evolution and
filtering phases where the individuals submitted to evolution are selected from
the whole population, their evolution is computed and the evolved individuals
to be included back in the populations are selected, respectively.

6 Conclusions

We have discussed an extended parallel pattern set designed to support data
intensive applications on heterogeneous architectures build of state-of-the-art
shared memory multicores and GPUs. We outlined the expressive power of
the set, in terms of the range of applications that may be programmed using
the patterns and in terms of the programming effort required to implement
these applications as compared to the effort involved when using more tradi-
tional parallel programming frameworks. Finally, we presented some existing
experimental results relative to high level patterns in the pattern set.
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Overall, the RePhrase pattern set has been demonstrated a) to be sufficient
to cover all the use cases adopted in the project as well as the applications
included in the well known parallel benchmark suite ParSec, and b) to be
able to provide performance comparable to, and in some cases better than,
the performance achieved using lower level, non-patterned, parallel program-
ming frameworks. This latter point is even more important considering the
notable improvement in programmability and the wider range of parallel pat-
terns in the RePhrase pattern set as compared to de facto standard parallel
programming frameworks.
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