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Summary 

With several gold nanoparticle based therapies currently undergoing clinical trials, these treatments 

may soon be in the clinic as novel anti-cancer agents. Gold nanoparticles are the subject of a wide 

ranging international research effort with preclinical studies underway for multiple applications 

including photoablation, diagnostic imaging, radiosensitisation and multi-functional drug delivery 

vehicles. These applications require an increasingly complex level of surface modification in order to 

achieve efficacy and limit off-target toxicity. This review will discuss the main obstacles in relation to 

surface functionalization and the chemical approaches commonly utilised. Finally we review a range of 

recent pre-clinical studies that aim to advance gold nanoparticle treatments towards the clinic. 

Keywords: gold, nanoparticle, biological barrier, nanoparticle stability, organelle targeting, 

nanoparticle functionalization. 

 

Introduction  

While modern medicine has substantially increased overall life expectancy, ageing populations exhibit 

a greater risk of developing complex cancers resistant to conventional therapeutics. This highlights the 

need for the development of effective, novel interventions. The rapidly expanding field of nanomedicine 

offers the promise of increasing the efficacy of existing therapies, along with the development of novel 



therapeutics to target specific sites. Nanoparticle variables such as size, shape and surface charge have 

all been shown to strongly influence therapeutic efficacy by altering endocytotic potential and 

functional surface area. Nanoparticles are defined as particles between 1-1000 nm[1] which possess a 

range of unique properties supporting a variety of applications including drug delivery, imaging, 

biosensors and therapies [2],[3],[4].  Gold nanoparticles (GNPs) are one of the most widely studied 

preparations, due to their perceived bio-compatibility and tuneable surface chemistry highlighted by the 

relative ease with which additional functional groups can be conjugated. This review will detail the 

various chemistries used to functionalise GNPs and will provide a detailed overview of recent 

developments in both pre-clinical and clinical progression.  

 

Gold Nanoparticles 

Gold nanoparticles (GNPs) have been investigated as both diagnostic and therapeutic agents, utilised 

as potential delivery vectors, CT-contrast agents and therapeutics in their own right[5]. To date GNPs 

have featured in two clinical trials: CYT-6091, a GNP conjugated to polyethylene glycol (PEG) and 

recombinant human tumour necrosis factor alpha (rhTNF)[6], which possess both cytotoxic and 

immunomodulatory effects. In this case, rhTNF acts as both a targeting ligand and a therapeutic agent. 

This small phase I study commenced in 2005 where 29 patients with solid tumours demonstrated no 

dose-limiting toxicity up to 600 µg m-2, with controllable grade II fever reported as the main side-effect. 

One partial response and 3 stable disease states were observed, demonstrating a positive outcome in 

14% of patients. A second GNP clinical trial plans to use AuroShell® particles (Nano-spectra 

Biosciences Inc, Houston, TX) administered intravenously, followed by exposure to an 808 nm laser as 

photothermal ablation therapy for the treatment of head and neck cancer[7]. In vivo data from the same 

study demonstrated that the 155 nm nanoshells capped with 5000 Mw PEG have the ability to 

accumulate at the tumour site in canines with brain tumours; human trials are ongoing as of September 

2014. GNPs have also been used as effective radiosensitising agents, an application initially observed 

using gold microfoils[8].  Subsequently, 1.5 - 3 µm gold microspheres generated a radiation dose 



enhancement factor of 1.43 in the presence of 1% gold particles[9]. In order to develop clinically 

relevant GNP based therapeutics or diagnostic agents, the addition functional surface groups are 

generally deemed necessary. Functional groups are typically used to increase stability, limit immune 

cell responses, increase drug loading, actively target tumours, increase target cell uptake or to 

preferentially direct nanoparticle accumulation within specific sub-cellular compartments. The 

complexity, reproducibility and up scaling issues associated with the attachment of functional groups 

highlight a few of the major challenges limiting the clinical exploitation of GNPs. 

 

Chemical Synthesis of Gold Nanoparticles 

A detailed understanding of the chemistry required to accurately synthesise and functionalise GNPs is 

a prerequisite in the development of successful nanoparticle therapeutics. The most common protocol 

for GNP synthesis is the Turkevitch[10] method, later amended by Frens[11]. Briefly, this can be 

described as the reduction of boiling chloroauric acid (HAuCl4) with trisodium citrate dihydrate while 

vigorously stirring. This produces a red liquid, with GNPs formed with core sizes between 15-100 nm 

dependant on the ratio of trisodium citrate to Au, where higher concentrations of citrate yield smaller 

stable GNPs. Conversely, lower concentrations of trisodium citrate lead to larger nanoparticles and 

aggregation[12]. Nanoparticle size control using low concentrations  (Au/citrate ratio above 0.86) of 

citrate is unreliable above ~35 nm, typically resulting in a wide bi-modal size distribution containing a 

proportion of large non spherical GNPs[13]. Despite this, citrate stabilised GNPs are typically larger 

than 10 nm due to the moderate reducing ability of trisodium citrate dihydrate. Interestingly the use of 

heavy water (D2O) as the solvent instead of H2O permits the synthesis of citrate-capped nanoparticles 

as small as 5 nm, due to D2O increasing the reducing potency of citrate[14]. In the Turkevich method, 

the citrate acts as both a reducing agent and a capping agent yielding negatively charged GNP with a ζ 

potential of ~20-40 mV[13]. This leads to an electrostatically stabilised suspension since the 

equivalent charges on the GNPs tend to repel each other. The citrate capping is loosely bound on the 

GNP, enabling it to be easily replaced with other functional groups. In addition to the traditional use 



of sodium citrate, GNPs have also been synthesised from HAuCl4 using ultrasonic irradiation, micro 

plasmas and plant extracts as reducing agents[15],[16],[17]. GNPs have also been produced using 

NaOH and polyvinylpyrrolidone (PVP) yielding functionalised nanoparticles that are non-toxic at 

high concentrations (100 µM)[18] 

The Brust-Schiffrin method allows synthesis of thiolate-stabilised GNPs <5 nm, producing 

nanoparticles with high thermal and air stability properties, which are highly reproducible and easy to 

manipulate through surface ligand substitution[19]. The synthesis of smaller GNPs through the Brust 

method is attributed to sodium borohydride (NaBH4) being a stronger reducing agent than sodium 

citrate, producing a higher reaction rate and thereby yielding a smaller GNP[19]. This step-by-step 

chemical process has previously been described by Li et al (2011) following extensive Raman 

specroscopy[20]. Since GNPs produced using NaBH4 are not capped with the reducing agent as is the 

case with the Turkevich method, a separate capping agent must be used during synthesis. Long-term 

stabilization has been reported with GNPs non-covalently stabilized by 

benzyldimethyltetradecylammonium chloride, with nanoparticles maintaining their size over 

subsequent months[21]. The requirement to use a separate capping agent during synthesis makes any 

subsequent surface modification of these GNP more problematic than is the case with citrate capped 

GNPs. Both the Turkevitch/Frens and Brust-Schiffrin method can be seen in figure 1. Alternate GNP 

synthesis methods also exist, including pulse radiolysis and top-down methods which have been 

discussed in greater detail by Zhao et al [19]. In addition to spherical GNPs is it also possible to 

produce nanorods and nanowires. This allows tuning of the GNP’s IR absorbance characteristics, 

which is beneficial for photoablation applications. Nanorod synthesis can be achieved using aromatic 

additives, thereby reducing the concentration of hexadecyltrimethylammonium bromide (CTAB) from 

0.1 M to 0.05 M compared to the well-established seed-mediated synthesis method granting better 

control over monodispersity and spectral tunability[22]. 

 

Functionalization of Gold Nanoparticles 



Functionalization of citrate capped GNPs is relatively easy due to the weakness of the Au-citrate 

interaction which is electrostatic in nature and can be substituted with stronger thiolated ligands 

simply by reacting the GNP with the relevant functional thiols under ambient conditions. Thiol linkers 

have been used to attach a wide range of ligands to GNPs including: polymers e.g. polyethylene 

glycol (PEG)[23], fluorescing dyes including Bodipy[24], and drugs such as Paclitaxel[25]. Peptides 

can also be attached directly to the GNP surface using the thiol group on a cysteine unit or by means 

of the N terminal primary amine[26],[27]. GNPs capped using thiol chemistry have been widely 

studied with a range of therapeutic applications, including drug delivery and medical 

imaging[28],[29]. The thiol bound surfactant used to stabilise GNPs prepared via NaBH4 reduction can 

be replaced with other thiol terminated groups provided the functional group is compatible with 

reaction conditions[30]. The ligand exchange reaction is typically conducted at room temperature in a 

solvent such as toluene over a period of several days[31]. However, there are drawbacks to this 

method including an increased chance of irreversible nanoparticle aggregation, difficulty in 

determining the exact amount of exchanged ligand and the potential for incomplete ligand 

substitution. One effective approach for ligand replacement is to replace a ligand loosely bound to the 

GNP via a citrate or phosphine attachment with a thiol terminated ligand. The reaction at the GNP 

surface, between a thiol group and the GNP results in the Au replacing the hydrogen from the thiol 

group. An alternate method ‘Click’ chemistry typically refers to the Husigen 1,3-dipolar cyloaddition 

of azides and terminal amides providing fast, simple and irreversible reactions for the attachment of 

structural units, and  has also been used for GNP functionalization [32]. Boisselier et al (2010) used 

‘click’ chemistry to successfully synthesize encapsulate and stabilize GNPs with PEG dendrimers 

using a variety of reduction methods including NaBH4 in methanol[33]. Highly functionalized GNPs 

are achievable through this technique with GadoliniumIII enriched DNA-GNP conjugates being 

formed, which demonstrating high HeLa cell uptake for magnetic resonance imaging[34]. 

GNPs can also be functionalised electrostatically, for example a positively charged ligand would be 

attracted to the negatively charged citrate capping on a Turkevich synthesised GNP.  This type of 

attachment in which the ligand mixes with the citrate layer is also referred to as physisorption and 



relies upon electrostatic and Van Der Walls effects. This approach can be used to form the self-

assembly of nanoparticle structures and functionalizations in solution[35]. However, the approach has 

several shortcomings, it is only suitable for use with appropriately charged ligands, the ligands are not 

attached in a particular orientation making the biological response difficult to control and the binding 

is affected by changes in pH. 

In order to create a GNP therapy or diagnostic suitable for clinical use it is typically necessary to co-

functionalise the GNP with a number of ligands for specific functions. These ligands are typically 

attached to the surface of the GNPs in the form of a mixed monolayer, with common formulations 

including PEG and peptides[36] PEG and fluorescing dye[24] or PEG with other heavy metal 

atoms[37]. Mixed monolayers of alcohol-terminated PEG have been highlighted for in vivo 

applications, featuring no toxicity, no immune response and high water solubility and stability[38]. 

Such mixed monolayer coatings can be easily prepared from GNPs produced via citrate reduction by 

first reacting the GNP with an appropriate amount of thiolated PEG to produce an incomplete layer 

and then subsequently reacting the partially capped GNP with another suitability terminated ligand.  

In a seminal study, leading to the previously mentioned CYT-6091 human trials, Paciotti et al (2006) 

showed tumour specific GNP uptake, a reduction in tumour volume and increased survival in an 

animal study of GNPs functionalised with a mixed monolayer containing Thiolated PEG and 

electrostatically bound TNF[39]. An alternate approach is to attach the required ligands to the GNP by 

means of a linker molecule. In this arrangement the GNP surface is fully functionalised with a 

polymer chain such as PEG or a short chain hydrocarbon (e.g. octadecathiol). The required ligand is 

then attached to the other end of the linker chain. This could be referred to as sequential 

functionalization as one ligand is attached to the end of another. The linker chain provides the 

required stability while the functional ligand attached to the free end is readily available for biological 

interaction. For example, Brown et al (2010) functionalized GNPs with thiolated PEG which had a 

carboxylate end group. This free end group was then reacted with the platinum group on oxaliplatin, a 

widely used chemotherapy agent[40]. It was observed that these functionalised GNPs were 

internalised by human lung cancer cells and showed a 5.7 fold increase in cytotoxicity compared to 



free oxaliplatin. In another study GNPs which were functionalized with thiol-PEGylated tamoxifen 

were found to selectively target human breast cancer cells demonstrating much greater potency than 

the free drug[41]. 

 

Gold Nanoparticle Stability  

Chemical synthesis of GNPs typically requires the inclusion of a capping agent such as sodium citrate 

to provide stability in a pH neutral solution, such as water or PBS (phosphate-buffered saline) through 

electrostatic repulsion.  However problems persist with aggregation upon pH change and non-specific 

adsorption of serum proteins to the nanoparticle surface, resulting in rapid removal through the 

reticuloendothelial system (RES). The most widely studied agent is polyethylene glycol (PEG), an 

ethylene oxide polymer of varying lengths that provides enhanced stability and increased systemic 

circulation. This hydrophilic polymer creates a steric barrier reducing the attachment of serum proteins 

(also known as opsonisation). This effectively eliminates the primary mechanism for identification by 

the RES (e.g. the scavenger receptor on Kupffer cells in the liver), thereby increasing bio-availability 

and tumour specific accumulation[42]. Passive nanoparticle accumulation within a tumour volume is 

primarily driven by the enhanced permeability and retention effect (EPR), where the torturous nature 

of the vasculature, and the poor lymphatic drainage result in the transit of nanoparticles of up to 500 

nm across the vascular endothelium into the tumour interstitium[43]. Longer PEG chains confer 

improved stability but also hinder intracellular uptake of the nanoparticle limiting therapeutic 

benefit[44],[45]. As an alternative to the chemical synthesis of GNPs and addition of PEG through a 

ligand exchange process a more controlled synthesis can be achieved through laser ablation excluding 

the need for a capping agent, as such a higher density of PEGylation can be achieved. This approach 

will permit the use of shorter PEG chains, reducing steric hindrance and potentially increasing 

stability[46]. Further functionalization with the sequential inclusion of a targeting peptide to the 

outward facing terminal of the PEG resulted in an intracellular concentration of up to 11 pg/cell in U-

87MG cells, 18-fold higher than its non-targeted comparison.32 Mixed PEG layers, prepared using 



specific ratios of low- and high-molecular weight PEG chains, were conjugated to proteins and 

monoclonal antibodies using standard carbodiimide chemistry without detectable aggregation. This 

study demonstrated that a compromise can be achieved between the excellent steric protection provided 

by thick PEG layers and the high bioconjugation yields afforded by layers from low-molecular weight 

PEG[47].  

Alternative stability strategies exist with varying levels of success and practicality. 16-100 nm GNPs 

functionalised with mixed charged zwitterionic self-assembled monolayers with a 1:1 molar ratio 

mixture of negatively charged sodium 10-mercaptodecanesulfonic acid (HS-C10-S) and positively 

charged (10 mercaptodecyl)-trimethyl-ammonium bromide (HS-C10-N4) showed good stability in cell 

media with 10% FCS and strong resistance to protein adsorption. Interestingly 100 nm GNPs 

demonstrated improved stability over mercaptopolyethylene glycol (Mw = 2000, HS-PEG2000) over 6 

months[48]. Despite significant progress in nanoparticle stability, questions remain as to whether the 

ethylene glycols are the best option despite being the most frequently utilised. In addition the length 

and density of stability functionalization remains highly contested with no one optimal configuration, a 

factor primarily dictated by the impact of additional functional groups. 

 

Cellular Uptake of Gold Nanoparticles 

 

The mechanism for GNP uptake has been debated, with the most likely mechanism being energy 

dependent, non-specific receptor mediated endocytosis (RME)36. In vivo, non-specific serum protein 

adsorption is believed to largely define the biological identity of the nanoparticles, while properties 

such as the nanoparticle geometry influence the specific endocytotic pathway. Clathrin-dependant 

endocytosis is believed to be the dominant uptake pathway for spherical particles, while those with 

larger dimensions are predominantly internalised by macropinocytosis and phagocytosis[49]. Figure 2 

shows cellular uptake of spherical 1.9 nm GNPs through clathrin-dependant endocytosis[50]. However, 

a simplified one-size fits all approach is overly simplistic, with numerous reports detailing differential 

optimal uptake characteristics between tumour types of various origins[51],[52]. 

 



 GNP functionalization with cell-penetrating peptides and specific targeting antibodies represent one 

area of particular interest. This approach has been employed to increase the targeting specificity of 

chemotherapy conjugated in an effort to avoid off-target toxicity. TAT peptides, derived from the 

transcriptional activator protein encoded by the human immunodeficiency virus type 1 (HIV-1) is a 

frequently used cell-penetrating peptide (CPP). Yuan et al (2012) reported TAT-functionalized gold 

nanostars entering the cell through actin-driven lipid raft-mediated micropinocytosis[53]. TAT also 

enhanced uptake of gold nanostars relative to unconjugated particles, within 1 h of incubation on BT-

549 breast cancer cells. This enhanced level of uptake expanded the potential applications of the 

nanostars, as diagnostic agents and therapeutics using photodynamic therapy[54]. A wide range of 

CPP’s exist with various motifs, typically consisting of 12-30 amino acids with a net positive charge to 

encourage electrostatic interaction with the negatively charged cell membrane[55]. Table 1 details the 

origin and sequence of some commonly utilised cell penetrating peptides.     

 

Actively targeted nanomedicines may prove more beneficial than those which depend upon passive 

accumulation. The human epidermal growth factor receptor 2 (HER2) receptors are overexpressed in 

25% of breast cancer cases, making this subset of breast cancers an ideal target for therapeutic GNPs. 

4 nm GNPs were stabilised with a mixed layer of phthalocyanine (a photosensitiser) and PEG, then 

further functionalised with anti-HER2 antibodies. This strategy successfully demonstrated selective 

targeting of HER2+ tumour cells. Furthermore, irradiation with visible red light generated localised 

cytotoxic singlet oxygen, demonstrating the potential of therapeutic photodynamic agents[56]. Anti-

HER2 conjugated gold nanoclusters have also demonstrated selective targeting of HER2+ expressing 

tumour cells producing a respective 3-fold and 9-fold increase in DNA damage compared to Herceptin 

and gold nanoclusters alone[57]. Alternative antibody based functionalization’s include selective 

targeting of cell lines with overexpressed epidermal growth factor receptor, further conjugated with 125I-

radionuclide as a potential in vivo therapy platform, with bio distribution assays successfully 

demonstrating accumulation of GNPs at the tumour site as well as the spleen and thyroid[58]. CT-

imaging has also been enhanced using anti-EGFR functionalized GNPs with the whole tumour area 



averaging at 190 Hounsfield units (HU) compared to 78 with non-targeted GNPs and 34 HU without 

GNPs in tumour bearing mice[59]. 

Maximising Intracellular Gold Nanoparticles 

Promoting specific sub-cellular targeting may further enhance GNP therapeutic efficacy. Typically 

GNPs entering the cell are endocytosed via clathrin coated vesicles, which fuse with endosomes then 

progress towards lysosomal degradation and exocytosis. Endosomal disruption motifs have been 

conjugated to the surface of GNPs to disrupt the endocytotic pathway, a process which differs 

depending on the functionalization of the GNP[60] but generally results in exocytosis [61]. Endosomal 

escape mechanisms have become increasingly popular in order to increase intracellular distribution and 

therapeutic surface area and allow organelle targeting. Lysosomotropic agents such as chloroquine and 

sucrose have been shown to disrupt endosomal membranes, increasing availability of DNA delivery 

agents[62], and intracellular GNPs[63]. Nanoparticle functionalization’s have attempted to replicate 

this with some success, TAT-functionalised GNPs were found freely in the cytosol, managing to 

successfully negotiate intracellular barriers, due to the rapid escape of particles from the endocytic 

system or by direct translocation of the particles across the plasma membrane, or indeed both [64]. 

Other successful options include analogues of viral proteins such as H5WYG, taken from the n-terminal 

segment of the HA-2 subunit of the influenza virus haemagglutinin[65], and membrane disruptive 

polymers such as polyethyleneimine (PEI) which rupture the endosomal membrane upon acidification 

via the proton sponge effect[66]. 

 

Functionalization’s to target the mitochondria have shown promise with mesoporous silica-

encapsulated gold nanorods successfully accumulating at the organelle when a cytochrome c aptamer 

was employed, as demonstrated in figure 3. Near-IR treatment results in the release of the cytochrome 

C at the mitochondria site, promoting apoptotic pathways. Importantly, this multifunctional platform 

could integrate targeting, light-triggered release, and chemo-photothermal therapy into one system[67]. 

It has also been suggested that cetyltrimethylammonium bromide (CTAB) functionalised gold nanorods 

accumulate at the mitochondria following the exposure of residual CTAB on the nanorods surface when 

exposed to the acidic lysosomal microenvironment. The effect was caused by the delocalized positively 



charged head group in CTAB being attracted to the negative transmembrane potential from the 

mitochondria, ultimately promoting cell death through nanorods-induced mitochondrial damage, 

disrupting cell metabolism and ATP production[68]. 

 

Maximising the differential mass absorption co-efficient between high Z materials (such as gold) and 

soft tissue represents the underlying principle for using GNPs as radiosensitizers. In this setting, 

secondary electron emission and elevated OH yields promote the formation of potentially lethal DNA 

double strand break lesions. Therefore, targeted delivery of GNPs using nuclear localisation signals 

(NLS) represents a potential solution to further enhance therapeutic efficacy, provided the endosomal 

barrier can be bypassed. Additionally there is significant evidence to indicate that GNPs promote cell 

cycle arrest in the G2/M phase, a stage in cell development associated with increased levels of 

sensitivity to DNA damaging agents, including chemo and radiotherapy due to a breakdown of the 

nuclear envelope and separation of the chromosomes.[69],[70]. The addition of a NLS to GNPs will 

further exploit these therapeutic advantages and has been shown to enhance chemosensitivity in human 

oral squamous carcinoma cells HSC-3 with cell viability reducing from 40% with 500 µM 5-

fluorouracil (5-FU) to 17% when 30 nm NLS GNPs were added[71]. The NLS allows an increased 

efficiency of the GNPs to localise to the nucleus, enabling the 5-FU to inhibit thymidylate synthase 

resulting in an S-phase accumulation and cell death.  In addition, the pre-treatment of cells with GNPs 

for 24 h prior to 5-fluorouracil treatment resulted in an increase of late apoptosis and necrosis. While 

the molecular mechanisms for GNP-induced cell cycle alteration still need to be determined this does 

indicate that GNPs can be used both in combination with chemotherapy and radiotherapy. A pre-clinical 

study employed gold nanorods functionalised with PEG, poly(amidoamine) and the chemotherapeutic 

drug doxorubicin followed by photothermal irradiation 48 h post-injection in BALB/c mice. 

Intracellular release of doxorubicin improved tumour growth delay by 4-fold compared to tumour 

ablation alone, with cell death attributed to DNA damage through intercalation and heating of the 

tumour to 46°C[72].  Multiple therapies applied from a single GNP possess major benefits for patients 

receiving both treatments simultaneously, however, significant research efforts continue to demonstrate 

the efficacy and safety of these multi-therapeutic  



 

Conclusions 

Nanoparticles are set to dramatically impact future medicine, and with GNPs currently under wide 

scrutiny for an array of therapeutic roles as highlighted within this review. Understanding the synthesis 

and potential functionalization of gold nanoparticles opens an enormous range of possibilities for 

clinical therapy including cancer treatment, but problems remain. Multi-functionalised GNPs become 

increasingly more complicated and balance must be achieved between suitable in vivo stability, tumour 

localisation, limited cytotoxicity and efficacy. The complexity in achieving this balance is clearly 

illustrated by the lack of clinical trials conducted with gold nanoparticles to date, something that must 

be addressed to truly establish the potential benefit of these increasingly complex nanoparticles. Despite 

this, increased interest and publications is leading to an acceleration of all nanoparticle research and 

well thought-out and robustly tested GNPs certainly have the potential to make a big impact on tumour 

diagnosis and treatment.  

Future Perspective 

Nanoparticles are becoming increasingly complex in a bid to achieve multiple aims simultaneously. 

Functionalization’s that address stability, cell uptake/targeting and therapeutic payload are 

commonplace and the current focus for many research groups. The next 5-10 years will feature far more 

of this style of nanoparticle development as the focus shifts towards multiple synergistic combination 

therapies using nanoparticles in combination with existing therapeutics. Indeed, many of these GNPs 

can also benefit diagnostic imaging tools such as CT-tomography creating a powerful theranostic 

application for cancer patients. Currently, the chemistry and functionalisation steps exist for this to be 

a reality, but robust characterisation alongside pre-clinical and clinical testing is needed. The next 

decade should see increasingly rapid advancements towards this goal, with more GNPs entering clinical 

trials.  

 

Executive Summary 



Chemical Synthesis of Gold Nanoparticles 

 Reliable and reproducible GNPs can be produced through the Turkevitch/Frens method, while 

smaller GNPs can be synthesised via the Brust/Schiffrin method, however these are harder to 

functionalize. 

Functionalization of Gold Nanoparticles 

 Various attachments can be chemically conjugated to the GNP through ligand 

exchange/substitution or electrostatically, alternatively linker molecules can be employed. 

Functionalisation’s are often dependant on the functional groups at both the GNP surface and 

the desired ligand. 

 Problems persist with ligands binding to self or irreversible nanoparticle aggregation all of 

which needs to be robustly checked through comprehensive characterisation methods. 

Gold Nanoparticle Stability 

 Long-term storage of GNPs in solution and any in vivo or clinical application require further 

stability, preventing agglomeration and increasing blood circulation time and tumour 

accumulation. Further work is needed in determining the optimum stability agent as well 

as its surface coverage, molecular weight etc. 

Cellular Uptake of Gold Nanoparticles 

 Targeted delivery of GNPs to the tumour site is essential in future preparations as well as 

breaching the cell membrane. This can be achieved through CPP’s to promote endocytosis 

and achieve higher intracellular concentrations of GNPs. 

 Precise functionalisation could eventually be personalised depending on individual patient 

genetic profiling, validated targets and downstream applications.  

Maximising Intracellular Gold Nanoparticles 



 A range of peptides exist to promote endosomal escape or specific sub-cellular or organelle 

targeting. The use of these will depend on the intended therapy and other functionalization’s to 

ensure an effective and self-complimentary nanoparticle. 

Conclusions 

 The available options in designing a cancer therapeutic GNP are huge with a wide array of 

options and studies needed. The rate of research in this area however is increasing and with it 

the volume of available data. 

 Robust characterisation and clinical trials are needed to truly advance GNP research, but the 

potential is enormous. 
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Figure legends.  

Figure 1. Common methods for gold nanoparticle synthesis. A – Turkevitch/frens method producing 

citrate capped GNPs by the reduction of HAuCl4 using trisodium citrate dehydrate. B – Brust-

Schiffrin method, using sodium borohydride as the reducing agent. 

Figure 2. Field emission transmission electron microscopy images of MDA-MB-231 cells 

exposed to 12 µM of 1.9 nm gold nanoparticles. Panel 1 represents gold nanoparticles 

confined to endosomes within the cytoplasm. Panel 2 demonstrates an invaginated clathrin-

coated pit with electron-dense material coating the cell membrane. Panels 3 and 4 represent 

intranuclear regions containing high-electron material. Arrows indicate gold nanoparticles 

and gold nanoparticle aggregates. Reprinted with permission from author and publisher50 

Figure 3. Figure 3 – Gold nanorods encapsulated in mesoporous silica and functionalised with 

cytochrome c aptamer. A – Schematic diagram of functionalised nanorods. B – TEM of functionalised 

gold nanorods. C – Mitochondrial targeting of FITC-gold nanorods-cyt c aptamer in HeLa cells. 

Mitochondria are stained with Mitotracker red. Reproduced (adapted) with permission from (Ju E, Li 

Z, Liu Z, Ren J, Qu X. Near-infrared light-triggered drug-delivery vehicle for mitochondria-targeted 

chemo-photothermal therapy. ACS Appl Mater Interfaces. 2014;6(6):4364–70). Copyright (2014) 

American Chemical Society 

 

 

 

 

 



Figure 1 - Common methods of Gold Nanoparticle Synthesis 
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Figure 2 – TEM images of intracellular ultrasmall GNPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3 –Mesopourous silica-encapsulated gold nanorods functionalised with cytochrome c  
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Table 1 – Bottom‐up methods of gold nanoparticle synthesis 

GNP Synthesis 
Method 

Principle  Advantages Disadvantages Reference 

Turkevitch/Frens  Reduction of chloroauric acid with 
trisodium citrate 

 Simple and highly reproducible 

 Trisodium citrate acts as a stabilising 
capping agent 

 Widely used and reviewed in the literature 
with possible alterations depending on 
desired end product 

 Unreliable synthesis of GNPs larger than 
35 nm 

 Moderate reducing ability of trisodium 
citrate results in GNPS ≥10 nm 

 Citrate capping confers no stability 
benefits in blood serum, high densities 
and varying physiological conditions 

[11] 

Brust/Schiffrin  Reduction of chloroauric acid by 
sodium borohydride 

 Allows synthesis on GNPS ≤ 5nm 

 Highly reproducible with high air and 
thermal stability 

 Relatively easy to manipulate through 
surface ligand substitution  

 Does not allow synthesis of larger GNPS 

 A separate capping agent must be used 
to confer stability such as 
benzyldimethyltetradecylammonium 
chloride 

[19] 

Pulse‐radiolysis Reduction of Gold (III) chloride 
through gamma‐ray irradiation 
producing radicals through ionization 
of the solvent. A radical scavenger is 
introduced to generate a new 
stronger radical incapable of 
oxidizing the gold ions, but provide 
strong reducing power 

 Allows the production of bimetallic 
nanoparticles (e.g. Au‐Ag‐NPs) 

 More difficult synthesis method, 
requiring specialised equipment 

 Not widely used in the literature  

[20,80] 

Seed‐growth Small GNP seeds (e.g. 3‐4 nm citrate‐
capped GNPs) are prepared and 
added to a ‘growth’ solution 
containing chloroauric acid, mild 
reducing agents and stabilising 
agents. Fresh growth solution can be 
used to further the growth process. 

 Greater control over GNP size (up to 300 
nm)  

 A highly customizable growth solution, 
allowing relatively easy synthesis of 
alternate GNP geometries 

 Established protocols are reproducible, 
producing stable, mono‐disperse GNPs 

 Careful monitoring needed of variables 
such as temperature, pH, Au precursors 
and reducing agent concentration 

 Various shapes often produced as by‐
products, reducing the desired GNP‐
shape yield 

 High levels of customizable steps make 
this method potentially more 
complicated 

 

[20,81] 



Table 2 – common examples of CPP’s 

CPP Origin Sequence Reference 
TAT HIV-1 

transcriptional 
activator 

GRKKRRQRRRPPQ Vives 
(1997)74 

Penetratin Drosophila 
melanogaster 

RQIKIWFQNRRMKWKK Derossi 
(1994)75 

Polyarginine synthetic RRRRRRRRR Rothbard 
(2000)76 

Transportan Fusion of 
neuropeptide 
galanin-1-12 

and wasp 
venom peptide 
mastoparan via 

lys13 

GWTLNSAGYLLGKINLKALAALAKKIL Pooga 
(1998)77 

RME Adenovirus CKKKKKKSEDEYPYVPN Liu 
(2007)78 

MAP  KLALKLALKALKAALKLA Oehlke 
(1998)79 

 

 

 


