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Abstract 

Rational design of catalysts has long been an important and challenging goal in 

heterogeneous catalysis. To achieve this target, density functional theory (DFT) calculations 

and micro-kinetics are two of the cornerstones. The DFT calculations make it possible to obtain 

microscopic properties of catalytic systems by computational simulations, and the micro-kinetic 

modeling of surface reactions provides a tool to link quantum-chemical data with macroscopic 

behaviors of the systems. In this review, we focus on the basic concepts and latest theoretical 

progresses of strategies for the catalysts design, including Brønsted−Evans−Polanyi (BEP) 

relation, the volcano curve, and the activity window. Among the progresses, the theory of 

chemical potential kinetics in heterogeneous catalysis and its implications on catalysts design, 

which was developed by our group, are described in detail with extensive derivations. 

Furthermore, the applications of this method on screening low-cost counter electrodes for dye-

sensitized solar cells are presented with experimental evidences. 
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Introductory remarks  

Heterogeneous catalysis is of paramount importance in a wide range of the chemical, 

biological, and energy industries,1-4 such as CO oxidation,5-7 steam reforming,8-10 NOX 

reduction,11-13 and ammonia synthesis.14-16 Rational design of efficient heterogeneous catalysts 

by quantum-chemical calculations, therefore, is currently an exciting and challenging target for 

researchers; however, traditional trial-and-error methods for producing new catalysts consume 

great efforts and time, which is inadequate to meet the demand of rapidly developing catalytic 

community.17-22 The computational design approach, on the contrary, possesses great 

advantages and attracted much attentions in recent years. Firstly, computational simulations 

require only electricity and computers, which is considerably more economic and sustainable 

than synthesizing and testing candidate catalysts experimentally. Secondly, the traditional 

methods are limited by the experimental techniques; it is very difficult to manipulate the 

structure of catalysts at the atomic level. In the computational methods, on the other hand, the 

microscopic properties and composition of a certain material can be altered and sampled 

throughout whole possible candidates, which provides a broader and more diversified screening 

database. Thirdly and perhaps the most importantly, the performance of quantum-chemical 

calculations may improve significantly in the future with the rapidly developing information 

technology. In terms of hardware, the computational capacity has been increasing continually 

in the past decades, which doubles approximately every two years (Moore's law). In terms of 

software, more and more advanced computational packages and techniques would appear in 

coming years. For instance, the density functional theory (DFT) calculations were found to be 
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more accurate and affordable with random phase approximation,23, 24 which may allow DFT 

calculations to be applied in larger systems. More examples can be found in Box 1. 

Box 1. Advances and latest computational techniques for the rational design of catalysts  

(a) Nørskov et al.16 firstly showed that the rate of ammonia synthesis over a nanoparticle 

ruthenium catalyst can be calculated directly by DFT with a factor 3 to 20 of the experimental 

rate. They later introduced a general method for estimating the uncertainty in calculated 

properties of the material.14, 25 (b) Martínez et al.26 reported the application of the ab initio 

nanoreactor on discovering new pathways for glycine synthesis from primitive compounds 

existing on the early Earth, known as Urey–Miller experiment.27 Graphics processing unit 

(GPU) architectures allow a big acceleration on the time-consuming first-principles molecular 

dynamics simulations.28, 29 (c) Medford et al.30 developed CatMAP, a code for descriptor-based 

micro-kinetic mapping of catalytic trends, which provides a useful tool for converting quantum-

chemical properties of elementary reactions into macroscopic behavior of catalysts.31 (d) Wang 

et al.32 explored the possibility of designing catalysts beyond the traditional volcano curve.33 

They showed that with multi-phase catalysts, traditional constraints of the reaction rate would 

be broken, which provides a new idea for designing catalysts with high efficiency. The concepts 

of micro-kinetics and the volcano curve will be discussed in detail in the following sections. 

(Figure a-d are reprinted from ref.16, 26, 30, 32 with permission from the American Association for 

the Advancement of Science, Nature Publishing Group, Springer, and the Royal Society of 

Chemistry, respectively) 
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In this review, we firstly review the current understandings and useful relationships in 

heterogeneous catalysis, which is crucial for the rational design of catalysts. Then, different 

schemes of catalyst screening are introduced with contrast and comparison. After that, the paper 

is focused on the development and implications of the theory of chemical potential kinetics in 

heterogeneous catalysis. A detailed mathematical derivation is illustrated with comprehensive 

analysis on its implications towards the optimal adsorption energy window. In addition, the 

applications of this method on screening efficient counter electrode (CE) materials for dye-

sensitized solar cells (DSSC) are discussed in the last part of the paper, which confirms its 

validity and reliability by experiments.  
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General understandings and relationships in the rational design of catalysts 

Computational catalyst design requires deep understandings of the reactivity and selectivity 

in heterogeneous catalysis. In the past two decades, with the popularization of DFT 

calculations34-36 and micro-kinetics,37-39 many reaction mechanisms and general relations on 

heterogeneous catalysis were unveiled. For example, the hydrogen oxidation reaction (2H2 + 

O2 → 2H2O), which has been studied since the early 19th century, is the first identified surface 

catalytic reactions in the history.40-42 The reaction would be considerably facilitated on contact 

with Pt surfaces at room or even lower temperature. Despite its apparent simplicity, however, 

not until the application of DFT calculations on Pt surfaces was the mechanism of hydrogen 

oxidation reactions clearly figured out. In our previous study,42 DFT calculations on the 

elementary steps of this reaction revealed that H2O formation from chemisorbed O and H atoms 

on Pt(111) surface is a highly activated process. OH will be produced from the chemisorbed O 

and H with a barrier ~1 eV; once formed, OH groups are easily hydrogenated to H2O (barrier 

~0.2 eV). Furthermore, H2O was shown to act as autocatalysts in this process, since the 

disproportionation reaction of H2O and O with 2:1 stoichiometry is more preferred than that 

with 1:1 stoichiometry both thermodynamically and kinetically. These theoretical findings play 

an important role in understanding its intrinsic mechanism.  

More importantly, a clear picture of reaction mechanism is one of the prerequisites for the 

rational design of catalysts; general relations and activity trends on heterogeneous catalysis are 

also necessary in order to screen a wide range of possible candidates in a high-throughput way. 

Regarding the activity trends of catalysts, the volcano curve is arguably the most important 
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finding, which can be explained by Sabatier’s principle.43, 44 Qualitatively, an excellent catalyst 

should have a moderate binding ability, neither too strong nor too weak, and thus along the 

adsorption energy axis, the catalytic activity would rise initially and then fall, leading to a 

volcano-shape curve (Fig. 1).  

 

Figure 1. Schematic representation of the Sabatier’s principle and the volcano curve.  

Quantitatively, it is the identification of the Brønsted-Evans-Polanyi (BEP)33, 45-48 relation 

and scaling relation49, 50 that provide a foundation to unveil the origin of the volcano curve. 

Figure 2 shows a typical heterogeneous catalytic reaction: the reactant (R) adsorbs on a surface 

as the intermediate (I), followed by surface reaction and desorption of the product (P). For the 

adsorption process, the barrier of dissociative adsorption (ER
dis in Fig. 2) are correlated to the 

adsorption energy (Ead,R in Fig. 2). This correlation has been well established for many reactions, 

such as C–C, C–O, C–N, N–O, and O–O.51 For example, the energy barrier of N2 adsorption in 
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ammonia synthesis is related to the stability of N. The less stable the N is, the higher the energy 

barrier is for N2 dissociative adsorption. Similar relation also applies to the desorption barrier 

(EP
dis in Fig. 2) and the adsorption energy of the product (Ead,P in Fig. 2). 

 

Figure 2. Schematic profile of a two-step model taking into consideration the dissociative adsorption of reactants 

and associative desorption of products on a heterogeneous catalyst surface. ΔH is the enthalpy change of the overall 

reaction. ER and EP are total energies of the gaseous reactants and products, respectively. Ead,R and Ead,P are the 

adsorption energies of the reactants and the products, respectively. ER
dis and EP

dis are the barriers for the adsorption 

and desorption processes. EI is the energy of the intermediate state. Adapted from ref.52 with permission from 

American Chemical Society.  

Similarly, the scaling relation indicates that there are linear relationships between 

adsorption energies of similar adsorbates, and for a complicated system, the energies of all 

intermediates can usually be related to one or two key intermediates.50, 53 Therefore, with the 

BEP and scaling relations, the reaction rate can finally be expressed as a function of the 

adsorption energy of one or two key intermediates by solving the micro-kinetics of the catalytic 

system.30, 54 As shown in Figure 1, when the adsorption strength is weak, the whole reaction is 

limited by the activation of the reactant; if the binding is strong, the desorption of the product 
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would be limited. Therefore, the peak of the curve would locate in a moderate bonding strength. 

With a full analytical derivation of the micro-kinetics on a two-step catalytic model, we showed 

that plotting this function for a heterogeneous catalytic reaction will always lead to a volcano 

curve, which can be deemed as an essential property, and it is the poison of the surface by 

intermediates rather than the desorption barrier that limited the desorption process.54 

In the volcano curve, the adsorption energy of key intermediates can be used as descriptors 

for predicting the performance of candidate catalysts. By comparing DFT chemisorption 

energies with experimental ones, Nørskov et al.46, 55 firstly found that the optimal adsorption 

energy lies in a “chemical window” between -2 to -1 eV in most cases. They then developed a 

descriptor-based linear-scaling approach to screen catalysts, which can be briefly summarized 

as the following steps: (i) determine the reaction mechanism of the target system; (ii) develop 

a micro-kinetic model according to the mechanism; (iii) assuming similar mechanism on all 

candidate materials, develop BEP and scaling reaction, which correlate energies of 

intermediates and transition states with one or two key intermediates (descriptors); (iv) plot the 

volcano curve/surface by solving the micro-kinetics; and (v) choose a candidate material and 

calculate its values of descriptors. Then the performance of this candidate can be estimated by 

comparing the descriptor values to the volcano curve. This method is quite robust and has been 

successfully used in many catalytic systems to find new catalysts.22, 56-59 Campbell et al.21 

recently proposed a new screening method based on the concept of the degree of rate control 

(DRC). DRC is a good indicator for quantifying to what extent the free energy of each species 

can affect the overall reaction rate.60, 61 A species with a larger DRC influences the whole 
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reaction more significantly. The implementation of DRC method is similar to the approach of 

Nørskov et al., except that DRC method uses the energies of the few species with the highest 

DRCs for the reference catalyst as descriptors to estimate the rates on related materials and 

predict the best one. This method can avoid solving micro-kinetics, which is usually the most 

difficult step in the catalyst design, provided that the DRCs are already known approximately. 

They suggested that the results are slightly more accurate than that of Nørskov et al. when 

candidate metals are similar to the reference metal. However, this method is not as robust as the 

former one when there are large changes in material types.     

One disadvantage of the above descriptor-based methods is that there are too many possible 

materials on the desired descriptor range, including alloys, oxides, and supported metals. 

Creating such databases demands considerable time and computational resources. Being 

different from the descriptor-based methods, Sautet et al.62, 63 introduced “coordination-activity 

plots” that outline the geometric structure of optimal active sites. They showed that there is 

correlation between the adsorption energy and the generalized coordination numbers, a number 

related with first and second nearest neighbor atoms of the adsorption site. Thus, the 

performance of the catalyst can be finally related with this coordination numbers. For oxygen 

reduction reaction (ORR) on Pt(111), they found that sites with same number of first-nearest 

neighbors but increased number of second-nearest neighbors are more active and subsequently 

prepared highly active Pt(111) active sites without alloying by three affordable experimental 

methods. Wang and Hu17 proposed a general optimization framework for catalyst design: With 

DFT calculations and micro-kinetics, the reaction rate can be expressed as a function of the 
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energies of surface species, and the energies of surface species as a function of catalyst 

structure. Therefore, the reaction rate is finally a function of the catalyst structure. One can 

subsequently apply some optimization method (e.g. gradient descent algorithm) on this function 

to find better catalyst structures for a specific catalytic reaction. 

Chemical potentials and optimal adsorption energy window 

The Sabatier principle and volcano curve mentioned above serve as the cornerstone in the 

rational design of catalysts, which enable us to predict the trend of activity on catalysts over the 

periodic table qualitatively. However, more intrinsic and quantitative understandings toward 

their origins and the optimal adsorption energy window was inadequate. To quantitatively 

understand the optimal adsorption energy window, we introduced the concept of chemical 

potential in heterogeneous catalysis.64 We here revisit the derivation of the chemical potential 

in the following equations. Starting from the chemical potential of the ideal gas, its chemical 

potential can be expressed as function of partial pressure p at a given temperature T: 

 ( , ) ( , ) lno o
o

pT p T p RT
p

µ µ= +   (1) 

where µo(T, po) is the chemical potential at the standard pressure (po = 1 bar). It should be noted 

that the chemical potential is equal to molar Gibbs free energy in the ideal gas model (µ = Gm 

= G/N). Choosing the temperature of 0 K as reference, equation (1) can be expanded as: 

 
( , ) (0 , ) [ ( , ) (0 , )] ( , ) ln

(0 , ) ( , ) ln

o o o o o
m m m o

o o o
o

pT p K p H T p H K p TS T p RT
p

pK p T p RT
p

µ µ

µ µ

= + - - +

= + D +
  (2) 

where Hm, Sm, and Gm represent the molar enthalpy, entropy, and Gibbs free energy, respectively; 
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and the relations that Gm = Hm – TSm and Sm(0 K) = 0 are used. Δµ(T, po) can be regarded as the 

thermal correction term of the chemical potential under T K. The difference of enthalpy at 

different temperature is usually small; therefore, Δµ(T, po) is dominated by the entropy term –

TSm(T, po). In the following, we will drop the labels of pressure for simplicity. 

For the chemical potentials of adsorbates on a surface, the coverage-dependent µ can be 

derived according to the Langmuir adsorption paradigm.31, 65, 66 Given that (i) the surface 

contains M distinguishable sites; (ii) Ni and qi correspond to the number and partition function 

of surface species i (i = 0 in the case of free site); and (iii) one species occupies one site, we 

will have: 

 
0

i
i

M N
³

=å   (3) 

The partition function of free sites (q0) can be considered to be unity which consists only of 

high-frequency vibrational modes of substrate atoms. For surface species, qi are constituted 

merely by vibrational modes, because their translation and rotation are rather limited.31, 65, 66 

Thus, the total partition function of this system can be expressed as: 

 
0 10

!( , , ) !
! ! !

i iN N
i i

i
i ii i

q qMQ T M N M
N N N³ ³

= =Õ Õ   (4) 

Taking logarithm and using Stirling’s approximation, we obtain: 

 0 0 0

0 0
1

ln ln ln ln

ln ( ln ln ) ln

i i i i i
i i i

i i i i
i

Q M M M N q N N N

M M N q N N N N
³ ³ ³

³

= - + - +

= + - -

å å å

å
  (5) 

For surface species i, the chemical potential is: 

 ,
ln( , ) ( ) 0,

ji i T N
i

QT N RT j i j
N

µ ¶
= - ¹ ¹

¶
  (6) 
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Substituting equation (3) and (5) into equation (6), it can be written as: 

 0
0

( , ) (ln ln ln ) ln ln i
i i i i i

NT N RT q N N RT q RT
N

µ = - - + = - +   (7) 

Considering the surface coverage θ, equation (7) can be rewritten as: 

 
0

( , ) ln ln i
i i iT N RT q RT qµ

q
= - +   (8) 

where θ0 and θi stand for the surface coverages of free sites and species i, respectively. Defining 

–RTlnqi as µo(T), the standard chemical potential of surface species i, and using θ* to represent 

θ0, we obtain: 

 
*

( , ) ( ) lno i
i i iT T RT qµ q µ

q
= +   (9) 

The presence of θ* in the equation reflects that in the Langmuir adsorption model surface 

species need to be accommodated at certain adsorption sites, whereas in the gas or liquid phases 

there are no such counterparts. Similar to our treatment with gas phase molecules in equation 

(2), equation (9) can be further expanded as: 

 
, , ,

*

*

( , ) (0 ) [ ( ) (0 )] ( ) ln

(0 ) ( ) ln

o i
i i i m i m i m i

o i
i i

T K H T H K TS T RT

K T RT

qµ q µ
q

qµ µ
q

= + - - +

= +D +
  (10) 

Since the entropy contribution equals to zero at 0 K, term µo(0 K) is essentially equivalent 

to the total energy (Etot) of a molecule or system with corrected zero point energy (ZEP), which 

can be directly obtained from DFT calculations. The thermal correction term Δµ(T) in equation 

(10) is rather different from that in equation (2) which contains a large entropy term TSm(T); 

actually, the entropies of simple adsorbed species are usually very small and often ignored in 
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micro-kinetic treatment. Therefore, referring µi
o to µi

o(T) and Ei
tot to µi

o(0K), we obtain the 

expression of chemical potential for surface species:  

 
* *

ln lno toti i
i i iRT E RTq qµ µ

q q
= + = +   (11) 

Similarly, equation (2) for gas phase molecules can be rewritten as: 

 ln lno tot
o o

p pRT E TS RT
p p

µ µ= + = - +   (12) 

With this chemical potential formulation, many micro-kinetic expressions, including rate 

equations, reversibility, and coverage can be reformulated in rather simplified forms. To 

demonstrate this, we will employ a two-step catalytic model which comprises both adsorption 

and desorption processes: 

 R(g) * I* P(g) *adsorption desorption+ ¾¾¾¾® ¾¾¾¾® +   (13) 

It captures the key characteristics of many heterogeneous catalytic reactions and has been used 

in our previous work.19, 52, 54, 64, 67-69 Under the traditional micro-kinetic framework, the rate 

equations of reaction (13) can be written as:31, 39, 70, 71 

 
, ,

* (1 ); (1 )
o o

R PG G
B R BRT RT

ads ads des I deso

k T p k Tr e z r e z
h p h

q q
¹ ¹-D -D

= - = -   (14) 

 *

1 * 2

;
o

I R
ads deso

eq R eq I

p pz z
K p p K

q q
q q

= =   (15) 

where zads (zdes) stands for the reversibility of the adsorption (desorption) process;71 ΔGR
≠,o 

(ΔGP
≠,o) is the standard Gibbs free energy difference between the transition state and the initial 

state of the adsorption (desorption) process; Keq1 (Keq2) represents equilibrium constant of the 

adsorption (desorption). Based on the theory of chemical potential kinetics, specifically, 
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equation (11) and (12), equation (14) and (15) can be reformulated as:  

 
, ,

* *(1 ); (1 )
o o

R RR P
B BRT RT

ads ads des ads des
k T k Tr e z r e z z
h h

µ µ µ µ

q q
¹ ¹- -

= - = -   (16) 

 ;
I R P I
RT RT

ads desz e z e
µ µ µ µ- -

= =   (17) 

where µR
≠,o (µP

≠,o) is the standard chemical potential of the transition states of the adsorption 

(desorption) processes; µR (µP) stands for the chemical potential of the reactant (product). It 

should be noted that in the derivation the transition states are regarded as surface adsorbates; 

therefore, their entropy contributions are ignored.  

According to the BEP relation we mentioned before, µR
≠,o and µP

≠,o are lineally related to 

µI
o, which is a intrinsic property and independent of reaction conditions. Therefore, with the 

constraint of surface conservation θ* + θI = 1 and the steady state approximation r = rads = rdes,31, 

39, 70, the overall reaction rate r (turnover frequency TOF) can be expressed as a function with 

a single variable µI
o (equivalent to the adsorption energy of intermediate I). Notably, plotting 

µI
o against r of this function would lead to a typical volcano curve.33, 54 

Compared to the traditional kinetic equations for catalytic reactions, what can we learn 

from the kinetics of chemical potentials? Typically, to obtain a good reaction rate, the chemical 

potentials of the reactants, intermediates, and products should decrease step by step (Fig. 3):64 

 R I Pµ µ µ> >   (18) 
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Figure 3. Energy diagram of a model for heterogeneous catalytic reactions. The black curve stands for the profile 

of total energies calculated from DFT, and the red curve represents the profile of chemical potentials. TS1 and TS2 

are the transition states (TSs) of adsorption and desorption, respectively. Etot is the total energy, and µ is the 

chemical potential (subscript R, I and P refer to reactant, intermediate, and product, respectively). ER
tot,≠ and µR

≠,o 

are the total energy and standard chemical potential of the TS of adsorption, respectively; EP
tot,≠ and µP

≠,o have the 

same meanings for the TS of desorption. The correction of the chemical potential because of the temperature effect 

is given by Δµ. The thermal corrections for gaseous molecules (ΔµR and ΔµP) are quite large because of large 

entropy effects, whereas the corrections for surface species are much smaller. RTln(θi/θ*) is the coverage-

dependent term in the expression of the chemical potential of surface species, and likewise RTln(p/po) is the 

pressure-dependent term for gaseous molecules. Unlike intermediate state, the standard chemical potentials for the 

TSs appear in the profile of chemical potentials. Adapted from ref.64 with permission from Wiley-VCH. 

Applying equation (11), equation (18) can be expanded as: 

 
* * *

+ ln + ln + lnoI I I
R I PRT RT RTq q qµ µ µ

q q q
> >   (19) 

As proved in our original paper,64 θ* is usually in the range between 0.01 and 0.1 at the 

steady state for good catalysts. For example, θ* is around 0.08 for hydrogenation of isobutene 

on Pt71 and around 0.01 for ammonia synthesis on Fe and Ru surfaces.47, 71 It is quite reasonable 

that θ* for a good catalyst should not be too large or too small, either of which would hinder the 
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whole reaction. Therefore, the magnitude of the coverage-dependent RTln(θI/θ*) has to be a 

small term, typically about 0.1–0.2 eV at 500 K. Defining this term as ε and substitutes it in 

equation (19), we have:64 

 + +o
R I Pµ e µ µ e> >   (20) 

where the ε for µI
o is ignored. 

Equation (20) is a fundamental equation for catalyst screening: a good catalyst should 

typically lie in the range between the chemical potential µR and µP as lower and upper bounds 

(blue zone in Fig. 4). For example, catalyst C in Figure 4 is likely to be active since it lies in 

the blue zone. Taking the coverage-dependent term ε into consideration, the region may be 

extended slightly as the red zone in Figure 4; therefore, D shall be also deemed as good catalyst. 

Catalyst A and B, which are outside of the red region, may exhibit much lower activities. 

According to this principle, the adsorption energy of N2 of “good catalysts” in ammonia 

synthesis should be -1.7 ~ -0.8 eV, which agrees well with the chemical window found by 

Nørskov et al.46, 55 
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Figure 4. Searching for good catalysts by means of the involved chemical potentials. The chemical potentials of 

reactant and product (µR and µP) set the boundaries for the chemical potential of the surface intermediate (µI, blue 

zone). On good catalysts, this zone can only be slightly relaxed for the standard chemical potential of the surface 

intermediate (µI
o, red zone). Thus, surfaces of catalysts related to µI,C

o and µI,D
o are very likely to be good catalysts, 

whereas surfaces related to µI,A
o and µI,B

o cannot be good catalysts. Adapted from ref.64 with permission from 

Wiley-VCH. 

By carrying out detailed micro-kinetic analyses, Yang et al.52 obtained a deeper 

understanding of equation (20). As shown in the left panel of Figure 5, for a two-step catalytic 

reaction (13) the activity trend would be the red line if the adsorption is the rate-determining 

step, while the blue line would represent the activity if the desorption is rate-determining. 

Interestingly, the values of Ead,R,max1 and Ead,R,max2, the maximum of the red and blue lines, can 

be determined analytically by solving partial differentials. It turns out that the value of Ead,R,max1 

and Ead,R,max2 are very close to µP and µR, respectively, which unveils a clear physical picture for 

the chemical window: the optimal catalyst should lie above the maximum of adsorption-

determining reaction and below the maximum of desorption-determining reaction (left panel, 

Fig.5); namely, neither adsorption nor desorption should dominate the whole reaction in order 

to have a good overall performance.  
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Figure 5. Schematic diagram of the volcano curves associated with reactions in which the adsorption (red) and 

desorption (blue) are rate determining, together with the real volcano curve (black) (left). The right side of the 

figure shows the energy profiles on three typical catalysts. µR and µP are the chemical potentials of the gaseous 

reactants and products, respectively. Reprinted from ref.52 with permission from American Chemical Society. 

Finally, it is worth mentioning that there are some similarities on the basic principles of 

this method and the descriptor-based linear-scaling approach we mentioned in the last section; 

both of them are targeting for a “window” of key intermediates. However, by considering the 

surface entropy and gas-phase pressure, which are lumped into the chemical potential term, our 

method, rooted on solid kinetic derivations, are more general and can be easily extended to 

photocatalysis and electrocatalysis. In addition, our method well explains the physical origin of 

the “window”: it is resulted from a step-by-step decrease of the chemical potentials of the 

reactants, intermediates, and products.  

 

Applications of optimal adsorption energy window in the design of counter 

electrode materials of dye-sensitized solar cells 

The global demand for renewable energy is increasingly significant in past few decades. 

Among that, the solar energy is of great abundance and environmentally friendliness that attract 

much attention in recent years. Dye-sensitized solar cells (DSSC), invented by Grätzel et al,72 

are one of the solutions to make efficient and low-cost collection and conversion of the solar 

energy (Box 2). Traditionally, Pt is used as the counter electrode (CE) material in DSSC owing 

to its high activity and superb stability in the I-/I3
- electrolyte. Due to its high price, scientists 

are now actively searching for efficient alternative CE materials to replace Pt, including 
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polymers,73, 74 transition metal sulphide/oxides,75, 76 and carbon materials (e.g. graphene).77, 78 

Employing the chemical potential kinetic theory and optimal adsorption energy window 

mentioned above, we successfully identified the most active Pt facet79 and predicted a range of 

novel CE materials for DSSC, including rust (α-Fe2O3),19 RuO2 Nanocrystals,76 and NiS 

nanosheets,75 which provide possible alternatives for the traditional Pt electrode. In addition, 

based on our screening criteria, we successfully converted indium oxide (In2O3), an inert CE 

material for DSSC, into a superior electrocatalyst by inserting nitrogen into In2O3 bulk 

structure.80  

 

 

Box 2. Dye-sensitized solar cells (DSSC) 

DSSC are promising and inexpensive alternatives to the traditional silicon based solar cells 

to convert solar energy.81-84 The device has a sandwich structure that comprises a dye-sensitized 

mesoporous nanocrystalline semiconductor photoanode, a counter electrode (CE), and an 

electrolyte redox couple (e.g. I-/I3
-) as show in the illustration. The processes 1–7 in the figure 

represent: (1) electrons promotion to the excited state; (2) electron injection into the conduction 

band of semiconducting photoanode material; (3) electron transport and collection at the 

substrate; (4) reduction of the oxidized redox mediator; (5) reduction of the dye molecule by 

the redox mediator; (6,7) electrons recombination. (The figure reprinted from ref.81 with 

permission from the Nature Publishing Group.) 
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Let us start with the overall triiodide reduction reaction occurring on the CE: 

 3 ( ) 2 3 ( )I sol e I sol- - -+ ®   (21) 

which includes three elementary steps: 

 3 2( ) ( ) ( )I sol I sol I sol- -® +   (22) 

 2 ( ) 2* 2 *I sol I+ ®   (23) 

 * ( )I e I sol- -+ ®   (24) 

where sol indicates the acetonitrile (CH3CN) solution and * stands for the free site on the 

electrode surface. Reaction (22) is usually fast and can be treated to be in equilibrium in 

solution,85 and the subsequent iodine reduction reaction (IRR) (23) and (24), which occur at 

the liquid/solid interface, would therefore determine the overall activity. As shown in Figure 6, 

there are three states in IRR: I2 + 2e–, 2I*, and 2I–(sol). Among the steps, only the energy of 2I* 

can vary on different catalysts. According to equation (18), the chemical potential of 2I* on 
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good CE material should obey: 

 
2 *( ) 2 2 2 2 ( )I e I e I
sol solµ µ µ µ µ -+ ³ + ³   (25) 

where µI2, µe, µI*, µI– are the chemical potentials of I2, electron, I*, and I–, respectively. Applying 

equations (9) and (20) on equation (25) and expanding chemical potential into entropy and 

enthalpy terms, we can obtain: 

 
2 2 2 2* 0

1 1 1 1 1
2 2 2 2 2

o
I I I I IT S T S Gµ e µ µD - D - £ £ D + D - D   (26) 

where ε is the small term RTln(θI*/θ*), about 0.06 ~ 0.12 eV in this case;19 TΔSI2 is the entropy 

correction term in the gas phase at 298 K; ΔµI2 stands for the difference of chemical potential 

between I2 in the gas phase and solvent; ΔGo represents the Gibbs free energy change of half 

IRR: 

 ( )2
( ) 2 2 ( )o I e I

G sol solµ µ µ -D = + -   (27) 

 
Figure 6. Demonstration of range estimation model for the suitable electrodes in terms of the adsorption energy of 

I atom. TΔSI2 is the entropy correction term of I2 in gas phase, ΔµI2 is chemical potential difference of I2 molecule 

in between gas phase and CH3CN solvent at 298K and ΔG0 is the Gibbs free-energy change of half reaction I2(sol) 

+ 2e– → 2I–(sol). Reprinted from ref.19 with permission from the Nature Publishing Group.  

We designed a thermodynamic cycle combining the standard hydrogen electrode (SHE) to 

obtain the value of ΔGo, which is very difficult to calculate directly.19 Substituting all the 
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relevant values into equation (26), the adsorption energy window for good IRR catalysts was 

finally determined to be 0.33 to 1.20 eV (the region between two violet red dash line in Fig. 7). 

Based on this, the adsorption energies of I on a wide range of materials were calculated as 

shown in Figure 7, including the reported active materials (blue triangles), unreported materials 

(black squares), and materials we were interested in our research (red pentagons).  

 

Figure 7. Calculated adsorption energy of I atom in the gas phase or in the CH3CN solvent using DFT method. 

Blue triangles indicate the reported active materials; black squares represent the unreported materials, which were 

predicted to be less catalytically active; red pentagons stand for the materials tested in our research. For materials 

on which the adsorption of iodine atom is endothermic, solvent effects were not considered any more. Adapted 

from ref.19, 81 with permission from the Nature Publishing Group.  

Before introducing the applications of this chemical potential window, it is worth 

mentioning that we recently made a more systematic and comprehensive kinetic study on IRR 

to determine its optimal point on the active region (0.33 ~ 1.20 eV).86 In Figure 8a, we 

uncovered two BEP relations for reactions (23) and (24). With these two relations, we solved 

the micro-kinetics of the IRR under different reaction conditions. According to the volcano 

curves shown in Figure 8b, the optimal adsorption energy of I is 0.43 eV.  
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Figure 8. (a) Illustration of calculated Ea
dis of I2 dissociation (red dots) and Ea

des for I* desorption (black squares) 

in a neutral system (Uext = 0 V) as a function of Ead
I. (b) Calculated volcano curves for IRR as a function of Ead

I 

under different external voltage Uext (dashed line, under open-circuit condition, Uext = 0 V; solid line, 0.54 V), in 

which three different transfer coefficients for the I* desorption step are considered (blue, 0; green, 0.5; yellow, 1). 

Adapted from ref.86 with permission from American Chemical Society. 

It is clear from the discussions above that µI*
o of good CE materials for DSSC should lie 

between 0.33 and 1.20 eV, and the optimal point would be 0.43 eV. Based on this design 

guidance, we firstly investigated the facet-dependent catalytic behavior of three different Pt 

surface (100, 111, 411).79 As shown in Figure 7, both Pt(100) (µI*
o = 1.56 eV) and Pt(411) (µI*

o 

= 1.38 eV) are outside of the “good catalyst region” whereas Pt(111) (µI*
o = 0.52 eV) is near 

the optimal point. The result revealed that Pt(111) is the most active Pt facet on catalysing IRR, 

which is near the peak of the volcano curve. Surprisingly, in our screening results in Figure 7, 

µI*
o of F2O3(012) and Fe2O3(104) are very close that on Pt(111), which made it reasonable to 

expect a high IRR activity of Fe2O3, one of the most low-cost and abundant materials in the 

nature. DFT calculations of IRR at CH3CH/Fe2O3 interface19 revealed that the I2 molecule 

directly dissociate on the top of five-coordinated surface Fe3+ ion, and the Fe-I bond will be 

significantly elongated on the transition state (Fig. 9d-f). This reaction pattern is quite similar 
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to that of Pt(111) (Fig. 9a-c), and µI*
o of Fe2O3(012) and Fe2O3(104) were estimated to be 0.51 

and 0.42 eV, respectively. To validate our estimation, the standard Gibbs free energy profiles of 

the whole CE reaction on Pt(111), Fe2O3(104), and Fe2O3(012) were calculated at U = 0.61V 

vs SHE (Figure 9g). Both Fe2O3(104) and Fe2O3(012) show considerably lower energy barriers 

of reaction (24), which confirms kinetically the high activity of Fe2O3(104) and Fe2O3(012). 

Similarly, another transition metal oxide, the RuO2 nanocrystal (µI*
o = 0.59 eV),76 was also 

expected and proved to good CE material of DSSC. In addition to the metal oxides, metal 

sulfide can also be possible CE material candidates. For example, µI*
o of the (0001) surface of 

NiS nanosheet was calculated to be 0.62 eV, and it indeed exhibits a light conversion efficiency 

of 8.62% in DSSC, higher than that of Pt-based DSSCs (7.36%).75 
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Figure 9. (a-c) Pt(111) surface structure in the presence of CH3CN solvent, I adsorption structure and the transition-

state structure. (d–f) For the α-Fe2O3(012) surface, similar with a–c. (g) Energy profiles of the whole CE reaction 

on Pt(111), Fe2O3(104) and Fe2O3(012), respectively, which were calculated at U = 0.61V vs SHE. Reprinted from 

ref.19 with permission from Nature Publishing Group. 

In addition, under the guidance of activity window for IRR, we successfully modified In2O3, 

initially an inert material for CE in DSSC, into a superior electrocatalyst by doping N 

heteroatoms. DFT calculations indicated that µI*
o of CH3CN/N-In2O3 (µI*

o = 0.94 eV) is 

significantly enhanced compared to pure In2O3 (µI*
o = 0.16 eV) which is originally outside of 

the “good IRR catalysts” region.80 Experiments confirmed that N modified In2O3 do hold much 
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higher IRR activity than its N-free counterpart. 

Overall, our method showed quite successful applications on screening the CE materials of 

DSSC. For a simple reaction like IRR, the reaction mechanism is the same among different 

catalysts, and there is only one key intermediate (I*). However, when the reaction network 

becomes complicated there would be many intermediates and the key intermediate could be 

changed on different catalysts. To address this problem, a careful investigation of the chemistry 

and mechanism of the reaction should be firstly carried out. Many complicate reactions could 

be simplified into more affordable ones,59 and a small-scale test would be conducted before 

large-scale screening to ensure the reliability of the descriptor. Also, an increasing number of 

studies now are employing more than one intermediates as the descriptors to evaluate the 

catalysts.7, 69 

Concluding remarks and future challenges  

In this paper, we reviewed important concepts and understandings on the rational design of 

heterogeneous catalysts by quantum-chemical calculations. Some general trends and 

relationships, such as BEP relation and the volcano curve, were covered, which serve as 

cornerstones for many state-of-the-art designing techniques. Specifically, the theory of the 

kinetics of chemical potentials in heterogeneous was introduced in detail with mathematical 

derivations. The applications of this catalyst screening method on designing efficient CE 

materials for DSSC were reviewed with experimental confirmation.  

Currently, although we can obtain the optimal adsorption energy for the key intermediate 

by identifying the BEP relation and solving micro-kinetics as shown in Figure 7, it requires a 
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certain amount of DFT calculations, and the micro-kinetics of the systems is sometimes very 

hard to solve. To primarily estimate this value, we are developing a simple and effective method 

to estimate the optimal adsorption energy in heterogeneous catalysis. In addition, we are to 

improve the theoretic framework of multi-phase catalysis,32, 38 which may break the limitation 

of the volcano curve and show better activity than tradition catalysts. Coverage effects87, 88 are 

also worth taking into account in the rational design of catalysts in the future. 
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