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Model Predictive Control for Smart Grids with
Multiple Electric-Vehicle Charging Stations

Y. Shi, H. D. Tuan, A. V. Savkin, T. Q. Duong and H. V. Poor

Abstract—Next-generation power grids will likely enable con-
current service for residences and plug-in electric vehicles
(PEVs). While the residence power demand profile is known and
thus can be considered inelastic, the PEVs’ power demand is only
known after random PEVs’ arrivals. PEV charging scheduling
aims at minimizing the potential impact of the massive integration
of PEVs into power grids to save service costs to customers
while power control aims at minimizing the cost of power
generation subject to operating constraints and meeting demand.
The present paper develops a model predictive control (MPC)-
based approach to address the joint PEV charging scheduling
and power control to minimize both PEV charging cost and
energy generation cost in meeting both residence and PEV power
demands. Unlike in related works, no assumptions are made
about the probability distribution of PEVs’ arrivals, the known
PEVs’ future demand, or the unlimited charging capacity of
PEVs. The proposed approach is shown to achieve a globally
optimal solution. Numerical results for IEEE benchmark power
grids serving Tesla Model S PEVs show the merit of this
approach.

Index Terms—Smart power grid, plug-in electric vehicles,
model predictive control, optimal power flow.

I. INTRODUCTION

Electrical vehicles (EVs) have emerged as a promising
solution to resolve both the economic and environmental
concerns in the transportation industry [1]. Using a smart
power grid in concurrently serving residences and charging
EVs constitutes one of the most important applications of
the smart grid technology. However, the massive integration
of plug-in EVs (PEVs) into the grid causes many potential
impacts such as voltage deviation, increased load variations
and power loss of the grid [2], which requires different
strategies for load shifting and energy trading and storage in
the grid [3]–[6]. The main difficulty in scheduling of PEV
charging to manage the cost and impact of PEV integration is
that individual PEVs randomly arrive for charging with their
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individual demands on charging load and deadlines, which
cannot be known before hand. In other words, the future
charging demand of PEVs cannot be known a priori. Many
existing works consider a simple smart grid with a single
charging station (CS) to exclusively serve PEVs. For instance,
[7] sets no charging deadlines for PEVs, whose arrival process
follows a probability distribution, while [8] assumes that the
future load demand is perfectly known a priori. The future load
demand is also assumed to be known in [9] as all PEVs are
assumed to arrive at the same time with no charging deadline.
It is assumed in [10] that only statistics of demand are known
but the PEVs can be fully charged in a single time slot [10,
(30)]. It should be realized that serving PEVs is typically
considered during a 12-hour time period (for instance from
8:00 pm to 8:00 am), where the integration of a massive
number of PEVs has a sizable effect on the power grid, and as
such, the length of a time slot is rationally set by 30 minutes
or one hour. In other words, the charging scheduling should
be considered over a finite horizon of 12-24 time slots, but
not over an infinite horizon as considered in [11]. Due to their
physical limitations, PEVs are rarely able to be fully charged
just during a single time slot.

In this paper, we consider joint PEV charging scheduling
and power control to save service costs for PEVs and the
power generation costs in meeting both residential and PEV
power demands. Such a problem was considered in [12] but
only a small number of PEVs and with each CS serving only
one PEV, whose power demand is very small compared with
the inelastic demand, so that the integration of PEVs into the
grid has almost no effect on the grid. Note that the optimal
power flow problems posed in [12] cannot be solved exactly by
semi-definite programming relaxation (SDR) [13]. Therefore,
it is not known if the objective in PEVs charging scheduling
is convex and as such, it is not known if its proposed valley-
filling solution is optimal. Larger PEVs’ penetration in a few
CSs was considered in [14], [15] under the assumption of
known arrival and departure times of PEVs. In the present
paper, we are interested in more practical scenarios of a
massive number of PEVs arriving randomly at different CSs.
No assumption on the probability distribution of their arrival
is made, so the conventional model predictive control (MPC)
[16], [17] is not applicable. Our contribution is to develop a
novel MPC-based approach to address this problem.

The rest of the paper is structured as follows. Section
II is devoted to the system modeling for this problem and
analyzing its computational challenges. An online computa-
tional solution using the proposed MPC-based approach is
developed in Section III. An off-line computational solution
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is considered in Section IV, which is then compared with
the online computational solution in Section V to show the
optimality of the later. Section VI concludes the paper.

Notation. The notation used in this paper is standard. Partic-
ularly, j is the imaginary unit, XH is Hermitian transpose of a
vector/matrix X , M � 0 for a Hermitian symmetric matrix M
means that it is positive semi-definite, rank(M) and Trace(M)
are the rank and trace of a matrix M , respectively. <(·) and
=(·) are the real and imaginary parts of a complex quantity,
and a ≤ b for two complex numbers a and b is componen-
twise understood, i.e. <(a) ≤ <(b) and =(a) ≤ =(b). The
cardinality of a set C is denoted by |C|.

II. PROBLEM STATEMENT AND COMPUTATIONAL
CHALLENGES

Consider an electricity grid with a set of buses N :=
{1, 2, ..., N} connected through a set of flow lines L ⊆ N×N ,
i.e. bus k is connected to bus m if and only if (k,m) ∈ L.
Accordingly, N (k) is the set of other buses connected to bus
k. There is a subset G ⊆ N , whose elements are connected
to distributed generators (DGs). Any bus k /∈ G is thus not
connected to DGs. Any bus k ∈ G also has a function to
serve PEVs and in what follow is also referred to CS k. By
defining M = |G|, there are M CSs in the grid. Denote by
Hk the set of those PEVs that arrive at CS k. Accordingly,
kn is the n-th PEV that arrives at CS k. Figure 1 provides a
general structure of PEV charging in a smart grid system.

Smart 
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Smart 
Grid
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... ...

Transmission
 Stations

Communication ChannelCommunication Channel

Distributed EV 
charging station

Distributed EV
charging station

Solar Power Wind Power 
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Fig. 1: System architecture of PEV charging in smart grid

The serving time period of the grid is divided into T time
slots of length δt, which usually varies from 30 minutes to an
hour. Under the definition T := {1, 2, . . . , T}, PEV kn arrives
at ta,kn ∈ T and needs to depart at tkn,d ∈ T . The constraint

tkn,d − tkn,a ≤ Tkn , (1)

expresses the PEV kn’s time demand. Suppose that Ckn and
s0
kn

are the battery capacity and initial state of charge (SOC)
of PEV kn. It must be fully charged by the departure time
tkn,d, i.e.

tkn,d∑
t′=tkn,a

uhPkn(t′) = Ckn(1− s0
kn), (2)

where uh is the charging efficiency of the battery and Pkn(t′)
is a decision variable representing the power charging rate of
PEV kn ∈ Hk at time t′.

Due to the limited capacity of the hardware, the following
constraint must be imposed:

0 ≤ Pkn(t′) ≤ P kn , tkn,a ≤ t′ ≤ tkn,d, (3)

for a given P k,n. For ease of presentation, we set

Pkn(t′) = 0, t′ /∈ [tkn,a, tkn,b]. (4)

Let ykm ∈ C be the admittance of line (k,m). The current
Ik(t′) at node k ∈ N is,

Ik(t′) =
∑

m∈N (k)

Ikm(t′)

=
∑

m∈N (k)

ykm(Vk(t′)− Vm(t′)),

where Vk(t′) is the complex voltage at bus k during the time
slot t′. For k ∈ G, the total supply and demand energy is
balanced as,

Vk(t′)(Ik(t′))∗ = (Pgk(t′)− Plk(t′)−
∑
n∈Hk

Pkn(t′))

+j(Qgk(t′)−Qlk(t′)),

where Pgk(t′) and Qgk(t′) are the real and reactive powers
generated by DG k, and Plk(t′) and Qlk(t′) are respectively
known real and reactive price-inelastic demands at bus k to
express the residential power demand. By using the last two
equations, we obtain

Vk(t′)(
∑

m∈N (k)

ykm(Vk(t′)− Vm(t′)))∗ = (Pgk(t′)

−Plk(t′)−
∑
n∈Hk

Pkn(t′)) + j(Qgk(t′)−Qlk(t′)), k ∈ G. (5)

Similarly,

Vk(t′)(
∑

m∈N (k)

ykm(Vk(t′)− Vm(t′)))∗ =

−Plk(t′)− jQlk(t′), k /∈ G. (6)

The next constraints relate to the acceptable range of generated
power by the DGs:

P gk ≤ Pgk(t′) ≤ P gk & Q
gk
≤ Qgk(t′) ≤ Qgk , k ∈ G, (7)

where P gk , Q
gk

and P gk , Qgk are the the lower limit
and upper limit of the real generated and reactive generated
powers, respectively.

The constraints of voltage are

V k ≤ |Vk(t′)| ≤ V k, k ∈ N , (8)
|arg(Vk(t′))− arg(Vm(t′))| ≤ θmax

km , (k,m) ∈ L, t′ ∈ T , (9)

where V k and V k are the lower limit and upper limit of the
voltage amplitude, while θmax

k,m are given to express the voltage
phase balance.

The constraints of line capacity are

|Vk(t′)(Vk(t′)∗ − Vm(t′)∗)y∗km| ≤ Skm, (10)
(k,m) ∈ L, t′ ∈ T ,
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where Skm is the upper limit of capacity for line (k,m).
The problem of interest is to minimize both the energy cost

to DGs and charging cost for PEVs. Thus, by defining

V (t′) = (V1(t′), . . . , VN (t′)), V = {V (t′)}t′∈T ,

Pg(t
′) = (Pg1(t′), . . . , PgM (t′)),

Qg(t
′) = (Qg1(t′), . . . , QgM (t′)),

R(t′) = {Pg(t′), Qg(t′)}, R = {R(t′)}t′∈T ,

PPEV = {PPEV (t′)}t′∈T ,

PPEV (t′) = {Pkn(t′)}kn∈Hk,k=1,...,M ,

the objective function is given by

F (R,PPEV ) =
∑
t′∈T

∑
k∈G

f(Pgk(t′))

+
∑
t′∈T

∑
k∈N

∑
n∈Hk

βtPkn(t′),

where f(Pgk(t′)) is the cost function of real power generation
by DGs, which is linear or quadratic in Pgk(t′), and βt is the
known PEV charging price during the time interval (t′, t′+1].

The joint PEV charging scheduling and power control is
then mathematically formulated as

min
V,R,PPEV

F (R,PPEV ) s.t. (2)− (10). (11)

The above problem (11) is very computationally challenging
because the quadratic equality constraints (5) and (6) and non-
linear inequality constraints (8) and (9) constitute nonconvex
constraints. Moreover, the arrival time tkn,a of each individual
PEV kn, its charging demand and its departure time tkn,d are
unknown.

III. MODEL PREDICTIVE CONTROL (MPC)-BASED
COMPUTATIONAL SOLUTION

Considering (R(t′), PPEV (t′)) and V (t′) as the plant state
and control, respectively, equations (5), (6), and (7) provide
state behavioral equations [18] with the end constraint (2)
while equations (8) and (9) provide control constraints. On the
surface, (11) appears to be a control problem over the finite
horizon [1, T ]. However, all equations in (11) are unpredictable
beforehand, preventing the application of conventional model
predictive control (MPC) [16], [17]. We now follow the idea
of [19] to address (11).

The conventional MPC relies on the two key steps at time
t: predicting future events and minimizing a reference-based
cost function by considering the plant over a short receding
horizon [t, t+T ]. Both these steps cannot be implemented for
problem (11) because the PEVs’ arrivals cannot be anticipated
while there is no reference for PEV charging. Our proposed
method, which does not need prediction for PEVs’ arrivals
or reference for PEV charging is described as follow. At each
time t denote by C(t) the set of PEVs that need to be charged.
For each kn ∈ C(t), let Pkn(t) be its remaining demand for
charging by the departure time tkn,d. Define

Ψ(t) = max
kn∈C(t)

tkn,d. (12)

At time t we solve the following optimal power flow (OPF)
problem over the prediction horizon [t,Ψ(t)] but then take
only V (t), Pkn(t), R(t) for online updating solution of (11):

min
V (t′),R(t′),Pkn (t′),t′∈[t,Ψ(t)],kn∈C(t)

F[t,Ψ(t)] (13a)

s.t. (3)− (4), (6)− (10) for t′ ∈ [t,Ψ(t)], (13b)

Vk(t′)(
∑

m∈N (k)

ykm(Vk(t′)− Vm(t′)))∗ =

(Pgk(t′)− Plk(t′)−
∑

kn∈C(t)

Pkn(t′))

+j(Qgk(t′)−Qlk(t′)), (13c)
for (t′, k) ∈ [t,Ψ(t)]× G,
tkn,d∑
t′=t

uhPkn(t′) = Pkn(t), (13d)

with

F[t,Ψ(t)] :=

Ψ(t)∑
t′=t

∑
k∈G

f(Pgk(t′)) +

Ψ(t)∑
t′=t

∑
kn∈C(t)

βtPkn(t′).

One can notice that (13) includes only what is known at the
present time t. Of course, (13) is a still difficult nonconvex
optimization and in the end we need only its solution at t, so
we propose the following approach in tackling its solution at
t.

Define the Hermitian symmetric matrix W (t′) =
V (t′)V H(t′) ∈ CN×N , which must satisfy W (t′) � 0 and
rank(W (t′)) = 1. By replacing Wkm(t′) = Vk(t′)V ∗m(t′),
(k,m) ∈ N × N , in (13c)-(13b), we reformulate (13) to the
following optimization problem in matrices W (t′) ∈ CN×N ,
t′ ∈ [t,Ψ(t)]:

min
W (t′),R(t′),Pkn (t′),t′∈[t,Ψ(t)],kn∈C(t)

F[t,Ψ(t)] (14a)

s.t. (3)− (4), (7) for t′ ∈ [t,Ψ(t)], (14b)∑
m∈N (k)

(Wkk(t′)−Wkm(t′))y∗km = (Pgk(t′)− Plk(t′)

−
∑

kn∈C(t)

Pkn(t′)) + j(Qgk(t′)−Qlk(t′)), k ∈ G, (14c)

∑
m∈N (k)

(Wkk(t′)−Wkm(t′))y∗km =

−Plk(t′)− jQlk(t′), k /∈ G, (14d)

V 2
k ≤Wkk(t′) ≤ V 2

k, k ∈ N , (14e)
=(Wkm(t′)) ≤ <(Wkm(t′)) tan(θmaxkm ), (k,m) ∈ L, (14f)

|(Wkk(t′)−Wkm(t′))y∗km| ≤ Skm, (14g)
W (t′) � 0, (14h)

rank(W (t′)) = 1. (14i)

Instead of (14), which is difficult due to multiple nonconvex
matrix rank-one constraints in (14h), we solve its semi-definite
relaxation (SDR)

min
W (t′),R(t′),Pkn (t′)

F[t,Ψ(t)] s.t. (14b)− (14h). (15)

Suppose that Ŵ (t′) and (R̂(t′), P̂kn(t′)), t′ ∈ [t,Ψ(t)] are the
optimal solution of (15). If rank(Ŵ (t′)) ≡ 1, t′ ∈ [t,Ψ(t)],
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then V̂ (t′) such that Ŵ (t′) = V̂ (t′)V̂ H(t′) together with
R̂(t′) and P̂kn(t′) constitute the optimal solution of the
nonconvex optimization problem (13). Otherwise, we consider
the following problem:

min
W (t),R(t)

F (Pg(t))) :=
∑
k∈G

f(Pgk(t)) (16a)

s.t. (3)− (4), (7), (14d)− (14h) for t′ = t, (16b)∑
m∈N (k)

(Wkk(t)−Wkm(t))y∗km = (Pgk(t)− Plk(t)

−
∑

kn∈C(t)

P̂kn(t)) + j(Qgk(t)−Qlk(t)), k ∈ G, (16c)

rank(W (t)) = 1. (16d)

Note that in contrast to (14) involving Ψ(t)−t matrix variables
W (t′), t′ ∈ [t,Ψ(t)] and also variables Pkn(t′), kn ∈ C(t) and
t′ ∈ [t,Ψ(t)], there is only single matrix variable W (t) in (16).
The power generation variable R(t) in (16) is latent as it is
inferred from W (t) in equation (16c).

Following our previous works [13], [20]–[23], a nonsmooth
optimization algorithm (NOA) is proposed to deal with the
discontinuous matrix rank-one constraint (16d) in the opti-
mization problem (16). Under condition (14h) in (16b),

Trace(W (t))− λmax(W (t)) ≥ 0,

where λmax(W (t)) stands for the maximal eigenvalue of
W (t). The discontinuous matrix rank-one constraint (16d)
is then equivalently expressed by the following continuous
spectral constraint:

Trace(W (t))− λmax(W (t)) = 0, (17)

because it means that W (t) has only one nonzero eigenvalue.
Thus the quantity Trace(W (t)) − λmax(W (t)) expresses the
degree of the matrix rank-one constraint satisfaction (17),
which is incorporated into the objective (16a), leading to the
following penalized optimization problem:

min
W (t),R(t)

Fµ(W (t), Pg(t)) := F (Pg(t))

+µ(Trace(W (t))− λmax(W (t)))

s.t. (16b)− (16c), (18)

where µ > 0 is a penalty parameter. The above penalized
optimization is exact because the constraint (16b) can be
satisfied by a minimizer of (18) with a finite value of µ. On
the other hand, any W (t) feasible for (18) is also feasible for
(16), implying that the optimal value of (18) for any µ > 0 is
upper bounded by the optimal value of (16).

For any W (κ)(t) feasible for the convex constraints (16c)-
(16b), let w(κ)

max(t) be the normalized eigenvector correspond-
ing to the eigenvalue λmax(W (κ)(t)). Then

λmax(W (t)) = max
||w||2=1

wHW (t)w

≥ (w(κ)
max(t))HW (t)w(κ)

max(t), (19)

i.e. the function λmax(W (t)) is lower bounded by the linear
function (w

(κ)
max(t))HW (t)w

(κ)
max(t). Accordingly, the follow-

ing semi-definite program (SDP) provides an upper bound for

Algorithm 1 NOA 1 for solving (16)

1: Set κ = 0 and (W (0)(t), R(0)(t)) = (Ŵ (t), R̂(t)).
2: Until Trace(W (κ)(t))−(w

(κ)
max(t))HW (κ)(t)w

(κ)
max(t) ≤ ε,

solve (20), to find the optimal solution
(W (κ+1)(t), R(κ+1)(t)) and reset κ+ 1→ κ.

3: Accept (W (κ)(t), R(κ)(t)) as the optimal solution of the
nonconvex optimization problem (16).

the nonconvex optimization problem (18):

min
W (t),R(t)

F (κ)
µ (W (t), R(t)) := F (Pg(t))

+µ(Trace(W (t))− (w(κ)
max(t))HW (t)w(κ)

max(t))

s.t. (16b)− (16c), (20)

because

F (κ)
µ (W (t), R(t)) ≥ Fµ(W (t), R(t))

according to (19).
Suppose that (W (κ+1)(t), R(κ+1)(t)) is the optimal solution

of SDP (20). Since (W (κ)(t), R(κ)(t)) is also feasible for (20),
it is true that

Fµ(W (κ)(t), R(κ)(t))

= F (κ)
µ (W (κ)(t), R(κ)(t))

≥ F (κ)
µ (W (κ+1)(t), R(κ)+1(t))

≥ Fµ(W (κ+1)(t), R(κ+1)(t)),

so W (κ+1)(t) is a better feasible point of (18) than W (κ)(t).
In Nonsmooth Optimization Algorithm (NOA) 1 we propose

an iterative procedure, which is initialized by the solution
Ŵ (t) of SDR (15) and generates a feasible point W (κ+1)(t)
at the κ-th iteration for κ = 0, 1, . . . , as the optimal solution
of SDP (18). As proved in [13], this algorithm converges at
least to a local minimizer of (18). Note that the procedure
terminates at

0 ≤ Trace(W (κ)(t))− λmax(W (κ)(t))

≤ Trace(W (κ)(t))− (w(κ)
max(t))HW (κ)(t)w(κ)

max(t)

≤ ε,

so the spectral constraint (17) for the matrix rank-one is
satisfied with the computational tolerance ε. In summary, our
proposed MPC-based computation for (11) is based on solving
SDP (15) for online coordinating PEV charge P̂kn(t) and
solving (18) by NOA 1 for online updating the generated
voltage V̂ (t) for the generated power R̂(t) by

V̂ (t) =
√
λmax(W (κ))w(κ)

max(t), (21)

whenever the solution Ŵ (t) of SDR (15) is not of rank-
one. If rank(Ŵ (t)) = 1, it is obvious that V̂ (t) =√
λmax(Ŵ (t))ŵmax(t) with the normalized eigenvector

ŵmax(t) corresponding to λmax(Ŵ (t)) is the optimal solution
of (13), which is what we need.
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Algorithm 2 NOA 2 for solving (22)

1: Set κ = 0 and W(0) = Ŵ .
2: Until

∑
t∈T

(Trace(W (κ)(t))−(w(κ)
max(t))HW (κ)(t)w(κ)

max(t))

≤ ε solve (25) to generate W(κ+1), R and PPEV and
reset κ+ 1→ κ.

3: Accept W(κ), R and PPEV as the optimal solution of
the nonconvex optimization problem (11).

IV. LOWER BOUND BY OFF-LINE OPTIMIZATION

To investigate the optimality of the MPC-based online
computation proposed in the previous section, in this section
we address an off-line computation for (11), which provides
a lower bound for the optimal value of its online computa-
tion. Under the additional definition W = {W (t′)}t′∈T , we
reformulate (11) as

min
W,R,PPEV

F (R,RPEV ) s.t. (22a)

(2)− (4), (7), (14d)− (14h) for t′ ∈ T , (22b)∑
m∈N (k)

(Wkk(t′)−Wkm(t′))y∗km = (Pgk(t′)− Plk(t′)

−
∑
n∈Hk

Pkn(t′)) + j(Qgk(t′)−Qlk(t′)), k ∈ G, (22c)

rank(W (t′)) = 1, t′ ∈ T . (22d)

First, we solve its SDR by dropping the matrix rank-one
constraints in (22d):

min
W,R,PPEV

F (R,RPEV ) s.t. (22b)− (22c). (23)

Suppose that Ŵ and P̂PEV are the optimal solution of SDP
(23). If rank(Ŵ (t)) ≡ 1, t ∈ T then a global solution of the
original problem (11) is found as P̂PEV , R̂ and V̂ and with
V̂ (t)V̂ H(t) = Ŵ (t), t ∈ T . However, such a matrix rank-one
condition is rarely achieved. In what follows we propose two
methods to address the matrix rank-one constraints in (22d).

Again, under condition (14h) for t′ ∈ T in (22b), the rank-
one constraints in (22d) are equivalently expressed by the sin-
gle spectral constraint

∑
t∈T (Trace(W (t))− λmax(W (t))) =

0, which is incorporated into the objective function in (22a)
for the following penalized function optimization:

min
W,R,PPEV

F (R,RPEV ) + µ
∑
t∈T

(Trace(W (t))−

λmax(W (t))) s.t. (22b)− (22c), (24)

with a penalty parameter µ > 0. Initialized byW(0) = Ŵ , the
following SDP is solved at κ-th iteration to generate W(κ+1)

and PPEV :

min
W,R,PPEV

F (R,RPEV ) + µ
∑
t∈T

(Trace(W (t))−

(w(κ)
max(t))HW (t)w(κ)

max(t)) s.t. (22b)− (22c). (25)

This computational procedure is summarized in NOA 2.
Alternatively, we propose the following scalable algorithm

for computing (22). By replacing Pkn(t) by P̂kn(t), which

Algorithm 3 DNOA 3 for solving (26)

1: Set κ = 0 and W (0)(t) = Ŵ (t), where Ŵ (t) is found by
solving (23).

2: Until Trace(W (κ)(t)) − (w
(κ)
max(t))HW (t)w

(κ)
max(t) ≤

ε solve { min
W (t),R(t)

∑
k∈G

f(Pgk)δt + µ(Trace(W (t)) −

(w(κ)
max(t))HW (t)w(κ)

max(t)) s.t. (22b)-(22c)} to generate
W (κ+1)(t) and R(t), and reset κ+ 1→ κ.

3: Accept W (κ)(t) and R(t) as a found solution of (26).

was found by solving from (23), in (22) at every t ∈ T , we
obtain the following optimization problem in W (t) and R(t)
only:

min
W (t),R(t)

∑
k∈G

f(Pgk) s.t. (22b)− (22c) for t′ = t, (26a)

rank(W (t)) = 1, (26b)

which is computed by the distributed NOA Algorithm (DNOA)
3.

V. SIMULATION RESULTS

A. Simulation setup

The energy sources of the charging stations come from the
transmission stations or from self-generated sources such as
photovoltaics. Without loss of generality, the charging stations
are set at generator buses, which however are not necessarily
far from the residential neighborhood. The proposed method
should be conducted by Distribution System Operators (DSOs)
and still works whenever the charging stations are set at
other buses in the grid. Roughly speaking, DSOs are divided
into three segments in terms of customer care [24]: DSOs
connected to the transmission system, regional DSOs and
local DSOs. Like [12], DSOs in our set-up thus belongs
to the first segment, where the CSs and PEVs serve as
distribution systems connected to transmission networks. Each
CS broadcasts the charging commands and communicates the
charging demands with connected PEVs.

The SDPs (15), (20), (23) and (25) are computed using
Sedumi [25] interfaced by CVX [26] on a Core i5-3470
processor. Four power networks from Matpower [27] are
chosen. The tolerance ε = 10−4 is set for the stop criterions.

Generally, PEVs are charged after their owners’ working
hours. We focus on the charging period from 6:00 pm to 6:00
am of the next day, which is then uniformly divided into 24
time slots of 30 minute length [28]. Accordingly, the charging
time horizon is T = {1, 2, . . . , 24}. It is also reasonable to
assume that the PEVs arrive during the time period from 6:00
pm to midnight. The PEVs must be fully charged after being
plugged into the grid. During this time period, PEV charging
demands usually have one peak [29, Fig. 3], [30, Fig. 2]
and [31, Fig 3], so the arrival times of PEVs are assumed
to be independent and can be generated by a truncated normal
distribution (20, 1.52), which is depicted by Fig. 2.

We assume that the PEVs are Tesla Model S’s, which have
a battery capacity of 100 KWh [32]. The SOC of all PEVs is
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Fig. 2: The probability density of PEVs’ arrivals

set as 20%. The structure and physical limits of the considered
grids are given in the Matpower library [27] together with the
specific cost functions f(Pgk(t)).

The price-inelastic load Plk(t) is calculated as

Plk(t) =
l(t)× P̄lk × T∑24

t=1 l(t)
, t ∈ T , (27)

where P̄lk is the load demand specified by [27] and l(t) is
the residential load demand taken from [33]. Four profiles
are taken from different days in 2017 [33]. Profile 1 is the
residential load and energy price from 6:00 pm on February
5th to 6:00 am on February 6th, Profile 2 is from 6:00 pm on
March 5th to 6:00 am on March 6th, Profile 3 is from 6:00
pm on April 5th to 6:00 am on April 6th, and Profile 4 is
from 6:00 pm on May 5th to 6:00 am on May 6th. Fig. 3 and
Fig. 4 provide the residential load demand and energy price
for these profiles.
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Fig. 3: Residential load demands of four profiles

B. MPC-based online computational results

1) Four network simulation: We test MPC-based online
computation for Case9, Case14, Case30 and Case118mod
from [27] and profile 2 of the residential data. The information
on these networks is given in Table. I, where the first column
is the name of network, the second column indicates the
numbers of buses, generators and branches. The dimension of
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Fig. 4: Energy prices for four profiles

W (t) is given in the third column, while the total number of
PEVs is shown in the last column. The computational results

TABLE I: Information on four networks

Buses/Generators/Branches Dim. of W (t) PEVs
Case9 9/3/9 C9×9 291

Case14 14/5/20 C14×14 485
Case30 30/6/24 C30×30 582

Case118mod 118/54/186 C118×118 5238

are summarized in Table II. Again, the first column is the

TABLE II: MPC results

Rank µ LB Comp.value Time(s)
Case9 9 10 27991.4 27992.3 7.4

Case14 1 - 40824.1 40824.1 8.5
Case30 1 - 4935.6 4935.6 8.7

Case118mod 2 100 644245.9 644278.5 432.1

network name. The second column presents the initial rank
of the optimal solution Ŵ (t) of SDR (15). It is observed
that the rank of Ŵ (t) is the same for all t ∈ T . The value
of the penalty parameter µ in (18) is given in the third
column. As the initial rank of Case14 and Case30 are all
rank-one, SDR (15) already outputs the optimal solution for
(13). Comparing the lower bound (LB) in the fourth column
by solving SDR (23) at each time and the value found by
the proposed MPC-based computation with using NOA 1 in
computing (11) in each time reveals the capability of the
MPC-based computation for (11). These values are either
the same (for Case14 and Case30) or almost the same (for
Case9 and Case118mod), so indeed the proposed MPC-based
computation could exactly locate a globally optimal solution.
The average running time for solving (13) to implement the
proposed MPC-based computation is provided in the sixth
column, which is very short compared with the 30 minute time
slot and thus is practical for this particular online application.

The voltage profile for the four networks during the charging
period are shown in Fig. 5. For all cases, the voltage bound
constraints (8) are satisfied. The voltage behavior is stable and
smooth.

2) Four residential profile simulation: We consider Case30
together with four different residential profiles. The computa-
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Fig. 5: Voltage profile for four networks during the charging
period

tional results are provided in Table III, whose format is similar
to Table II. It can be seen that, even for the same network,

TABLE III: MPC results for Case30 with four different
residential profiles

Rank µ LB Comp. value Time(s)
Profile 1 2 10 31961.2 31963.5 10.9
Profile 2 1 - 4963.3 4963.3 8.7
Profile 3 2 10 10771.3 10774.7 8.7
Profile 4 1 - 8139.3 8139.3 8.1

the rank of the optimal solution Ŵ (t) of SDR (15) may be
different depending on the residential profiles. For profile 2
and profile 4, the initial rank is one and SDR (15) has located
a globally optimal solution. However, for profile 1 and profile
3, NOA 1 is needed for obtaining the rank-one solution. The
convergence speed is fast, and the optimum values are all equal
or close to the lower bound, which clearly shows the global
efficiency of the proposed MPC-based computation.

The aggregated active powers generated at each time are
shown in Fig. 6, from which the trends of generated power
are seen to be similar to the residential load demand in Fig.
3.

The stable and smooth voltage profile for these 4 residential
profiles during the charging period are shown in Fig. 7.

Fig.8 plots the SoC of four PEVs randomly taken from
case30 under profile 2, which arrive at different times.

C. Off-line computation and comparison with MPC-based
online computation

Firstly, Case9, Case14, Case30 and Case118mod are tested
with the residential data of profile 2 to analyze the efficiency
of off-line computation by using Algorithm 2 and Algorithm
3. The computational results are summarized in Table IV.
The initial rank in the second column is the rank of the
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Fig. 6: Aggregated active power of online charging for Case30
under four residential profiles

6:00 pm 8:00 pm10:00 pm0:00 am 2:00 am 4:00 am 6:00 am
Time

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

V
ol

ta
ge

 (
pu

)

Profile 1

Minimum Voltage

Average Voltage

Maximum Voltage

6:00 pm 8:00 pm10:00 pm0:00 am 2:00 am 4:00 am 6:00 am
Time

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

V
ol

ta
ge

 (
pu

)

Profile 2

Minimum Voltage

Average Voltage

Maximum Voltage

6:00 pm 8:00 pm10:00 pm0:00 am 2:00 am 4:00 am 6:00 am
Time

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

V
ol

ta
ge

 (
pu

)

Profile 3

Minimum Voltage

Average Voltage

Maximum Voltage

6:00 pm 8:00 pm10:00 pm0:00 am 2:00 am 4:00 am 6:00 am
Time

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

V
ol

ta
ge

 (
pu

)

Profile 4

Minimum Voltage

Average Voltage

Maximum Voltage

Fig. 7: Voltage profile of online charging for Case30 under
four residential profiles

optimal solution Ŵ (t) of SDR (23), which is the same for
all t ∈ T . The value of penalty parameter µ in (25) is in the
third column. The fourth column provides the lower bound
by computing SDR (23). The values found by solving (24)
and (26) by Algorithm 2 and Algorithm 3 are in the fifth
column as they are the same and are either exactly same as
their lower bounds in the fourth column (Case9, Case14 and
Case30) or almost the same (Case118mod). According to the
seventh column both Algorithm 2 and Algorithm 3 converge
in two and three iterations for Case9 and Case188mod, while
for Case9 and Case30, SDR (23) already outputs the optimal
rank-one solution. The running times of Algorithm 2 and
Algorithm 3 are provided in the eighth and ninth column,
respectively. Algorithm 2 requires less running time for small-
scale networks such as Case9, Case14 and Case118mod.
However, its running time increases dramatically for large-
scale networks such as Case118mod, for which the scalable
Algorithm 3 is clearly advantageous.



8

TABLE IV: Offline results of optimal PEV charging for four networks

Rank µ Lower bound Computed value Opt. degree Iterations NOA time(s) DNOA time(s)
Case9 9 1 27978.1 27978.1 100% 2 11.2 23.2

Case14 1 - 40800.7 40800.7 100% 1 8.9 8.9
Case30 1 - 4935.6 4935.6 100% 1 24.5 36.3

Case118mod 2 50 644225.3 644233.9 99.999% 3 1094.8 363.5

TABLE V: Performance comparison under MPC-based and off-line computations

Rank MPC Offline Offline/MPC MPC times(s) Offline times(s)

Case9

Profile 1 9 31963.5 31963.1 99.99% 161.1 15.2
Profile 2 9 27992.3 27978.1 99.94% 177.4 15.1
Profile 3 9 31102.9 30885.1 99.29% 173.7 14.8
Profile 4 9 29896.2 29870.9 99.91% 178.4 15.0

Case30

Profile 1 2 31963.5 31963.1 99.99% 262.4 37.4
Profile 2 1 4963.3 4935.6 99.43% 209.8 12.6
Profile 3 2 10774.7 10330.8 95.70% 208.2 24.5
Profile 4 1 8139.3 8087.2 99.35% 194.9 12.9
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Fig. 8: The SOC of PEVs during the charging period

A performance comparison between MPC-based computa-
tion and off-line computation for Case9 and Case30 with the
four mentioned residential profiles is provided in Table V,
which clearly shows the global optimality of the proposed
MPC-based computation as it attains objective values very
close to the lower bounds provided by the off-line compu-
tation.

Fig. 9 plots online and offline power generations in Case30
with four residential profiles, while Fig. 10 plots the corre-
sponding PEV charging scheduling. The charging load drops
dramatically after 0 : 00 am, by which all PEVs have been
integrated into the grid but some of them have already been
fully charged. Obviously, the charging load is sensitive to the
energy price. For example in profile 3, the increase of the
energy price at 11 : 30 pm and 0 : 00 am leads to a significant
drop of the charging load. It should be noted that, energy
price is not the only impact factor for the aggregating charging
rate in Fig. 10. The power balance and residential demands
also have significant effects on the aggregating charging rate.
From 6:00 pm to 9:00 pm PEVs are continuingly connected to
the grid, so the aggregating charging rate during that time is
increased. The charging load under MPC-based and off-line
simulation are the same after 0 : 00 am because there are no
new PEVs arriving after that time.

Fig.11 presents the SoC of four PEVs randomly taken from
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Fig. 9: Power generation under MPC-based (online) and offline
computation for Case30 with four residential profiles

Case30 with profile 2. It can be seen that, though the objective
values shown in Table. V look similar, the SoC are different
by online and offline algorithms.

VI. CONCLUSIONS

Joint PEV charging scheduling and power control for power
grids to serve both PEVs at a competitive cost and residential
power demands at a competitive operating cost is very difficult
due to the random nature of PEVs’ arrivals and demands. We
have proposed a novel and easily-implemented MPC-based
computational algorithm that can achieve a globally optimal
solution.
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