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Highlights 

 Datamining was used for the construction of the NORM4Building database 

 Systematic radiological evaluation of by-products for use in concrete  

 Radiological evaluation of cement, concrete, ceramics and (phospo)gypsum 

 The datamining approach enables the construction of an updated detailed database 

 

Abstract 

Scientific data on natural occurring radioactive materials (NORMs) is available in unknown 

quantities and the data is fragmented over several different sources. The new EU-BSS is 

regulating the use of NORM in building materials, however a large scale database with country 

specific information that can support legislators and industry in the assessment of the 

radiological impact of the use of by-products in construction is missing. Currently the COST 

Action ‘NORM4BUILDING’ (2014-2017) is creating such a database using a semi-automated 

datamining approach. In this paper radiological aspects on by-products that can find application 

in concrete are discussed based on the database.  
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1. Introduction 

Europe is evolving to a more resource controlled continent. This transition is driven by the EU 

action plan on developing a circular economy [1] and supported by the waste framework 

directive [2]. The constituents of more and more construction materials, and in particular 

building materials, are being replaced with by-products from several industrial sectors. Upon 

replacing raw materials by by-products that contain increased concentrations of naturally 

occurring radionuclides care needs to be taken to ensure that the newly produced construction 

materials meet the radiological protection standards of the EU and its Member States. The new 

Euratom Basic Safety Standards (EU-BSS) [3] were published in 2014 and contain 

requirements for industrial sectors involving Naturally Occurring Radioactive Materials 

(NORMs) and the use of specific residues from the considered industrials sectors in building 

materials. The EU-BSS is expected to be transposed in national and regional legislations by 

February 6, 2018 for all the member states of the EU. Worldwide the safe use of NORM is also 

becoming increasingly important. The new IAEA-BSS (Radiation protection and safety of 

radiation sources: international basis safety standards) [4] was also published in 2014. Both the 

EU-BSS and the IAEA-BSS are based on ICRP recommendation 103 [5]. Simulated and 

experimental data originating from scientific papers dealing with NORMs are gathered in 

UNSCEAR reports [6] and these form the basis of the ICRP recommendations.  

 

A major challenge regarding the collection of data on NORM and NORM-containing 

construction materials is that literature data is fragmented over a lot of different sources. It is 

even unclear to which extend country-specific literature data is available. Only a limited number 

of data sets, all of them manually collected, are available. Trevisi et al. [7] collected a lot of 

data on activity concentration measurements of natural radionuclides (226Ra, 232Th and 40K) in 

building materials used in 26 of 27 EU Member States. Sas et al. [8] constructed a database 

(‘By-BM database’) by collecting data on raw materials, by-products and construction materials 

from 48 countries. Next to this database the NORM database of NIRS (National Institute of 

Radiological Sciences, Japan) [9] is available but it lacks data on European NORM or 

construction materials. 

 

Currently the COST Action Tu1301 ‘NORM4BUILDING’ (2014-2017) is creating an 

extensive database gathering radiological data on NORMs and construction materials in which 

NORM containing by-products are implemented. The COST Action closely collaborates with 

the “MetroNORM” project (MetroNORM - Metrology for processing materials with high 

natural radioactivity) [10], involving several European NMIs (National Metrological Institutes), 

to develop standardized measurement protocols for NORM and NORM-containing 



construction materials. In the current paper, the contents of the NORM4BUILDING database 

is presented and discussed.  

 

For the collection of large amounts of data, there is a need for a systematic, as much as possible 

automatized, approach to data mining to investigate the different fragmented sources of data. 

Upon using an automatized approach of gathering scientific data, a crucial scientific challenge 

is the validation and selection of data for incorporation in the database, an aspect which is 

especially complicated when dealing with NORM. For the characterization of NORM ISO 

standards and standardized measurement and sampling procedures are still under development. 

The analytical determination of the activity concentrations of natural radionuclides in NORM 

samples requires specialized knowledge. Not all papers deal appropriately with the absence of 

secular equilibrium which in general is the rule for many industrial by-products and 

construction materials that are based on these by-products. The current paper describes in more 

detail the methodology used for the semi-automatized data mining approach that was developed 

to build the NORM4Building database. 

 

Based on the information collected in the NORM4Building database, this study aims to give a 

realistic evaluation of the radiological properties of construction materials based on NORM by-

products using the criteria set by the EU-BSS.  

 

  



2. Materials & methods 

2.1. Data mining for data collection 

A data mining approach was used as an analytical method to extract information regarding 

NORM, i.e. raw materials (ores), by-products, and NORM-containing construction materials 

from published papers. The text mining method [11], a process of analysing collections of 

textual materials to capture key concepts, basic parameters, keywords and to uncover hidden 

relationships and trends, was applied.  

 

The main milestones of the data mining process are the following and show the Figure 1: 

1. Automatic keyword driven selection of papers, 

2. Building and applying filters based on selected keywords, 

3. Handling different types of publications into the IBM SPSS Modeler™ software to 

extract information using natural language processing (NLP), 

4. Extracting complete measurement results and origin (Country) from relevant 

publications available in different formats such as: Microsoft Word™, Microsoft 

Excel™, and Microsoft PowerPoint™, as well as Adobe PDF™, XML, HTML, 

5. Applying Text Link Analysis (TLA) to define pattern rules and to compare these to 

relationships found in the text, 

6. Structuring the collected data. 

 

Figure 1 The main milestones of data mining process, 

Publications from different electronic sources, such as Science Direct, Web of Science and 

others (IAEA and ICRP documents, National Surveys, etc.) have been processed. After 

applying the filter, relevant publications, which contain measurement results for activity, 

activity concentration, or exhalation rate were extracted. The next step was to identify the 

specific keywords related to these results. At the beginning of the COST project, a trial 

database, was built manually including 16 types of materials extracted from approximately 100 

publications. To expand the list of keywords beyond these material types text link analysis 

(TLA) was used. TLA is a pattern-matching technology that enables to define pattern rules and 



compare the pattern rules to the concepts present in text of the extracted documents. Applying 

TLA resulted of in a lot of false-positive matches, where the concept found is not a material of 

interest and is not relevant for data collection. By browsing the list and selecting relevant 

concepts the materials list (the list of keywords) was expanded from 16 to 59 types of materials 

excluding general expressions. In the publications, two types of measurement information were 

identified: tables listing the results and grammatically complete results definitions. Both types 

of information require different ways of extraction because the date is structurally organized 

differently. Both strategies for data collection have in common that they involve library 

building, so the information is imported into a library. A disadvantage is that in its current 

version the automatic data collection approach cannot handle figures.  

 

The geological origin of the studied materials is very relevant for the radiological properties of 

the studied materials. In addition, country specific circumstances (legislation, dominant 

industrial sectors, accessible resources, etc.) determine the properties and use of investigated 

materials and therefore the database aims at providing country specific information.  

 

2.2. Validation of entries 

Upon selecting the data for inclusion in a database, important aspects need to be controlled: (1) 

The reliability of the data used needs to be verified. (2) Another problem in data selection is 

that measurement results are sometimes repeated in several publications: new papers can be 

based on previous results and in a way measurement results can then be reported in double or 

even in multiple times in different sources. In this way, the data can be overrated in data 

analysis. (3) In numerous papers, the number of samples measured is not clearly reported. 

 

The method used to solve these problems and validate the database data, identifying correct and 

useful data, was a careful reading after the final collection step. Additional analysis of the text 

allowed to individuate, in many cases, the number of samples. When this procedure did not 

succeed, the number of samples was considered as 1; that is why the total number of data in the 

database is certainly an underestimation. As regards to the problem of same data from different 

papers, a careful reading of text and references was necessary to verify if data was new or 

already considered from other included papers.  

 

2.3. Database content & structure 

The total number of entries in the database is 1422 and the total number of samples is 12365 

(date: 01/07/2017). The database contains data on 26 (No data was found for Latvia and Malta) 

of the 28 Member States of the European Union and all together for 74 countries worldwide. 

An initial report on the start-up version of the NORM4Building database was given in [12]. 

 



 

Table 1 References investigated for a given material from a specific country 
Blast furnace slag Malaysia [13][14][15]  Copper slag Germany [7] 

Croatia [16][17] Norway [13] Germany [18] Greece [7][19][20]  

Egypt [21] Pakistan [13][22][23] 
[24] 

Poland [25] India [26] 

Germany [18] Poland [27] Fly ash Iran [28] 

Spain [29] Portugal [27] Australia [30] Israel [19] 

Turkey [31][32] Qatar [33] Canada [34] Jordan [35] 

Bottom ash Romania [27][36][37] China [38][39] Korea [19] 

Australia [40] Slovakia [27][41] Greece [42][43][44] 

[45][46]  

Morocco [47] 

Canada [34] Spain [27][29] India [48][49][50] 
[51] 

Nigeria [52] 

China [38][39] Sweden [27] Ireland [53] Poland [7][54]  

Greece [46][45][55] The 

Netherlands 

[13][27][56] Italy [55] Romania [7][57] 

Ireland [53] Turkey [13][58][59] 
[60] 

Kosovo [55] Serbia [61] 

Italy [55] United 

Kingdom 

[27] Philippines [62] Slovenia [7] 

Kosovo [55] Zambia [63] Poland [54] Spain [19][64][65] 

Philippines [62] Ceramics Syria [66] 

Serbia [55] China [67] Serbia [68] Tanzania [69] 

Spain [70] Egypt [71] Slovakia [41] The 

Netherlands 

[7]  

Syria [72] Italy [67] Spain [29][70] Turkey [19][32] [73] 

Spain [67] Syria [72] United 

Kingdom 

[7] 

Turkey [55][74] Concrete Turkey [32][55][58] 

[74][75] 

United States [76] 

Cement Austria [7] United States [77] Red mud 

Australia [13] Belgium [7] Gypsum Australia [27][78] 

Austria [27] Bulgaria [7] Bulgaria [79] Brazil [27] 

Bangladesh [13] China [80] Egypt [71] China [27] 

Belgium [27] Czech 
Republic 

[7] Estonia [81] Germany [27][47] 

Brazil [13][79]  Denmark [7] Iran [79] Greece [27] 

Bulgaria [27] Estonia [81] Italy [82] Hungary [27][83] 

Cameroon [73] Finland [7] Lebanon [84] Italy [27] 

China [80][85][86] 
[87]  

France [7] Pakistan [79] Jamaica [27] 

Cyprus [67] Germany [7] Syria [79] Romania [88]  

Czech 

Republic 

[27] Greece [7] Turkey [32][79][89] Turkey [27] 

Denmark [27] Hungary [90] Lead slag Steel slag 

Egypt [71][91][92] 

[93] 

Ireland [7] Germany [18] China [94] 

Estonia [81] Italy [7] Nickel slag Croatia [17][95]  

Finland [27] Lithuania [7] Germany [18] Germany [18] 

France [27] Luxembourg [7] Poland [25] Greece [96] 

Germany [27] Poland [97] Phosphogypsum Romania [98][99] 

Greece [27][100][101] Portugal [7] Australia [30]  The 

Netherlands 

[102] 

Hungary [27]  Romania [7] Bangladesh [19] United 
Kingdom 

[103] 

India [79][104][105] Slovakia [41] Belgium [7] Tin slag 

Iran [79] Slovenia [7] Brazil [106][107] 

[108][109] 
[110][111] 

Germany [18] 

Ireland [27][112] Spain [29] Bulgaria [7] Malaysia [113][114] 

Italy [13][27][115] Syria [116] Czech 

Republic 

[7] United 

Kingdom 

[117] 

Japan [13] The 

Netherlands 

[7] Egypt [19][47][71] 

[91] [118]  

  

Lebanon [84] United 
Kingdom 

[7] Finland [7]   

 

 

 

 

The data are classified into 3 main categories: 

 Primary raw materials – coal (coal, lignite, peat, bituminous coal), phosphate ores, 

ferrous ores (iron ores such as hematite, limonite, magnetite), non-ferrous ores and 

minerals (aluminium ore (bauxite), gold ore, manganese ore, molybdenum ore, 



monazite, nickelic ore, titanium ore, uranium rocks, zirconium ore, ilmenite, rutile, 

baddeleyite) and other natural rocks or sands (basalt, black sand, chalk, chert, clay (or 

clay minerals such as kaolinite), diabase rock, dolomite, gabbro, granite, gravel, marble 

(composed out of calcite or dolomite), marl (or marlstone), pumice, quartzite, sand, 

sandstone, schist, serpentinite, soil, stone, trass, tuff), 

 (By)-products – red mud, fly ash, bottom ash, different types of slags (iron slag, steel 

slag, coal slag, copper slag, blast furnace slag…), and other materials (calcium 

carbonate, cerium oxide, copper, corundum, fertilizer material, iron oxide, mud, sludge, 

titanium dioxide, dross, tailing, scale…), 

 Construction materials – cement, ceramics, concrete, phosphogypsum, gypsum and 

other materials (bricks, clinker, gas silicate blocks, plaster, adobe, mortar…). 

 

The current paper limits itself to specific by-products, considered by the EU-BSS, that are likely 

to be used as a building material and on building materials such as concrete, ceramics and 

(phospo)gypsum. In total the current paper considers a selection of 460 entries (7705 samples) 

from the database. The references from which the extracted data (for a given country) originates 

are given in Table 1. From one reference several different entries linked to different types of 

samples can be extracted for a given country or from different countries. For most countries, 

the results are not statistically representative at the national level due to the low number of data 

available in the literature. 

 

2.4. Scenarios for incorporation of by-products  

The concrete compositions listed in Table 2 were used to model the use of by-products in 

concrete and to calculate the activity concentration index (I-index) for concrete including a 

given type of by-product using the activity concentration index defined in [119] and given in 

equation 1:  

𝐼 − 𝑖𝑛𝑑𝑒𝑥 =  
𝐴𝑐226𝑅𝑎

300 𝐵𝑞/𝑘𝑔
+  

𝐴𝑐232𝑇ℎ

200 𝐵𝑞/𝑘𝑔
+

𝐴𝑐40𝐾

3000 𝐵𝑞/𝑘𝑔
       (1) 

With Ac as activity concentration of the mentioned radionuclide expressed in Bq/kg.  

  



 

Table 2 Description of concrete compositions used to model 

Scenario 

ID 

Construction Material Composition (kg/m3) 

  Cement By-

product 

Aggregates Water 

1 Reference concrete 400  1850 150 

2 High volume fly ash (HVFA) 

concrete 

160 220 (fly ash 

(FA)) 

1700 140 

3 Concrete with FA as partial 

replacement of cement and sand’ 

320 130 (FA) 1750 150 

4 Concrete with FA as partial 

replacement of sand 

360 90 (FA) 1800 150 

5 Concrete with slag as partial 

replacement of cement and 

aggregates’ 

80 720 (slag) 1850 150 

6 Concrete with slag as partial 

replacement of cement 

80 320 (slag) 1850 150 

7 Concrete with slag as partial 

replacement of aggregates’ 

400 400 (slag) 1450 150 

8 Alkali activated concrete containing 

red mud as partial replacement of 

cement and aggregates 

 1800 (red 

mud) 

450 150 

 

In the calculation of the I-index, for a specific type of concrete, the considered percentages of 

by-product incorporation correspond to a specific scenario from Table 2. As I-indexes for 

respectively cement and soil/aggregates the average values of 0.38 and 0.45 were used in the 

calculations [7]. 

 

3. Results 

The EU-BSS [3] introduces a two steps pathway to control the gamma dose from both natural 

building materials and building materials incorporating by-products: (1) the EU-BSS uses the 

activity concentration index (I-index) as a conservative tool for the initial screening of building 

materials. (2) In case of an I-index exceeding the value of 1, the external gamma dose has to be 

accurately assessed accounting for the reference level of 1 mSv/y for exposure of gamma. A 

more accurate evaluation of the effective dose can take into account density and thickness of 

the final material and partition factor of its constituents if the constituents are produced by 

industrial sectors involving NORM.  

 



In the evaluation below, the criteria set by the EU-BSS are used for the evaluation of the 

selected entries from the NORM4Building database. In this way, literature results on by-

products that are considered for use in building materials and studies that exist on the building 

materials themselves will be evaluated. 

 

3.1. Combustion products from coal, peat and heavy oil fired power plants 

 

Figure 2 Average reported activity concentrations (logarithmic scale) of 226Ra, 232Th and 40K for bottom and fly ash from 

different countries. Each circle, triangle or square (for respectively 226Ra, 232Th and 40K) is linked to a separate entry in the 

NORM4Building database. The average and maximal activity concentration for a given country are marked with respectively 

a black and red line (the numerical values are given).  

 

The activity concentrations of combustion products, in particular bottom ash and fly ash, are 

given for different countries in Figure 2. In most case the considered combustion products are 

from coal fired power plants but in a very limitted amount of cases the products come from a 

peat-fired power plant (Ireland, [53]) or from a heavy oil and natural gas fired power plant 

(Syria, [72]).  

For bottom ash, the 226Ra content ranges from 23 (Spain) – 830 (Greece) Bq/kg, 4 (Ireland) – 

140 (Spain) Bq/kg for 232Th and 10 (Turkey) – 1100 (Spain) Bq/kg for 40K. For fly ash ash the 

ranges 11 (Syria) – 1000 (Greece) Bq/kg, 1 (Greece) – 200 (India) Bq/kg and 17 (Turkey) – 

1100 (Spain) Bq/kg are found for respectively 226Ra, 232Th and 40K. In the discussion of the 

results we focus on the comparison of fly ash and bottom ash originating from the same country 

since otherwise there is a higher likelyhood that the coal (in most of the cases), used to produce 



a given type of fly or bottom ash, originates from different mines and as a result the properties, 

including the activity concentrations can be quite different. This difference in activity 

concentrations for a given type of coal can also be observed from the data available on coal in 

the online version of the NORM4Building database. Only for specific countries (Australia, 

Canada, China, Greece, Italy, Kosovo, Philippines, Serbia, Spain and Turkey), information is 

available on both coal fly ash and bottom ash. For these countries the activity concentrations of 

fly ash is in average a factor 1.2 (for 226Ra), 1.2 (for 232Th) and 1.0 (for 40K) higher than for 

bottom ash. Combustion products from Ireland and Syria are not considered in this comparison 

since here it concerns combustion products from respectively a peat-fired or a heavy oil and 

natural gas fired power plant. Extrapolation of the gathered data on 226Ra and 232Th to other 

radionuclides from the 238U and 232Th decay series is not straightforward since typically for fly 

ash and bottom ash from coal-burning power plants a significant disruption of the secular 

equilibrium is observed. 

 

3.2. By-products from ferrous industry 

 

Figure 3 Average reported activity concentrations (logarithmic scale) of 226Ra, 232Th and 40K for blast furnace slag and steel 

slag from different countries. Each circle, triangle or square (for respectively 226Ra, 232Th and 40K) is linked to a separate entry 

in the NORM4Building database. The average and maximal activity concentration for a given country are marked with 

respectively a black and red line (the numerical values are given). 

 

For the iron ores produced worldwide activity concentration ranges of 5-42 Bq/kg (226Ra); 2-

20 Bq/kg (232Th) and 29-330 Bq/kg (40K) can be found in the online NORM4Building database 

[120]. Starting from the ore, slags are produced in several stages of the production of iron and 

steel: (1) in the course of the pig iron production; (2) in the blast furnace; (3) in the steel 

production. The activity concentration of these types of slags produced in several countries is 

given in Figure 3.  

For iron slag only results on blast furnace slag are shown. This specific type of iron slag that 

contains several impurities that were originally present in the iron (mainly silica and alumina) 



is the most important by-product from iron production that is used in construction. For blast 

furnace slag, considering the listed European and Middle Eastern countries, the activity 

concentration show ranges of 100-323 Bq/kg (226Ra); 25-148 Bq/kg (232Th) and 158-500 Bq/kg 

(40K) (Figure 3). In average the activity concentration of blast furnace slag is 13, 8 and 2 times 

higher for respectively 226Ra, 232Th and 40K when compared to the average activity 

concentration of iron ore [120]. This significant difference indicates that the specific production 

process that leads to a given type of iron slag has a dominant impact on the radiological 

properties which is also reported by Puch et al. [121].  

 

For steel slag the following activity concentration ranges are found: 9-196 Bq/kg (226Ra); 4-150 

Bq/kg (232Th) and 5-148 Bq/kg (40K). In this case, when comparing steel slag to iron ore, the 

world average activity concentrations are only a factor 2 higher for 226Ra and 232Th, while for 

40K the activity concentration is in this case a factor 3 lower. When comparing the activity 

concentration of steel slag to blast furnace slag for the same country (Croatia and Germany) the 

the activity concentration of blast furnace slag is in average a factor 10.5 (for 226Ra); 8.1 (for 

232Th) and 16.5 (for 40K) higher than for steel slag. 

 

3.3. By-products from non-ferrous industry 

 

Figure 4 Average reported activity concentrations (logarithmic scale) of 226Ra, 232Th and 40K for nickel, copper, lead and tin 

slag and red mud from different countries. Each circle, triangle or square (for respectively 226Ra, 232Th and 40K) is linked to a 

separate entry in the NORM4Building database. The average and maximal activity concentration for a given country are 

marked with respectively a black and red line (the numerical values are given). 

Processes in the non-ferrous industry can be complicated, and several metals can be extracted 

from a given type of primary or secondary raw material or a combination of materials leading 



to various types of slags and therefore it is not straightforward to compare general ore related 

information to a specific type of slag. In the current section, we discuss properties of several 

types of non-ferrous residues, however it is mainly for red mud and copper slag that reuse in 

cement and/or concrete is a realistic option.   

For red mud, a by-product of Bayer method to process bauxite ore, average activity 

concentrations ranging from 97 (Italy) to 1700 (Romania) Bq/kg 226Ra; 45 (Romania) to 1800 

(Australia) Bq/kg 232Th and 15 (Italy) to 583 (China) Bq/kg 40K are found (Figure 4). In average 

the total average activity concentrations of red mud are only a factor 1.3 (for 226Ra); 1.8 (for 

232Th) and 5.5 (for 40K) higher than for bauxite [120]. 

For tin and copper slag, the average activity concentrations are relatively high: up to 4570 Bq/kg 

226Ra for Malaysian tin slag, up to 4000 Bq/kg 232Th for tin slag from the UK and up to 1500 

Bq/kg 226Ra for German copper slag (Figure 4). For lead slag (up to 270 Bq/kg for Germany) 

and nickel slag (up to 235 Bq/kg for Poland), the listed values are apparently lower, but no data 

was collected from outside Europe. It has to be noted that the database contains mainly data for 

slags from primary melters. As published by Croymans et al. [122] the activity concentrations 

of the slags of a secondary melter for the production of tin, copper and other types of metals 

that also involve secundary raw materials are significantly lower. 

With the datamining tool we aim to step by step get a more detailled view on different types of 

slag. This requires expanding the key-words used for specific types of ferrous and non-ferrous 

slag and getting access to country specific information that is not always accessible online. 

 

3.4. Construction industry 

3.4.1. Cement 



 

Figure 5 Average reported activity concentrations (logarithmic scale) of 226Ra, 232Th and 40K for cement in different countries. 

Each circle, triangle or square (for respectively 226Ra, 232Th and 40K) is linked to a separate entry in the NORM4Building 

database. The average and maximal activity concentration for a given country are marked with respectively a black and red 

line (the numerical values are given). 

 

For cement, the following ranges of activity concentrations can be extracted from Figure 5: 4 

(Romania) – 218 (Greece) Bq/kg for 226Ra; 2 (Cyprus) – 220 (Spain) Bq/kg for 232Th and 4 

(Cyprus) – 4930 (Turkey) Bq/kg for 40K. For cement world wide average activity concentrations 

of 54 Bq/kg 226Ra; 33 Bq/kg 232Th and 257 Bq/kg 40K are found. It needs to be noted that the 

database contains information on a lot of different types of cement. Among others information 

on cement types CEM I, II, III, IV and V is included, but this information is not always clearly 

provided in the included papers. Assisted by the datamining approach it is the aim to modifiy 

the keywords in such a way that also a distinction can be made between different types of 

cement. 

  



 

3.4.2. Building materials  

 

Figure 6  I-index (calculated from average reported activity concentrations) for building materials in different countries. Each 

circle is linked to a separate entry in the NORM4Building database. The average and maximal activity concentration for a 

given country are marked with respectively a black and red line (the numerical values are given). 

 

For ceramics, only a limited amount of data is gathered since this was so far not the in the focus 

of the datamining process. Even for the limited amount of data gathered a large range in the 

calculated I-index was found: 0.29 (Italy) – 1.85 (China) (Figure 6). The broad distribution in 

Figure 6 reflects a broad range of different materials, but the discussion of these materials falls 

out of the scope of the current paper. More information on the use of by-products (in particular 



zircon and zirconia) in ceramics and the radiological properties of the resulting ceramics is 

proposed by Selby [123]. 

Clearly visualised in Figure 6 is the large difference between the I-index distribution of gypsum 

(hydrous calcium sulfate), this category involves both natural gypsum stone (anhydrite-

anhydrous calcium sulfate) and synthetic gypsum (anhydrite), and phosphogypsum. For 

gypsum, the I-index values range from 0.02 (Estonia) to 0.22 (Egypt), and a mean worldwide 

average I-index of 0.11 is found, while for phosphogypsum an I-index range of 0.12 (Brasil) to 

3.61 (United Kingdom) and a mean worldwide average I-index of 1.56 is found. The 

radiological issues regarding the use of phosphogypsum in construction are discussed in more 

detail in [12].  

For concrete, the I-index values range from 0.11 (Hungary) to 1.37 (Slovenia) and a worldwide 

average I-index value of 0.37 is found which is comparable to an average value for reference 

concrete of 0.41 assuming scenario ID 1 from Table 2.  

 

3.4.3. Simulating the use of by-products in building materials   

In the current section, realistic scenarios for concretes incorporating different types of by-

products – as described in Table 2 - are discussed in more detail. The discussion is limited to 

by-products that are considered for use in building materials, for the construction of buildings 

because it is for this situation that the EU-BSS applies. Therefore, for example, coal bottom ash 

and coal slag, that primarily find use as an artificial aggregate/additive in road or country road 

construction [124] [125] are not considered here. The I-index of a given by-product is given 

purely for comparison and calculation purposes. Providing an I-index for a by-product makes 

the unrealistic assumption that 100 % of the by-product is used as a building material, while in 

the actual assessment the proper partition factor has to be considered.  

 

 

Figure 7 Calculated values of the I-index for coal fly ash, high-volume fly ash (HVFA) concrete and concrete containing fly 

ash (FA) as partial replacement of sand and/or cement.  



 

Coal fly ash is a well-known cement constituent and concrete additive [126]: fly ash can be 

used in the cement production as the material to produce Portland clinker and as a mineral or 

pozzolana addition. Including fly ash in blended cement has benificial properties for concrete 

[127] [128]. The highest content of fly ash in concrete is obtained in high-volume fly ash 

concrete (HVFA): in the described scenario (ID 2) 40 kg/m3 of cement and 180 kg/m3 of 

aggregates/sand is replaced by FA, and this leads in general to a lower water demand (140 

kg/m3 in ID 2) of the concrete for a given workability. Even for HVFA concrete, the simulated 

I-indexes are below 1 (Figure 7). The largest I-index was 0.75 (Greece). For concretes 

containing FA as a partial replacement of sand and/or aggregates (ID 3 and ID 4) the I-index is 

around the value of reference concrete (0,41). 

 

 

Figure 8 Calculated values of the I-index for ferrous slag, concrete containing ferrous as partial replacement of cement and/or 

aggregates. 

 

When considering the slags from iron and steel production, ground-granulated blast furnace 

slag is by far the main by-product that finds its way in construction as a well-known cement 

constituent and concrete additive. As shown in Figure 8, the I-index reaches maximal values of 

0.55, 0.57 and 0.71 when blast furnace slag (from Turkey) is used as a replacement for 

respectively cement (ID 6), aggregate (ID 7) or both (ID 5).  

For steel slag only a replacement of the aggregates is considered as a realistic scenario ([12]. 

Steel slag is commonly blended with ground-granulated blast furnace slag, coal fly ash and lime 

for the production of pavement material, skid resistant asphalt aggregate and unconfined 

construction fill. In this case, the I-index is around the value of reference concrete in the unlikely 

case that steel slag is used for buildings (ID 7). 

 



 

Figure 9 Calculated values of the I-index for non-ferrous slag and red mud, concrete containing non-ferrous slag as partial 

replacement of aggregates and alkali activated concrete containing red mud as partial replacement of cement and aggregates. 

 

In the description of the non-ferrous slags (Figure 9) mainly scenario ID 7 is considered where 

non-ferrous slag serve as a replacement for (fine) aggregates in concretes. In principle, 

granulated copper slag exhibits pozzolanic properties which also allow the use as a constituent 

for common Portland cement but then the impact on the activity concentration is small, and this 

scenario is not further discussed [129]. The composition and characteristics of a specific type 

of copper, lead, nickel or tin slag determine its possible application. The application as (fine) 

aggregate in concrete for use in a building is very much dependent on the specific properties of 

a given type of slag. Upon using German tin and copper slag as a partial replacement for 

aggregates in concrete, the I-index can be above 1: respectively 1.21 and 1.24 so, in this case, 

further studies are required to assess the gamma dose upon reuse. For lead and nickel slag the 

found I indexes are lower, around 0.5. 

It is unlikely that red mud will be used as aggregate in Portland concrete since this requires 

several processing steps, including drying, pelletizing and calcinations that will significantly 

increase the processing cost respect to other types of aggregates. A more realistic scenario, 

discussed by Croymans et al. [130], is the use of red mud in alkali-activated cement and 

concrete (ID 8). In alkali-activated concrete, a relatively high incorporation level of red mud 

(1800 kg/m3 red mud for a total of 2400 kg/m3 concrete) can be achieved for concrete resulting 

in an I-index that can be around 6.01 (Australia). A more detailed dose assessment is then 

required to investigate which incorporation level can be acceptable considering the EU-BSS. 

 

4. Conclusions 

Publications have been processed from different electronic sources by means of a semi-

automated data mining tool to extract data on NORM in ores, by-products and construction 

materials. After careful manual revision a total number of 1422 entries on different types of 

materials from all together 74 countries worldwide were accepted for the NORM4Building 

database (date: 01/07/2017). By using the technique of datamining the NORM4Building 



database can, after manual revision, be updated in the future. When the datamining tool is 

working, the number of investigated publications increases by the hundreds monthly or more. 

The advantages of this approach consists in the capability to identify and analyse data reported 

in tables and grammatically complete definitions quickly and reliably. The limitation of this 

approach is that data from graphical images (eg.: histograms) are currently not collected and 

that a manual verification is required to avoid that data overlaps and to evaluate the reliability 

of the included data. Based on the data gathered, data mining also allows to revise our selection 

criteria and in this way step by step a more detailed database can be built where a more detailed 

investigation of sub-population (different types of slags, combustion products, cements, 

concretes…) becomes possible.  

 

In this paper a limited dataset (460 entries) from the NORM4Building database is shown and 

discussed. Specific by-products from industries involving NORM that have suitable properties 

for use in concrete for buildings were selected for evaluation. For the evaluation 7 different 

scenarios for by-product incorporation in concrete were considered. In addition, also the 

radiological properties of cement and other construction materials such as ceramics and 

(phospho)gypsum were discussed. Considering the criteria set by the EU-BSS and based on the 

data gathered in the NORM4Building database in particular non-ferrous slags and red mud 

require a radiological evaluation before the use in concrete for buildings can be accepted. For 

the considered residues of the ferrous industry the reported activity concentrations are 

significantly lower and the impact, from a radiological perspective is less pronounced.  
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