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Steven Byrne, Wasif Naeem, and Stuart Ferguson
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Abstract

Manipulator motion planning is a classic problem in robotics, with a number of complete solutions avail-

able for their motion in controlled (industrial) environments. Due to recent technological advances in

the field of robotics, there has been a significant development of more complex robots with high fidelity

sensors and more computational power. One such example has been a rise in the production of humanoid

robots equipped with dual-arm manipulators which require complex motion planning algorithms. Also,

the technological advances have resulted in a shift from using manipulators in strictly controlled envi-

ronments, to investigating the deployment of manipulators in dynamic or unknown environments. As a

result, a greater emphasis has been put on the development of local motion planners, which can provide

real-time solutions to these problems. Artificial Potential Fields (APF) is one such popular local motion

planning technique, which can be applied to manipulator motion planning, however, the basic algorithm

is severely prone to local minima problems. Here, two modified APF-based strategies for solving the

dual-arm motion planning task in unknown environments are proposed. Both techniques make use of

configuration sampling and subgoal selection to assist the APF in avoiding these local minima scenarios.

Extensive simulation results are presented to validate the efficacy of the proposed methodology.

1 Introduction

In the field of robotics, the single manipulator motion planning problem has been studied for decades, with

planning methods in uncertain environments, such as unknown or dynamic environments, still open areas of

research. In recent years, there has also been an upsurge in the study of multi-manipulator motion planning.

This is in part due to the development of numerous anthropomorphic robots, such as Justin (Ott et al., 2006),
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PR-2 (Bohren et al., 2011) and ARMAR-III (Asfour et al., 2006), which are designed to carry out tasks in a

human-like fashion. Like humans, these robots have two manipulators which can be used for carrying out a

multitude of tasks. The goal to mimic human-arm behaviour has led to a diverse study of dual-arm systems

across a wide range of areas. This is because using a dual-arm robotic system to manipulate objects in a

human-like way involves numerous components spanning motion planning, grasping, object manipulation

and control theory. Applications for dual-arm systems are theoretically endless but a number of applications

have already been considered across domestic and industrial environments as well as for space exploration.

Tasks such as laundry folding (Maitin-Shepard et al., 2010), dish-washing (Asfour et al., 2006) and cooking

(Zhai et al., 2012) have been investigated in a domestic setting. While in industrial environments, dual-arm

system have been used for automotive parts assembly (Park et al., 2006), in addition to satellite servicing

within the field of space exploration (Qiu et al., 2009; Xu et al., 2012). This serves as a motivation to develop

a novel local motion planning algorithm for dual-arm systems, such as the humanoid robots mentioned above.

The dual-arm motion planning problem is more complex than simply avoiding obstacles and reaching a

goal, as is the case with the single manipulator problem. There is a number of different task-based aspects

to consider when choosing an appropriate method for dual-arm motion planning problems. For example, the

two arms could be working individually on separate tasks while operating in the same workspace. In this

case, the arms must avoid each other and obstacles in the environment while completing their respective

tasks. Scheduling may need to be addressed in this case, where completion of the two tasks is not possible

simultaneously. Another possible motion planning problem with dual-arm systems is the undertaking of a

single-task cooperatively by both arms. Here, the arms are working together to complete a single objective,

so both arms must avoid the obstacles in the environment while obeying the motion constraints related to

their cooperative task.

There are generally two different approaches to these problems; decoupled motion planning and cen-

tralised motion planning. With decoupled motion planning, the motion of each manipulator is considered

individually. This approach is popular when the two arms are working on separate tasks in the same

workspace. The problem is decomposed into two single-manipulator motion planning problems, with the

opposite manipulator being represented as an obstacle in the environment, so as to avoid collisions between

the two manipulators (Chuang et al., 2006; Curkovic and Jerbic, 2010). Scheduling or prioritisation of the

manipulators is necessary to ensure both tasks are successfully completed (LaValle and Hutchinson, 1998).

However, decoupled motion planning is not useful for cooperative tasks as the motion of the two arms is

highly-coupled in these cases. Thus decomposing the problem in this manner is not possible.
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Centralised motion planning involves combining the Configuration Spaces (C-Space) of the two arms and

planning a motion within this composite C-Space. This joining of the C-Spaces represents the motion of the

two arms in one space, meaning both individual and cooperative tasks can be defined and planned. To plan

within this space, graph-based approaches (Fei et al., 2004) and sampling-based methods have been proposed

(Tsai and Huang, 2009; Vahrenkamp et al., 2009). The use of closed-chain kinematics is also popular for

cooperative tasks (Gharbi et al., 2008; Bolandi and Farhad Ehaei, 2012). When they are applicable, these

centralised methods are more reliable than the decoupled approaches. However, to successfully combine the

C-Spaces and compute a path, a full knowledge of the environment is required. For this reason, centralised

motion planning techniques are only applied to static environments (Fei et al., 2004; Gharbi et al., 2008;

Vahrenkamp et al., 2009) or dynamic environments where the obstacles future trajectories are known, i.e.

they can be described in the Configuration-Time Space (Tsai and Huang, 2009; Bolandi and Farhad Ehaei,

2012).

The environment in this research is considered to be unknown with the dual-arm system having no prior

knowledge of the obstacles locations. In these scenarios, the centralised C-Space methods are not applicable

due to the lack of information. Instead, each manipulator must plan its motion separately in a decoupled

manner, relying solely on information it collects locally. A popular well-studied method of local motion

planning is Artificial Potential Fields (APFs). They are generally applied to point-mass robots where real-

time online planning is needed. Using only local information, it is possible to create an attractive field

which attracts the robot to its desired goal position, and also create a repulsive field which repels the robot

away from any obstacles detected locally. The summation of these two fields gives a total potential field

which attracts the robot to the goal while at the same time avoids the obstacles in the environment. It is a

simple and fast technique making it ideal for use in uncertain environments, where online planning is needed.

However, there are well-documented issues with APF local motion planning.

Local minima issues are prevalent in the use of APFs. These are situations where the attractive and

repulsive forces acting on the robot are equal in magnitude but opposite in direction. This causes a zero

resultant force on the robot, meaning it will no longer move towards its goal and thus results in a failure of

the motion planning task. Many different types of local minima issues have been identified for APF motion

planning of point-mass robots (Koren and Borenstein, 1991; Ge and Cui, 2000). Solutions to these issues can

be obtained by either modifying the potential field functions (Ge and Cui, 2000; Agirrebeitia et al., 2005;

Jia and Wang, 2010) or by employing a secondary planner to assist the APF approach to escape the local

minima (Park and Lee, 2003; Zhu et al., 2006, 2009). These solutions generally concentrate on solving a
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particular local minimum and cannot guarantee to free the manipulator from all local minima issues.

APFs have also been applied to both single and dual-arm manipulator local motion planning problems

(Khatib, 1986; Chuang et al., 2006; Byrne et al., 2012). Similar to APF-motion planning of point-mass

robots, the proposed methods for manipulator motion planning are also subject to local minima problems.

Previously, a local minimum issue which is unique to the application of APFs to manipulator motion planning

has been identified by the authors (Byrne et al., 2012). An online motion planner using configuration

sampling and subgoal selection was then proposed to assist the APF in avoiding these scenarios (Byrne

et al., 2013). This work will be the basis for the dual-arm strategies proposed in this paper.

In this research, the above online single-manipulator motion planner is modified to solve two separate

kinds of decoupled dual-arm motion planning tasks. The first task considered, is the successful decoupled

motion planning of two arms working independently within the same workspace. Here, the end-effectors of

both manipulators must reach a desired goal position while the manipulators must avoid collisions with each

other and any obstacles detected locally in the environment. The second proposed motion planning problem

is a general scenario where the two manipulators are undertaking a single task which requires them to meet

at a cooperative goal position. This problem has applications in parts assembly (Vahrenkamp et al., 2009)

or in passing an object from one arm to another (You et al., 2012).

For each investigated task a standard APF-based approach is first proposed which is shown to have

local minima issues. Hence improved local motion planning methods are developed for each task, which

are based on the previously proposed online single-manipulator motion planner (Byrne et al., 2013). In

order to produce efficient motion planning techniques for the specified dual-arm tasks, issues such as task

planning and avoidance of the manipulators are incorporated into the existing online single-manipulator

motion planner.

The structure of the paper is as follows: Section 2 defines the setup of the dual-arm system and the

standard APF motion planner for applications in unknown environments; Section 3 provides a review of the

online single-manipulator motion planner, which is used a basis for the dual-arm motion planning strategies;

Section 4 and Section 5 address each of the investigated decoupled dual-arm motion planning tasks and

propose motion planners for each task; Section 6 concludes the paper with some final remarks.

4



2 Dual-Arm System Setup for APF Motion Planning

The design of the dual-arm system, which is used for developing these motion planning strategies, is based

on a planar version of a typical humanoid robot’s dual-arm system. It consists of two 3-DOF arms, fixed

to a base or torso, which can operate in the space in front of them. It is assumed that any obstacles

in the environment are unknown to the manipulators at the start of the experiment. Consequently, the

manipulators are relying on local motion planning techniques and must be fitted with sensors to detect the

obstacles locally. The dual-arm system equipped with IR-sensors and its workspace are described by Figure

1.

Figure 1: Design of dual-arm system

The chosen local motion planning technique used here is APFs. It is necessary to describe both the

attractive and repulsive potential functions which will create the potential fields. The APF approach given

here is a modification of Khatib’s classic APF functions (Khatib, 1986). The definition of the attractive

function is taken directly from this work. An attractive potential field is created at each of the manipulators’

end-effectors to attract the manipulators to their respective goal. For each manipulator, the attractive

potential function which creates this potential field is given by Eq 1.

UATT =
1
2
Kp(xgoal − xee)2 (1)

where Kp is a positive gain and xgoal − xee is the distance between the end-effector position and the goal.
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In single manipulator motion planning, the repulsive field is used to repel the manipulator from any

obstacles in the environment. The repulsive potential field is constructed using the sensor data collected at

each sensor along the manipulator, given by Eq 3. Subjecting the manipulator to repulsive forces at all these

points ensures that the whole manipulator can avoid obstacles while its end-effector moves towards its goal.

The points at which these repulsive potential fields are placed are called points subject to potential (PSPs).

The total repulsive field is then calculated by summing the repulsive fields at each PSP.

In dual-arm motion planning, the repulsive field must also repel the manipulators from each other as

well as repelling from obstacles. However, as the IR-sensors do not differentiate between the objects they

detect, obstacles and the opposing manipulator will be detected in the same way by the sensors. This means

the repulsive function defined by Khatib for single manipulators extends naturally to dual-arm application

and repel the manipulators from each other and from obstacles in the environment. The repulsive potential

functions are defined in Eqs (2, 3).

UREP =
∑
j

UREPj
(2)

UREPj
=


1
2η
(

1
ρ −

1
ρ0

)2

if ρ ≤ ρ0

0 if ρ > ρ0

(3)

where η is a positive scaling factor, ρ = distance from the jth sensor to the nearest object in the

environment and ρ0 = limit of influence of an object.

A summation of these attractive and repulsive potential functions produces the total potential field, which

attracts the end-effector to its goal, while the repulsions produced at each PSP repel the manipulators from

each other and from obstacles. The attractive and repulsive forces which drive the manipulators’ motion

are obtained by calculating the gradient descent of the potential field. These forces are described in the

Cartesian space and must be converted to the manipulator’s joint space in order to create motion in the

manipulator’s joints. This conversion is done using a task-based configuration control, described in Eqs (4,

5) (Patel and Shadpey, 2005). There are three tasks in APF motion planning of manipulators; attracting the

end-effectors to their goals, repelling the manipulators away from potential collisions and avoiding singularity

configurations. The task-based configuration control is chosen as it minimises the total error across these

three tasks, resulting in a regulated motion. The weighting factors Wa, Wrpsp
, Wv can be used to prioritise

the tasks.
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q′ATT = (JTe WaJe +
∑
psp

JTcpsp
Wrpsp

Jcpsp
+Wv)−1(JeTWaFATT

d) (4)

q′REP = (JTe WaJe +
∑
psp

JTcpsp
Wrpsp

Jcpsp
+Wv)−1(

∑
psp

JTcpsp
Wrpsp

FREPpsp

d) (5)

where Je is the Jacobian matrix corresponding to the end-effector position and Jcpsp
is the manipulator’s

Jacobian matrix corresponding to the position of the specified PSP on the manipulator. FATT and FREPpsp

are the forces produced by the attractive field at the end-effector and the repulsive APFs, placed at the

position of the specified PSP on the manipulator. Wa, Wrpap
are weighting factors for these attractive and

repulsive APFs and Wv is the weighting factor for singularity avoidance.

This standard APF approach is well-suited for online local manipulator motion planning however it is

subject to local minima issues. One such persistent local minima issue, which is specific to the manipulator

motion planning, is the reacharound local minimum. This problem was identified and solved for single-

manipulators, using an improved online motion planner, based on the integration of goal configuration

sampling and subgoal selection to the standard APF approach (Byrne et al., 2013). As this single-manipulator

motion planner forms the basis for the proposed dual-arm motion planning techniques, a detailed review of

the approach is given in the following section.

3 Review of Online Single-Manipulator Motion Planner

A specific local minimum problem was frequently encountered in obstacle-laden environments using the

above APF local motion planner, which impacted greatly on the success of the algorithm. This reacharound

local minimum problem has been documented in (Kim and Khosla, 1992; Siciliano et al., 2010; Byrne et al.,

2012) and a typical example is shown in Figure 2. The issue occurs when the manipulator attempts to

naively reach-around obstacles to its goal, via a path which is outside its reachability and thus inevitably

arrives at a position where the attractive force to the goal and repulsive force of the obstacles it is reaching

around sum to zero. At this point, the manipulator becomes stuck in a local minimum. The cause of this

local minimum is an inability of the APF motion planner to identify when the path it is taking around the

obstacles has no valid solution. In Byrne et al. (2013), a solution to counteract this shortcoming in the

standard APF approach has been proposed, which uses the obstacle’s location, acquired through onboard

sensors, to identify when the manipulator is attempting an impossible path to the goal and thus alters the
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motion of the manipulator to take an alternate feasible path to goal.

Figure 2: Reacharound Local Minimum Issue

This online motion planner is based on using a combination of goal configuration sampling and subgoal

selection in addition to the APF functions described in Section 2. The goal configuration sampling is used

to identify feasible configurations which reach the goal, while subgoal selection is used to alter the motion

of the manipulator to reach one of these goal configurations. The goal configuration sampling is performed

by sampling all configurations which result in the end-effector position being equal to the goal position and

are free of collisions with the detected obstacles in the vicinity. The nearest valid goal configuration sample

to the current configuration is then chosen as the goal for this motion planning problem.

A subgoal selection algorithm is then used to create a path of subgoals around the obstacles between the

current configuration and this goal configuration. The method chosen is based on expanded convex hulls,

where a convex hull is first placed around the end-effector, the goal and any obstacles in the way. This creates

a path around the obstacles, however the path lies against the boundary of the obstacles. As a result, the

convex hull must be expanded to create a collision-free path to the goal.

Figure 3 shows an overview of the online motion planner. Prior to motion, goal configuration sampling

and subgoal selection are performed. This gives the manipulator; (a) a valid goal configuration to aim for

and (b) an uninterrupted path of subgoals around any obstacles between the initial configuration and this

goal configuration. To avoid potential local minima issues, it is necessary that these two conditions remain

true throughout the motion.

As the manipulator moves through the unknown environment, it uses the IR-sensors to detect obstacles.
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Figure 3: Overview of Online Single-Manipulator Motion Planner

The sensor-data collected is used to calculate the repulsive APF and also to store the obstacle information

in a map. The newly detected obstacles are then used to check if the specified conditions have been broken:

• If the goal configuration has become invalid due to a detected obstacle, an alternate goal configuration

is chosen from the samples. The subgoal selection process is run to create a path of subgoals from the

current configuration and this new goal configuration, avoiding any obstacles in between.

• If the goal configuration remains valid but the newly detected obstacles intersect the path of subgoals,

then subgoal selection is re-run to find a new uninterrupted path to the goal configuration

Once the specified conditions are deemed true, the APF functions are used to create potential forces, which

are converted to the joint space to move the manipulator. Figure 4 shows how this online motion planner

solves the reacharound local minimum problem by replanning the motion online using the local obstacle

information.

This online motion planner allows the fast APF to drive the manipulator through the environment, whilst

guarding against scenarios where the reacharound local minimum problem will occur, by implementing goal

configuration sampling and subgoal selection when necessary. In testing, this technique proved to be more

robust than the standard APF approach. As a result, it is chosen as a basis from which to develop improved
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local motion planning strategies for the investigated dual-arm motion planning problems which are outlined

in Sections 4 and 5.

Figure 4: Online Motion Planner solving the reacharound local minimum issue

4 Dual-Arm Motion Planning - Executing Individual Tasks

4.1 Introduction

A strategy for solving the problem of two manipulators operating on separate tasks, within a shared envi-

ronment is addressed here. This is a well studied problem in the field of manipulator motion planning with

both centralised and decoupled motion planning methods proposed for this type of problem (Chuang et al.,

2006; Tsai and Huang, 2009; Vahrenkamp et al., 2009; Curkovic and Jerbic, 2010). Centralised methods

provide the most complete approach but are not possible for uncertain environments so a decoupled motion

planning method is chosen here. Decoupled motion planning allows for the deconstruction of a dual-arm

motion planning problem into two single arm motion planning problems and a task-planning problem. The

motion of both manipulators can then be considered individually, using a local motion planner for a single

arm. A task-planning method is also needed to ensure both tasks are successfully completed.

For local motion planning techniques, such as the standard APF approach outlined in Section 2, high-level

intelligent task planners are not always possible due to the lack of information available. For this reason,
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prioritisation of the tasks is a popular approach in ensuring the tasks of both manipulators can be completed

successfully (Buckley, 1989).

However this APF approach with task priorisation is not an ideal solution to executing individual dual-

arm tasks. Firstly, the tasks are not run concurrently with the task prioritisation approach, causing the

efficiency of the motion planner to suffer. Also, the standard APF motion planner is subject to local

minimum issues which limit the robustness of this approach. To improve both the efficiency and robustness

an alternate approach is proposed, with the online motion planner outlined in Section 3 replacing the APF

motion planner. Unlike the standard APF approach, the online motion planner collects information, which

can be used intelligently to plan better motion than the naive standard APF. Thus, a more efficient high-

level task planner can be incorporated into this motion planner, which allows simultaneous execution of the

dual-arm tasks.

In this section, both of the above approaches are detailed; the standard APF with task prioritisation and

the proposed online motion planner with a high-level task planner. A comparison is drawn between them

using Monte Carlo simulations, which shows the improvement made by the proposed online motion planning

method, both in terms of efficiency and robustness.

4.2 APF approach with Task Prioritisation

The standard APF approach outlined in Section 2, is used here as the motion planner for this decoupled

dual-arm motion planning task. However with dual-arm motion planning, where the manipulators are

working on individual tasks, motion planning of each arm is not the only problem which needs solving. Task

planning is also necessary, as it may not be possible for both tasks to be completed simultaneously, due to

the manipulators’ paths intersecting, leading to local minima issues. High-level task planning can easily be

incorporated into a centralised motion planning method to allow for simultaneous execution when possible.

This is due to sufficient information known a priori. However for online decentralised motion planning, such

as this APF approach, there is no known information so this is not possible. Simultaneous execution of tasks

using APF could lead to local minimum and collision issues. For this reason, it is chosen to prioritise the

tasks and run them separately.

This task prioritisation is achieved by establishing a master-slave relationship between the two manipu-

lators within the APF motion planner. An example of this relationship is shown in Figure 5. Initially, Arm

1 is assigned as the master manipulator and moves towards its goal, while Arm 2, the slave manipulator,

maintains its position at the initial docking configuration, to allow Arm 1 to complete its mission. After
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(a) Arm 1 selected as master manipulator (b) Arm 1 retracts so Arm 2 can reach goal

Figure 5: Example of Task Prioritisation

that the relationship is reversed where, Arm 1 is set as the slave manipulator and retracts to the docking

configuration. Arm 2 becomes the master and is free to proceed unimpeded towards its goal, as shown in

Figure 5b.

This master-slave relationship is implemented within the attractive functions of the APF motion planner

as defined by Eqs (6, 7). The repulsive APF functions remain as described by Eqs (2, 3). An overview of

this task prioritisation algorithm is given in Figure 6.

Figure 6: Overview of Task Prioritation Decoupled Algorithm

UATTMAST ER
=
∑
psp

1
2
Kp(xee − xg)2 (6)
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where Kp is a positive gain and xee − xg is the distance between the end-effector’s current position and its

desired goal position.

UATTSLAV E
=


∑
psp

1
2
Kp(xpsp − xdockpsp

)2 if q 6= qdock

0 if q = qdock

(7)

where Kp is a positive gain and xpsp − xdockpsp
is the distance between the current position and the

docking position for each point-subject-to-point.

The APF method outlined here is a well-established approach to executing individual tasks within a

shared workspace. However due to the poor efficiency of the task prioritisation technique and the local

minima issues associated with the standard APF, an alternate approach is proposed, with the aim to increase

the success rate of the motion planning algorithm while also permitting simultaneous execution of the tasks

when possible.

4.3 Online Motion Planner with an Improved Task Planner

The proposed algorithm for executing individual tasks for this dual-arm system uses more effective motion

planning and task planning methods. The APF motion planner is replaced by the online single-manipulator

motion planner outlined in Section 3. This motion planner uses a higher-level of knowledge and collects

obstacle data as the manipulator progresses through the environment. Due to this fact, it is possible to

develop a more intelligent task handling strategy to accompany the online motion planner. This will replace

the in-efficient task prioritisation technique. The proposal for this new task planner is to use a three-stage

process to handle the scheduling of tasks. The first two stages are performed at a high-level, to determine if

there is a possibility to complete both tasks simultaneously, avoiding any need for scheduling. The third stage

is only used when simultaneous execution of the tasks is deemed impossible and prioritisation is necessary.

In the following sections, the three stages of the scheduling process are described.

4.3.1 Stage 1: Reassigning of Goals

In this proposed system, it is assumed that the manipulators in the dual-arm system are identical, like human

arms, and thus can perform identical tasks. This assumption can be utilised to remove a large number of

scheduling issues. If there are two tasks to be completed, it is possible to assign the tasks to the two arms

in a manner that will produce the simplest motion, as both arms can perform identical tasks.
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The first stage in the scheduling handling process is to reassign the two goals prior to motion, to remove

the possibility of scheduling issues. Figure 7a shows an example scenario where the paths of the two arms

must cross to complete their individual tasks. If these tasks were run simultaneously using the standard

APF approach, a local minimum or collision would occur. However by reassigning the goals, the scheduling

issue is removed. Figure 7b shows the solution to this problem, where Arm 1 and Arm 2 are able to complete

the tasks simultaneously and free of interference.

(a) Scheduling problem (b) Reassigned goals

Figure 7: Solving scheduling issue by the reassignment of goals

The method for assigning goals is simple. Each possible assignment is scored using the Euclidean distance

from the initial end-effector positions, EE1 and EE2, to the goal positions G1 and G2. The minimum score

is then chosen as outlined by Algorithm 1.

It is possible that a goal may not be reachable by one of the manipulators, either due to obstacles in

the way or due to it being outside the manipulator’s reachable workspace. In this case, the assignment with

this manipulator-goal pairing will receive an infinitely high score as it is impossible to complete. Although

goal reassignment solves a large amount of scheduling issues, further measures must be taken to remove the

remainder of cases which occur due to the presence of obstacles.

Algorithm 1 Scoring method
Score 1 = |EE1 G1|+ |EE2 G2|;
Score 2 = |EE1 G2|+ |EE2 G1|;

Chosen Assignment: min(Score1, Score2);

4.3.2 Stage 2: Cooperative Goal Configuration Sampling

In some cases, due to the position of obstacles in the environment, the only possible assignment of goals will

result in the paths of the manipulators crossing. Such a case is shown in Figure 8a. Arm 1 is only able to
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reach one of the goals due to the presence of the obstacle. This means the assignment of goals shown in

Figure 8a is the only viable option and contains a scheduling issue. To handle scheduling in this scenario,

goal configuration sampling is used. Goal configuration sampling is performed for both manipulators, giving

a range of solutions to both of the tasks. Where it is possible to obtain a pair of non-conflicting goal

configurations, these configurations are set as the desired goals for each manipulator, as depicted in Figure

8b. The single arm motion planner then simultaneously navigates each manipulator to these non-conflicting

solutions. Using this method, the motion of the manipulators can be altered to avoid the scheduling issue

and complete the specified tasks simultaneously.

(a) Scheduling problem (b) Non-conflicting goal configurations

Figure 8: Solving scheduling issue using Goal Configuration Sampling

4.3.3 Stage 3: Task Prioritisation

In the rare case, that the goals cannot be assigned in a manner that includes a valid pair of goal configurations,

the tasks cannot be completed simultaneously and a return to the original task prioritisation is needed. A

master/slave relationship is then invoked to schedule motions so both tasks can be completed. This is

performed at a low-level within the APF functions, as described in Section 4.2.

4.3.4 Overview of the High-Level Task Planner

Now that the high-level task planning strategy has been outlined, it is necessary to show how it is incorporated

into the design of the online motion planning algorithm. At the initialisation of the online motion planner,

the goals are assigned and a cooperative goal configuration pair is chosen from by sampling. The algorithm

then proceeds in the same manner as the single-manipulator motion planning algorithm. Sensor data is used
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to calculate the repulsive fields for each manipulator and to update the obstacle map, while the subgoal

selection algorithm produces a path of subgoal for each manipulator. These subgoals are used to calculate

the attractive APFs and move the manipulators to their respective goals.

In single-manipulator motion planning, goal configurations are updated online if a newly discovered ob-

stacle renders the current goal configuration invalid. In this dual-arm algorithm, when one of the goal

configurations is deemed invalid by an uncovered obstacle, the high-level task planner chooses a new co-

operative pair so that the motion of both manipulators can continue without a scheduling issue. If no

valid cooperative pair exists, the goals may be reassigned online to find new non-interfering paths for the

manipulators. This high-level task planner is summarised in Figure 9.

Figure 9: Flowchart of the High-Level Task Planner

In the case where it is not possible to obtain a valid cooperative pair of goal configurations, a simultaneous

solution can not be produced and task prioritisation is invoked. The master manipulator continues towards

its goal, while the slave manipulator retracts. Once the master manipulator reaches its goal, the manipulators

reverse roles and the second arm can complete its task.
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Method Success Rate
APF with Task Prioritisation 60.73%
Online Motion Planner with High-Level Task Planner 87.48%

Table 1: Robustness of each motion planning/task planning technique

4.4 Monte Carlo Analysis

In order to test this proposed online motion planning algorithm for completing two individual motion planning

tasks within a shared 2-D workspace, Monte Carlo simulations were performed. In total, 10, 000 scenarios

were considered under the following conditions:

• The chosen environment is outlined in Figure 1. Each manipulator consists of links of length 20 cm,

with an allowable angular range of −π rad < θ < π rad. The manipulators are deployed in the outlined

shared workspace, starting from the initial docking configuration.

• 2-4 obstacles and 2 goal positions were placed randomly within the shared workspace.

• It is assumed the obstacles were completely unknown at the beginning of the simulation.

• The sizes of the obstacles was chosen at random within the range 1cm2 − 400cm2.

• All scenarios which were considered, contained a valid solution to the motion planning problem.

The purpose of the Monte Carlo simulations was to investigate the improvements made by both the

proposed online motion planner and the high-level task planner. Firstly, the robustness of the online motion

planner was tested to see if it produced less local minima issues than the standard APF approach. The new

high-level task planning technique was also tested to see if it could successfully execute the individual tasks

simultaneously. The effect this simultaneous execution had in terms of the time to converge to a solution

and the overall path travelled by the manipulators was also investigated.

Table 1 shows the success rates for both proposed approaches on the tested scenarios. The standard

APF motion planner with task prioritisation produced a very low success rate of 60.73%. This is due to

the local minima issues associated with the standard APF method in obstacle laden environments. When

this standard APF method is replaced by the proposed online motion planner a much higher success rate of

87.48%, is obtained. This proves that the proposed online motion planner is more robust and less susceptible

to local minima issues than the standard APF approach.

When testing the proposed high-level task planning technique, each of the tested Monte Carlo simulations

could be categorised by the task handling method needed to solve them. This is represented in Table 2.
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No Scheduling Assigning Cooperative Task
Issue Goals GC Sampling Prioritisation

% of Cases 53.9% 44.6% 1.2% 0.3%

Table 2: Methods used by the high-level task planner to solve scheduling issues

53.9% of cases had no scheduling issues and could be solved without the need for any high-level input,

whereas 44.6% were solved by reassigning the goals to remove the scheduling issue. The remaining 1.5% of

cases could not be solved by reassigning goals. In 1.2% of these cases, the necessity for scheduling could

be removed by the selection of a valid cooperative goal configuration pair. This means that the proposed

high-level task planner was able to ensure that 99.7% of all problems could be completed concurrently. For

the remaining 0.3% of problems, this was not possible and a reversion to task prioritisation was necessary.

Method Success Rate Execution Time Average Manipulator Path Length
Task Prioritisation 88.30% 33.47 s 32.49 cm
High-Level Task Planner 87.48% 25.12 s 23.41 cm

Table 3: Comparision of the task planning techniques

The motivation to use this high-level task planner over basic task prioritisation was to improve the

execution time of the tasks by permitting the tasks to run concurrently when possible. This improvement is

reflected in the results gathered from the Monte Carlo simulations. Table 3 shows the comparison between

running the proposed online motion planner with task prioritisation and running it with the improved

high-level task planner. The high-level task planner produces much quicker solutions, with shorter overall

distances travelled by each manipulator. This is due to the fact that the manipulators were not required to

wait to complete their task or needed to retract to their original docking position. The unsuccessful cases

are due to the local minima and collision issues inherited from the previously proposed single-manipulator

motion planning algorithm. It should be noted there is a slight drop in accuracy when using the high-

level task planner. This is due to a small number of errors which occurred with the manipulators working

simultaneously in tight spaces.

In this section, the proposed online motion planner for single-manipulator systems has been successfully

applied to solve the problem of two manipulators working independently in a shared unknown environment.

The proposed method has proved to be more robust than the standard APF approach and also facilitated the

development of a high-level task planner, which is more efficient than the classic task prioritisation approach.

The following section investigates an alternate type of decoupled dual-arm motion planning problem, where

cooperation between the manipulators is required. Again a standard APF approach is given, along an
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improved motion planning strategy based on the proposed online motion planner outlined in Section 3.

5 Dual-Arm Motion Planning - Single Task with a Cooperative

Goal

5.1 Introduction

Consider the case of a cooperative task of passing an object from one manipulator to another (Vahrenkamp

et al., 2009), or the assembly of two parts by autonomous manipulators (You et al., 2012). Clearly this

would require two manipulators working cooperatively with some mutual goal position for the end-effectors.

This is the next motion planning problem to be considered for the proposed dual-arm system; planning the

motion of both manipulators to meet at a mutual goal, in order to perform a single cooperative task.

Given a known environment, this problem could be solved using a centralised dual-arm motion planner.

Complete grid-based methods have been established for dual-arm systems with few degrees of freedoms (Koga

and Latombe, 1992) and sampling-based methods have also been proposed for dual-arm systems with greater

degrees of freedom (Vahrenkamp et al., 2009). In uncertain environments, such as the one investigated here,

a local APF-based approach could be used. In this section, a standard APF approach is first employed and

its limitations are exposed. An alternate method, based on the online motion planner outlined in Section 3,

is then proposed to address the limitations of the standard APF approach.

5.2 APF approach

Classically, in the application of APFs, the desired goal position of the robot is set as the pole of the attractive

field. The attractive APF function is then used to guide the robot to this position, while the repulsive fields

are used to avoid the obstacles in the environment. However, in this type of cooperative problem there is

no definite goal position for each manipulator. Instead, the goal of this motion planning problem is to have

the manipulators’ end-effectors meet each other at any feasible point in space. The lack of a definite goal

position for each manipulator thus requires a modification to the standard APF approach.

This modification is done by simply setting the attractive APF functions to attract the manipulators to

each other, rather than to a set position in the workspace. A direct line from one end-effector to the other is

established, and the goal position of each manipulator is set as the midpoint of this line, as shown in Figure

10. As the manipulators move, this direct line between the end-effectors and the goal position is updated to
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correspond with the updated positions of the end-effectors.

Figure 10: Attractive forces between the two end-effectors

UATT =
1
2
Kp(x− xg)2 (8)

where Kp is a positive gain and x − xg is the distance between the end-effector and its goal, which is the

midpoint of the direct line from one end-effector to the other, i.e. xg = xEE1−xEE2
2 .

The modified attractive APF function is given by Eq 8 and will result in the movement of the manip-

ulators’ end-effectors to each other, in order to meet at a mutual goal position. However as this approach

is based solely on the standard APF method, it is subject to a variety of local minima issues. These gen-

erally occur if there is an obstacle intersecting the direct line between the two end-effectors or due to the

reacharound local minimum. Examples of these possible local minima issues are depicted in Figure 11. The

presence of these issues constrains the completeness of this approach. Due to the limitations, it is chosen

instead to use the online motion planner described in Section 3, to produce a more robust solution to this

type of cooperative dual-arm motion planning task.

5.3 Online Motion Planner for reaching a cooperative goal

As mentioned in the previous subsection, in this type of cooperative motion planning problem there is no

definite goal position in the workspace for the manipulators to aim for. The goal is simply to find any mutually

reachable point in the workspace. However, the proposed online motion planner, outlined in Section 3, is
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(a) Collinear local minimum (b) Reacharound local minimum

Figure 11: Local Minimum issues with APF approach

dependant on the existence of a definite goal position. For this reason, it is essential to modify the approach

so that a cooperative goal position can be chosen, which can be successfully reached by both manipulators.

The selection of a cooperative goal position is done using a goal space sampling method. The goal space

is defined as the intersections of the two configuration spaces, i.e. the space in which a mutual goal can exist.

This goal space region is then sampled to obtain a set of possible mutual goal positions. Figure 12 shows

the goal space along with a number of possible goal positions chosen by the proposed method.

Figure 12: Sampling the Goal Space

To determine which one of these possible goal positions is a viable option, sampling is performed at

each possible goal position. If a valid pair of goal configurations is found, this goal position is deemed to

be a suitable mutually reachable goal. In an attempt to find the optimal solution, the goal configuration
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Figure 13: Selecting a mutually reachable goal

sampling process starts with the goal position which minimises the distance travelled by both manipulators.

This point is the midpoint of the direct line from one manipulator to the other, as in Figure 10. If this

position is not valid, its neighbouring sample positions are checked. The process continues recursively until

a valid goal position is found. Figure 13 shows a valid pair of goal configurations found by goal configuration

sampling, rendering the tested goal position as a valid mutual goal.

Having found a valid mutual goal for the manipulators, the decoupled motion planning can be performed

using the online motion planner outlined in Section 3. It should be noted that this is a single task which

must be completed simultaneously by both manipulators so no task planner is required. Similar to the online

motion planner, the process of selecting a valid mutual goal must be equipped to deal with the discovery

of new obstacles online. As new obstacle information is acquired, it is possible that the goal position may

become unreachable by one or both of the manipulators. In this scenario, a new goal position is sought,

starting with the neighbours of the old goal position. Figure 14 shows an overview of this online motion

planner for reaching a cooperative goal.

5.4 Performance-Enhancing Modifications

The modification outlined in the previous subsection allows for the use of the proposed online motion planner

for solving this cooperative motion planning problem. However, the performance is not as efficient as desired.

In certain scenarios, the algorithm can perform slowly, causing motion to cease momentarily while a new
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Figure 14: Flowchart of the online motion planner for reaching a cooperative goal

cooperative goal calculated. It is also liable to select goal positions which produce slow convergence to the

mutual goal. To combat these performance issues, further modifications are proposed to enhance the overall

speed of the algorithm, by reducing the time taken to calculate valid goal positions and by shortening the

time taken for the manipulators to reach each other.

5.4.1 Modification 1: Faster goal position determination using a lower goal configuration

sampling rate

The most time-consuming process involved in this online motion planning algorithm is the determination

of a valid goal position. The method requires sampling to be performed at every possible position within

the goal space until a valid pair of goal configurations is found. Although goal configuration sampling is a

relatively fast process, it is being applied to two arms and across a number of sample goals here. If there

is no valid goal position near the starting point, the process can become time-consuming, as a large portion

of the goal space needs to be tested before finding a valid goal. This means the robot’s motion can remain

static for a significant fraction of time while a valid goal position is found.

A two stage goal configuration sampling approach is proposed to speed up the process. In the first stage,
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a lower sampling rate is used however if it fails to find a solution, the sampling rate is increased to find

the missed solution. Running goal configuration sampling at a lower rate reduces the computational cost of

the goal configuration sampling process, at the expensive of reducing the possibility of finding a valid pair

of goal configurations. Through repeated simulations, it could be concluded that the selection of a lower

sampling rate does not impact greatly on the accuracy of finding a valid goal position. Due to the large

number of possible goal positions, it is highly unlikely that a valid solution will not be found, even using the

lower sampling rate.

On the rare occasion that the entire goal space has been searched without finding a valid pair of goal

configurations, the process of finding a valid goal position is repeated using a higher sampling rate. The

increased number of samples involved will increase the chances of finding a valid goal position. This two

stage approach maintains the accuracy in determining valid goal positions, while the use of an initial lower

sampling rate allows for these positions to be found more efficiently, in a large search space.

5.4.2 Modification 2: Faster goal position determination by updating the goal space

A second modification was identified to ensure faster calculation of the cooperative goal positions. When

used in cooperation with the lower goal configuration sampling rate, this further enhances the performance

of the goal position finding process. As obstacles are discovered within the workspace, they can obstruct the

motion of the manipulators, thus potentially reducing the reachable workspace of each manipulator. As a

result, the intersection of the reachable workspaces, i.e. the goal space, can shrink as obstacles are detected.

This can be seen in Figures 15 and 16. Figure 15 shows the goal space at the start of the task. However in

Figure 16, it can be seen that an obstacle has been discovered and is restricting the motion of Arm 1. This

reduces Arm 1’s reachable workspace and consequently, the cooperative goal space is greatly reduced from

the original goal space (Figure 15), rendering a large number of the goal samples as invalid solutions.

If the goal space is not updated as obstacles are discovered, these unreachable samples would still be

investigated by the algorithm as a possible mutual goal. This would be computationally burdensome, un-

necessarily slowing down the process of finding a cooperative goal. However by continually updating the

goal space as obstacles are discovered, the goal configuration sampling process can be bypassed for these

redundant samples and the algorithm can run more efficiently, resulting in faster calculations of cooperative

goals.
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Figure 15: Original goal space

5.4.3 Modification 3: Reverting to naive APF when safe

Previously, in Section 5.2, it was stated that this problem could be solved via the standard APF method.

This method is known to be problematic due to the local minima issues which occur when traversing obstacles

in the environment. However the standard APF approach is very fast and attracts the end-effectors to each

other by the shortest route possible. This means when the method succeeds, it provides a faster, more direct

motion to the goal than using the online motion planner.

For this reason, it is deemed advantageous to use APF when there is no known obstacles between the

two manipulators. Once an obstacle is detected in the intermediate region, the more complex online motion

planner is invoked to ensure potential local minima issues are avoided.

5.4.4 Modification 4: Faster termination by combining manipulators’ paths

In most cases, due to obstacles in their paths, it is likely that both manipulators may not reach the mutual

goal at the same time. This means that one manipulator will reach the goal and must wait for the other to

arrive. This reduces the efficiency of the solution.

Within the online motion planner, a subgoal selection algorithm is used to plot a path of subgoals

from the end-effector’s current position to the desired goal. Thus each manipulator has a set of subgoals

(SG1, ...SGN ) which define the path of its motion, from the end-effector’s current position (EE), around

any obstacles towards the mutual goal position (MG). This path is defined by these points; [EE → SG1 →

...→ SGN →MG]. Once the manipulator travels this path and reaches the mutual goal position, its motion

25



Figure 16: Reduced goal space

terminates. However the goal of this algorithm is to have the end-effectors meet each other. The chosen

mutual goal only exists to facilitate this intercept. For this reason, the desired path of the manipulator should

not stop when it reaches the mutual goal, it should continue on in an attempt to intercept the end-effector

of the other manipulator.

Algorithm 2 Combining paths of manipulators into a single cooperative path
Existing Algorithm :
Path of ARM 1 = [EE1→ SG11 → SG12 → ...→ SG1M →MG]
Path of ARM 2 = [EE2→ SG21 → SG22 → ...→ SG2N →MG]
Modification :
Path of ARM 1 = [EE1 → SG11 → SG12 → ... → SG1M → MG → SG2N → SG2N−1 → ... → SG21 →
EE2]
Path of ARM 2 = [EE2 → SG21 → SG22 → ... → SG2N → MG → SG1M → SG1M−1 → ... → SG11 →
EE1]

In the existing algorithm two individual motions are described; a path from the end-effector of Arm 1 to

the mutual goal and a path from the end-effector of Arm 2 to the mutual goal. However by following the

logic expressed here, an alternate approach is proposed to redefine this motion. Instead of two decoupled

paths, from each end-effector to the mutual goal, the two paths are combined into a single cooperative path

between the two end-effectors. Now, if one manipulator reaches the mutual goal before the other, its motion

does not terminate, instead it will continue down the cooperative path to meet the other manipulator, as is

shown in Figure 17.

This modification is outlined by Algorithm 2. Consider if Arm 1 completes its path of subgoals, [EE1→
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(a) Arm 1 waiting for Arm 2 to
reach the mutual goal

(b) Arm 1 continues along combined
path to meet Arm 2

Figure 17: Combining the subgoal paths

SG11 → SG12 → ...→ SG1M →MG], before Arm 2 reaches the mutual goal. Using this improved method,

Arm 1 does not terminate at the mutual goal (MG). Instead it will continue its motion down the path of

subgoals of Arm 2, [MG → SG2N → SG2N−1 → ... → SG21 → EE2], in order to meet the end-effector of

Arm 2. This approach ensures that the manipulators never become static but always remain moving towards

each other, leading to a faster termination at a mutual goal.

5.4.5 Integration of modifications into the existing algorithm

To incorporate the aforementioned performance enhancing modifications, some alterations must be made to

the execution of the existing algorithm. Figure 18 gives an overview of this enhanced process. The goal

position sampling is run at the beginning as before, however it uses a lower goal configuration sampling rate

to compute a mutual goal position faster. Should this not yield a valid goal position, a higher sampling rate

is used. The data retrieved from the sensors is now used to update the goal space as well as computing

the repulsive fields and updating the obstacle maps. The other two changes are the combining of the

manipulators’ subgoal paths and the reversion to pure-APF motion planning when the mutual workspace is

free of obstacles.

5.5 Monte Carlo Analysis

In this section, three approaches have been proposed to this decoupled motion planning task of attracting

the manipulators’ end-effectors to each other, so that they meet at a mutual goal position. These methods
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Figure 18: Online Motion Planner with performance enhancements

include;

• the standard APF approach, outlined in Section 5.2.

• the proposed online motion planner for reaching a mutual goal, outlined in Section 5.3.

• the proposed online motion planner with performance enhancing modifications, outlined in Section 5.4.

Monte Carlo simulations were used to compare the performance of these different approaches. Each

algorithm was tested in 2000 varied scenarios with the same conditions as mentioned in Section 4.4. The

process of goal position determination uses a step size of 5 mm for goal space sampling and 0.2 rad and 0.5

rad for goal configuration sampling for the higher and lower sampling rates, respectively.

The algorithms were tested for completeness, overall runtime and the time required to find a new goal

position. To see how each performance enhancing modification affected the ability of the algorithm, numerous

versions of the online motion planning algorithm were tested. Starting with the assessment of the online

motion planner developed in Section 5.3, each performance enhancing modification was individually and run
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Algorithm Success Rate Collisions Local Minima
APF 87.8% 4.2% 8%
Online Motion Planner
No Performance Enchancements 89.2% 4.6% 6.2%
+ Lower Sampling Rate 90.9% 4.2% 4.9%
+ Updating Goal Space 91.5% 4.2% 4.3%
+ Safely Revert to APF 94.7% 4% 1.3%
+ Combine Paths 95.2% 4% 0.8%

Table 4: Outcomes of the Monte Carlo Simulations

on the Monte Carlo simulation scenarios to judge its influence on the performance of the algorithm. This

continued until all the enhancements had been added and the fully enhanced algorithm was obtained.

Table 4 shows the results from the tested scenarios. The APF approach has a high success rate in

spite of its well-documented issues with local minima. There are two main reasons for this. Firstly, if one

manipulator becomes stuck in a local minimum, it is not detrimental to the success of this dual-arm motion

planning problem. The other manipulator can still move towards it and find a solution. Another reason is

the lack of definite goal position for this motion planning problem. The goal position of the attractive APF

changes with the motion of the manipulators, as described in Section 5.2. If one manipulator falls into a local

minimum, it is possible that the motion of the free manipulator will change the desired mutual goal position

and consequently, alter the attractive force on the trapped manipulator. This can cause the manipulator to be

freed from the local minimum, allowing it to resume its motion towards the other manipulator. The flexibility

of the mutual goal position means that, unless both manipulators are in a local minimum simultaneously,

there is a good chance the APF approach can achieve a solution to this specific dual-arm motion planning

problem.

It is demonstrated however that, the online motion planner is still more robust than the standard APF

approach, with the final fully-enhanced online motion planner obtaining a success rate of 95.2% compared

to 87.8% for the standard APF approach. This is due to the ability of the online motion planner to resolve

local minima issues such as the collinear and reacharound local minima issues depicted in Figure 11a and

Figure 11b. It is noted that as each modification is added, there is a slight increase in the success rate

of the algorithm, especially when the subgoal paths are combined and there is a reverting to APF in safe

conditions. This is mainly down to these modifications creating shorter, more natural paths avoiding difficult

configurations for the manipulator.

Along with the robustness of the system, speed was also considered to be an important criteria for this

proposed online motion planning method. The average processing time of each algorithm was recorded,
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Algorithm Success Rate Average runtime Average Processing Time
APF 87.8% 4.6500s 0.0917s
Online Motion Planner
No Performance Enhancements 89.2% 11.2060s 0.1343s
+ Lower Sampling Rate 90.9% 9.7494s 0.1292s
+ Updating Goal Space 91.5% 9.6147s 0.1283s
+ Safely Revert to APF 94.7% 9.3994s 0.1246s
+ Combine Paths 95.2% 9.1451s 0.1210s

Table 5: Average processing time of each algorithm

Algorithm Min Time Average Time Max Time
No Enhancements 0.446s 1.255s 15.245s
+ Lower Sampling Rate 0.110s 0.297s 3.820s
+ Updating Goal Space 0.108s 0.328s 1.692s

Table 6: Time to find a new valid goal position

with the results given in Table 5. The standard APF approach has a very fast processing time as it uses

only real-time information in its calculations and thus requires much less computation. The online motion

planner, proposed in Section 5.3, uses a higher-level of intelligence when computing the manipulator’s paths.

This makes it more robust than the standard APF approach but the processing time suffers due to the

great computation needed. The computationally burdensome cooperative goal finding process is the main

culprit for the slower processing time. Table 6 shows the average time this goal finding process took to find

a valid goal position. The original online motion planner without enhancements took an average of 1.255

seconds every time it was required to compute a cooperative goal position and in the worst case scenario the

manipulators remained static for 15.245 seconds before a goal position was found. This is clearly unacceptable

for online implementation.

The performance enhancements were proposed to reduce the computational expense of this approach.

Choosing a lower sampling rate was shown to find goal positions faster and thus greatly reduced the processing

time of the algorithm. Also in Table 6, the effect of continually updating the goal space can be seen. Although

it produced a slightly slower average time to find a mutual goal, the worst case scenario was greatly improved.

This means that the motion of the manipulators is never greatly interrupted when the algorithm needs to

recalibrate and find a new valid goal position. This claim is supported by observing the processing time of

the algorithms in Table 5. Over the tested scenarios, using a lower sampling rate and continually updating

the goal space produced a quicker average runtime than using a lower sampling rate only. The final two

modifications; reverting to APF where applicable and combining the subgoal paths, helped produce shorter

paths and thus faster calculations which further lowered the average runtime of the simulations, as can be
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seen in Table 5.

Overall the proposed online motion planner is shown to successfully solve this type of dual-arm motion

planning problem for a vast percentage of scenarios. Although it is not as fast as the standard APF, it is

more robust, while the performance enhancements made to the algorithm ensure fast computation times,

that are adequate for online implementation.

6 Concluding Remarks

The work presented in this paper improves on the existing manipulator motion planning techniques, for

the deployment of autonomous manipulators in unknown environments. Specifically, two challenging motion

planning tasks for the dual-arm system have been addressed; the execution of two individual and independent

tasks; and the motion planning problem of reaching a cooperative goal both in a shared and unknown

workspace.

A local motion planning solution based on standard APFs has been identified for each task. Although

successful for a portion of the tested simulations, it is clear that APF motion planning alone is not enough to

provide a robust solution to these dual-arm local motion planning tasks. Instead a dual-arm online motion

planner consisting of goal configuration sampling, subgoal selection and APF motion planning has been

proposed. This method improves on the robustness of the APF-approach for both types of decoupled motion

planning tasks. The incorporation of an intelligent task planner makes it more efficient than the standard

APF approach at completing individual dual-arm tasks. The proposed motion planner also maintains fast

computations for both tasks, which is necessary for any online motion planning problem.
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