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Abstract 

 A cheese ripening is an important step in cheese making for modifying surface and curd 

properties. Due to physical, chemical and biological changes, mass loss usually occurs during 

the process. Although these changes are essential for developing the texture and flavour of 

cheese, mass loss decreases product yields. A reliable mathematical model is useful to quantify 

mass loss during cheese ripening so that the processing conditions can be fine-tuned to achieve 

the desirable throughput. In this study, for the first time, the reaction engineering approach 

(REA)-based model is applied to model the cheese ripening. The study shows that the REA-

based model is accurate to model cheese ripening of Camembert and French smear cheese. In 

addition, the REA is able to model the cheese ripening under time-varying environmental 

conditions. For this purpose, the equilibrium activation energy is evaluated according to the 

corresponding humidity and temperature in each period while the same relative activation 

energy for ripening under constant environmental conditions is implemented. The REA is a 



simple yet effective approach to model the simultaneous heat and mass transfer process 

accompanied by chemical and biological reactions. Considering its effectiveness, the REA can 

be applied in industrial settings for predicting mass loss during cheese ripening.  
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Introduction 

  Cheese-making is usually ended by ripening indicated by physical, chemical and 

biological changes due to microbial activity. Cheese ripening is essentially breakdown of 

protein, lipids and carbohydrates which leads to texture modification (Farkye, 2004; Helias and 

Bernard, 2007). Several ripening agents, covering lactic cultures, milk coagulants, milk 

enzymes and secondary cultures, contribute to breakdown of these components (Hill, 2017). 

 

 Although cheese ripening is important to develop the texture and flavour, mass loss 

usually occurs during ripening due to physical, biological and chemical changes. Combination 

of evaporation, production of carbon dioxide and consumption of oxygen contributes to the 

mass loss (Mirade et al, 2004; Picque et al, 2006; Helias et al, 2007a,b). Temperature, relative 

humidity, gas composition and types of microorganisms simultaneously affect the extent of 

mass loss during ripening (Liu and Puri, 2008).  Mass loss is unfavourable since it decreases 

the product yields. For manufacturing of traditional cheese, weight is sometimes used as the 

conformity criterion (Gaucel et al, 2012). Depending of the cheese type, the mass loss up to 8% 

commonly occur during ripening (Ramet et al, 2000). In addition, due to the difficulty in 



measurement of variables during solid substrate fermentation involved in cheese ripening, the 

mass loss is often used as an integrative indicator that reflects product evolution and 

characteristics (Helias et al, 2008). 

 

 A reliable mathematical model is useful to account the mass loss during cheese ripening. 

There are several published mathematical models to describe the cheese ripening which can be 

classified into empirical and mechanistic-based models. Artificial neural and Bayesian network 

models are applied to link the processing conditions and moisture content (Funahashi and 

Horiuchi, 2008, Baudrit et al, 2010). For mechanistic models, diffusion-based models are 

implemented (Gerla and Rubiolo, 2003; Aldarf et al, 2006; Pajonk et al, 2010). Effective 

diffusivity was employed to describe the diffusion of water, NaCl and lactic acid during cheese 

ripening (Gerla and Rubiolo, 2003). 

 

 The above models provide reasonable agreement towards the experimental data. 

Nevertheless, the empirical models are essentially not physically meaningful since no major 

phenomena are captured in the models. The diffusion-based models capture well the 

phenomena but they require a number of experiments followed up by optimization procedures 

to generate the effective diffusivity function of each species (Gerla and Rubiolo, 2003; Aldarf 

et al, 2006). The effective models should be able to capture the major phenomena and require 

minimum number of runs to generate the model parameters.  

  

 The reaction engineering approach (REA) is essentially an application of chemical 

reaction engineering approach to model drying kinetics. Here, the evaporation is represented 

as zero order activation process and the condensation is modelled as first order without 

activation process (Chen and Putranto, 2013). To date, the REA has been developed and 



employed a number of heat and mass transfer processes including drying, baking, roasting, 

water vapor sorption and heat treatment (Putranto et al, 2011a,b; Putranto and Chen, 2012a.b; 

2014a,b). More recently, it has been shown that the REA is not only able to model the 

evaporation of water but also volatiles (organic components) (Putranto and Chen, 2016). In 

addition, the REA has been applied to model the solute segregation inside dairy droplets 

(Putranto et al, 2017) 

 

Due to the applicability of the REA so far, it is worthwhile to develop the REA-based 

model to represent the mass loss during cheese ripening. Although the REA has been proven 

to model the several challenging heat and mass transfer processes as described above, it is 

uncertain whether the REA is applicable to model the mass loss during cheese ripening since 

chemical and biological reactions may significantly alter the cheese structure. The relative 

activation energy, as a fingerprint of the REA, may not be able to capture these changes.  

 

In this study, for the first time, the REA is applied to model the mass loss during cheese 

ripening. It is aimed to evaluate the applicability of the REA framework to describe the mass 

loss during cheese ripening under controlled and time-varying environmental conditions. The 

outline of this paper is as follows: firstly, the experimental details are reviewed followed up by 

development of mathematical model. The relevant discussions are then provided subsequently.  

 

Review of experimental details 

 The experimental data for validating the results of modeling are derived from the 

previously published data (Helias et al, 2007b; Riahi et al, 2007). For better understanding of 

the modeling framework, the experimental details are reviewed briefly here. For Camembert- 

cheese ripening, two runs of cheese ripeningare conducted. The first one is undertaken under 



manually adjusted relative humidity while the second one is conducted under automatic 

controlled relative humidity to ensure the constant relative humidity of 92%. Figure 1 shows 

the profiles of relative humidity resulted from the manually adjusted humidity.The Camembert 

cheese is prepared according to protocol described in Leclercq-Perlat (2004). During ripening, 

the chamber temperature and relative humidity are monitored. The weight of samples and 

chamber atmospheric composition (concentration of CO2 and O2) are also recorded during 

ripening (Helias et al, 2007b). For French smear cheese ripening, the samples are prepared 

according to the protocol described in Leclercq-Perlat et al (2000). The initial sample weight 

is 300 g and the ripening is conducted in the chamber under controlled relative humidity and 

temperature. In each run, a balance is used to continuously monitor the weight changes (Riahi 

et al, 2007). The data presented in Riahi et al (2007) and Helias et al (2007b) are used for 

validating the modelling here.  For ripening of French smear cheese, the data presented in 

Figure 3 of Riahi et al (2007) are used. For ripening of Camembert-cheese under controlled 

and time-varying ripening conditions, the data presented in Figure5A run 2 and run 1 of Helias 

et al (2007b) is used, respectively. The figures are converted to the coordinates of time and 

moisture content by using digitizer software.  

 

Mathematical modeling 

 The reaction engineering approach (REA) is employed as a modelling platform in this 

study. The details of the REA have been presented previously (Chen and Putranto, 2013) and 

summarised briefly here. Generally, the drying rate of a material can be expressed as: 

)( ,, bvsvms Ah
dt

dX
m          (1) 

where ms is the dried mass (kg), t is the time (s), X is the average moisture content on dry basis 

(kg water. kg dry solids-1), A is the surface area (m2), hm is the mass transfer coefficient (m s-



1),  ρv,s is the surface water vapor concentration (kg/m3) and ρv,b is the concentration of water 

vapor in drying medium (kg/m3).  

 

The surface water vapor concentration (ρv,s) can be related against saturated vapor 

concentration (ρv,sat) by: 
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where ΔEv is the activation energy (J mol-1) which represents the additional difficulty to remove 

moisture from the material beyond the free water effect. This ΔEv is moisture content (X) 

dependent. T is the sample temperature of the material being dried (K) and ρv,sat is the saturated 

water vapor concentration (kg/m3).  

The mass balance (equation (1)) can then be expressed as: 





 


 bvsatv

v
ms RT

E
Ah

dt

dX
m ,,)exp(       (3) 

The activation energy (ΔEv) is determined experimentally by placing the parameters required 

for equation (3) in its rearranged form: 
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The dependence of the activation energy on the moisture content on a dry basis (X) can be 

normalized as: 
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where f is a function of water content difference and ∆Ev,b is the ‘equilibrium’ activation energy 

(J mol-1) representing the maximum ΔEv under the relative humidity and temperature of the 

drying air. ΔEv,b  can be expressed as: 



        (6) 

where RHb is the relative humidity of drying air and Tb is the drying air temperature (K). 

The relative activation energy (ΔEv/ΔEv,b) generated can be applied another drying conditions, 

provided that the same material and similar initial moisture content, since the relative activation 

energy would then collapse to a similar profile (Chen and Putranto, 2013). 

 

During cheese ripening, physical, chemical and biological phenomena occur. The 

physical phenomena is governed by drying which occurred due to the difference in water vapor 

concentration at the interface of sample and the ambient. The biological and chemical 

phenomena are mostly determined by production of CO2 and consumption of O2. The 

generation of other gases (such as aromatic components) are considered to not to play an 

important role in the mass loss. The production of Camembert-type cheese employs the aerobic 

pathways in which the respiration quotient is 1, according to the following reaction (Kang and 

Lee, 1998; Song et al, 2002; Picque et al, 2006): 

OHCOOOHC 2226126 666        (7) 

In this study, the production rate of CO2 and consumption rate of O2 are determined based on 

the measured concentrations of these gases during ripening. This is reasonable since the 

ripening is undertaken in a closed chamber which ensured that the dynamics of concentrations 

of CO2 and O2 are only resulted from the exchanges between the atmosphere inside the chamber 

and the cheese samples (Helias et al, 2007b, 2016).  

 

 By implementing the reaction engineering approach (REA), the mass balance of cheese 

during ripening can be represented as: 
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where rO2 is the consumption rate of oxygen (mol.m-2.s-1), rCO2 is the production rate of carbon 

dioxide (mol.m-2.s-1), wO2 is the molecular weight of oxygen (kg.mol-1) and wCO2 is the 

molecular weight of carbon dioxide (kg.mol-1).  

 

For Camembert-cheese, the relative activation energy (ΔEv/ΔEv,b) is generated from the 

cheese ripening run under constant environmental conditions (Helias et al, 2007b). The 

activation energy is evaluated based on equation (4) and divided with the equilibrium activation 

energy (equation (6)) to result in the relative activation energy (equation (5)). The relative 

activation energy is then fitted towards the difference in moisture content (X-Xb) based on least 

square error minimisation method by using solver available in Microsoft Excel®. The relative 

activation energy (ΔEv/ΔEv,b) of Camembert-cheese can be can be written as: 
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For the French smear cheese, the relative activation energy (ΔEv/ΔEv,b) is established from the 

cheese ripening at relative humidity of 99% and temperature of 12 °C (Riahi et al, 2007). By 

using the similar procedures mentioned above, the relative activation energy of French smear 

cheese can be expressed as: 
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The relative activation energy of Camembert and French smear cheese, represented in 

equations (9) and (10), respectively, is shown in Figure 2. Combination of the relative 

activation energy with the equilibrium activation energy results in the activation energy which 

essentially represents the changes in internal cheese structure during ripening. The activation 

energy is initially zero at the beginning of ripening and keeps increasing during the process as 

the difficulty to remove the moisture from the samples increases. When the equilibrium 



condition is achieved, the equilibrium activation energy is attained and the relative activation 

energy is one. 

  

 The heat balance during the cheese ripening can be expressed as: 
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where m is the sample mass (kg), Cp is the sample heat capacity (J.kg-1.K-1), h is the heat transfer 

coefficient (W.m-2.K-1), ΔHv is the vaporization heat of water (J.kg-1) and ΔHrespiration is the 

respiration heat (J.mol-1). 

 

In order to yield the profiles of mass and temperature during Camembert cheese 

ripening, equations (8), (9) and (11) are solved simultaneously in conjunction with the 

equilibrium activation energy (equation (6)). Similar approach is used for modelling French 

smear cheese ripening but the relative activation energy shown in equation (10) is employed. 

For modelling the mass loss of cheese ripening under time-varying relative humidity, the 

corresponding humidity in each ripening period is employed in the mass balance (equation (8)). 

The relative activation energy, implemented for the ripening under constant environmental 

conditions, is used here and combined with the equilibrium activation energy (equation (6)) 

evaluated according to the corresponding humidity and temperature in each period. 

 

The results of REA-based modelling are also benchmarked towards the modelling of 

Helias et al (2007b) and Riahi et al (2007).  Helias et al (2007b) implemented ordinary 

differential equation to describe the mass changes of samples during ripening in which 

empirical expression of evaporation is used. Coupling the mass and heat balances result in the 

profiles of mass and temperature during ripening. The transport parameters are also tuned to 



match with the experimental data. In addition, Riahi et al (2007) employed an empirical model 

to describe the ripening. In the model (Riahi et al (2007), evaporation is treated as the difference 

of moisture content at particular time and the one at the equilibrium where the empirical 

constants are employed to describe the proportionality (Riahi et al, 2007).  

 

Results and Discussion 

Figure 3 shows the mass profiles of Camembert cheese during ripening under controlled 

relative humidity and temperature (Figure 5 runs 2 in Helias et al (2007b)). The REA-based 

model matches very well with the experimental data (R2 of 0.998). The model seems to be 

accurate to project the mass profiles duringripening. Benchmarks towards the other model 

(Helias et al, 2007b) shows that the REA-based model gives a closer agreement towards the 

experimental data. The very slight overestimations of the mass on Figure 3 could be because 

of the experimental errors in measurement of the concentration of oxygen and carbon dioxide 

inside the chamber. Although biochemical reactions, resulted from respiration, occur during 

the ripening, the process is predicted well by the REA. While the REA predicts well the mass 

during whole ripening process, the other model underestimates the mass after 10 days of 

ripening. The REA accuracy could be because the relative activation energy captures well the 

changes of sample structure due to physical, chemical and biological changes during ripening. 

The REA-based model is applicable to model the mass loss during ripening of Camembert 

cheese under controlled/constant environmental conditions.  

 

 In order to investigate the applicability of the REA-based model to model the mass loss 

during ripening of another type of cheese, the REA is applied to model the mass loss during 

ripening of French smear cheese under various conditions. Figure 4 describes the results of 

modeling of mass loss of French smear cheese ripening at constant environmental conditions 



i.e. relative humidity of 85% and temperature of 12 ºC (Figure 3 in Riahi et al (2007)). The 

REA-based model yields a good agreement towards the experimental data (R2of 0.997). 

Compared to the other model implemented by Riahi et al (2007) (labelled as “RH 85% Riahi 

et al (2007)” in Figure 4), the REA gives closer agreement towards the experimental data. The 

overestimation of mass profiles during before 6x105 s is not shown by the REA-based model. 

Similarly, Figure 4 indicates that the REA-based model predict well the mass profiles during 

French smear cheese ripening at relative humidity of 99% (Figure 3 in Riahi et al (2007)). 

Benchmarks towards the empirical model implemented by Riahi et al (2007) (labelled as “RH 

99% Riahi et al (2007)” in Figure 4) indicate that the REA provides comparable results.  In 

order to see the robustness of the REA-based model, the model is also applied to model the 

mass loss during French smear cheese ripening at relative humidity of 83% and 87% whose 

results are shown in Figure 5. The decrease of relative humidity results in higher mass loss 

during ripening which is because of the higher driving force of evaporation. 

 

The REA-based model is accurate and robust to model the mass loss during ripening of 

French smear cheese under various conditions. The capability of the REA is likely because of 

the accurate relative activation energy. It is emphasised here that the relative activation energy 

of French smear cheese is generated from the ripening run at relative humidity of 99% and 

temperature of 12 °C ((Figure 3 in Riahi et al (2007))) shown in equation (10). By using the 

same equation (i.e. equation (10)), the mass loss during ripening at other conditions can be 

predicted well. This is as opposed to the modelling implemented by Riahi et al (2007) which 

requires several experiments followed up by optimisation in order to generate the empirical 

constants dependent on the ripening conditions. This highlights the effectiveness of the REA 

in terms of experimentations and mathematical procedures.  

 



 For cheese ripening under time-varying external conditions, as shown in Figure 6, the 

REA-based model is also accurate to model the mass loss. The good agreement towards the 

experimental data is indicated by R2of 0.995. Benchmarks against the other model (Helias et 

al, 2007b) indicate that the REA-based model give comparable results. It is highlighted that the 

relative activation energy (ΔEv/ΔEv,b)  used to describe the mass loss during ripening under 

controlled conditions (i.e. equation (9)) is implemented here. In order to incorporate the effects 

of time-varying relative humidity, the equilibrium activation energy (ΔEv,b) is evaluated at the 

corresponding humidity and temperature in each period by using equation (6). The REA-based 

model is able to model the mass loss during ripening under time-varying conditions. This may 

be because of the flexibility of the activation energy function. Combined with the relative 

activation energy (ΔEv/ΔEv,b), the equilibrium activation energy (ΔEv,b)  yields unique 

activation energy (ΔEv)  relationships which seems to be able to capture the effects of changing 

external conditions and reflect these to the internal cheese structure. Compared to the modelling 

by Helias et al (2007b), the REA-based model is more effective. Helias et al (2007b) modifies 

the heat and mass transfer correlations in order to allow the model to predict the mass loss 

under time-varying relative humidity. On the other hand, for the REA-based model, the same 

relative activation energy function as the one for predicting mass loss under controlled ripening 

conditions is implemented.  

 

The applicability of the REA to predict the mass loss during changing environmental 

conditions follows the accuracy of the REA to model drying under time-varying external 

conditions (Putranto et al, 2011c, Putranto and Chen, 2012a,b). However, the mass loss during 

cheese ripening is more complicated as it involves chemical and biological reactions. The 

applicability of the REA here may indicate that the relative activation energy can capture the 

alterations of cheese structure as a result of these complex reactions. 



 

 The temperature profiles of Camembert cheese ripening under controlled and time-

varying relative humidity are shown in Figure 7. In both cases, the temperature of the samples 

jumped into the chamber temperature very quickly which may be due to the intense heat 

transfer from the surrounding environment to the samples. Some very slight wiggles are 

observed in the temperature profiles of the samples undergoing ripening undertime-varying 

conditions. This is reasonable since the variations in relative humidity may alter the 

evaporation rate which consequently modifiesthe amount of heat removed from the sample. 

Although the temperature profiles seem to be relatively constant during ripening, it is not 

recommended to assume isothermal condition during the ripening since moisture removal 

which occurs during ripening is essentially simultaneous heat and mass transfer process. The 

heat supplied by the surrounding air to the sample is used for evaporating the water and raising 

the sample temperature. In this study, the relatively constant temperature may be because of 

the low surrounding air temperature and low drying rate due to low initial moisture content.  

 

 Based on the study here, it is proven that the REA-based model can describe the mass 

loss during ripening very well. In terms of experimentations, the REA is very effective as the 

relative activation energy generated from one particular run can be used to predict the mass 

loss during ripening at other conditions including the ones under time-varying conditions. This 

prevents the necessity to undertake a series of experiments under different conditions followed 

up by optimisation procedures. The REA-based model is simple with respect to computational 

time since it is formulated in ordinary differential equation. Nevertheless, the major physics of 

mass loss during ripening is captured well by the REA-based model.  

 



Considering its effectiveness, the REA-based model can be used in industrial settings 

to assist in predicting mass loss during ripening. For designing new facilities of cheese ripening, 

the REA can contribute to describe the flow-field inside the ripening chamber as a result of 

water removal. For this purpose, the REA can be implemented in Computational Fluid 

Dynamics (CFD) simulation in which the REA is coupled with a set of equations of 

conservation of the drying air. The REA-based model can also be used tofine-tune the ripening 

processto yield desirable cheese properties by coupling the  REA-based model with the 

equations relating the moisture content and temperature with the textural and sensory properties 

(Tan and Zhou, 2003; 2008; Haque et al, 2013).  

 

Conclusions 

 In this study, the reaction engineering approach (REA)-based model is developed to 

model the mass loss during cheese ripening. The REA is coupled with the heat balance and the 

chemical and biological reactions to describe the mass loss during ripening under 

controlled/constant and time-varying environmental conditions. The REA-based model is 

accurate to describe the mass loss during cheese ripening. This accuracy is likely attributed by 

the accurate and flexible activation energy which describes the internal changes of cheese 

structure during ripening. The effects of complex chemical and biological reactions are 

incorporated in the relative activation energy. While the REA modelling is simple, the REA 

can capture major physics of water removal during ripening. In industrial settings, the REA-

based model can be used as a basis for designing cheese ripening process with the desirable 

quality.  
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Legends to Figures 

The figures describe dynamic of relative humidity during ripening, relative activation energy 

as fingerprints of the REA, profiles of mass loss and temperature during ripening of 

Camembert-cheese and French smear cheese.  

Figure 1 shows the dynamic of relative humidity during ripening of Camembert-cheese under 

manually adjusted humidity 

Figure 2 describes the relative activation energy shown in equations (9) and (10). 

Figure 3 represents the profiles of mass loss during ripening of Camembert under controlled 

relative humidity cheese modelled using the REA benchmarked to the modelling by Helias et 

al (2007b). 

Figure 4 shows the profiles of mass loss during ripening of French smear cheese modelled 

using the REA compared to the modelling by Riahi et al (2007). 

Figure 5 represents the sensitivity of the REA model to the relative humidity 

Figure 6 describes the profiles of mass loss during ripening of Camembert cheese under time-

varying relative humidity modelled using the REA benchmarked to the modelling by Helias et 

al (2007b). 

Figure 7 shows the profiles of sample temperature during ripening of Camembert cheese 

 

 

 

 


