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ABSTRACT 21 

We currently lack the capacity to rapidly and reliably predict the efficacy of biological 22 

control agents due to inadequate consistency in derivations of functional and numerical 23 

responses and potential effects of context-dependencies. Here, we propose and apply a novel 24 

metric, Relative Control Potential (RCP), which combines the functional response (FR, per 25 

capita effect) with proxies for the numerical response (NR, agent population response) to 26 

compare agent efficacies, where RCP = FR × abundance (or other proxies e.g. fecundity). 27 

The RCP metric is a comparative ratio between potential biocontrol agents, where values > 1 28 

indicate higher relative control efficacy.  Further, RCP can compare the efficacy of agents 29 

under environmental contexts, such as temperature change. We thus derived the RCP for two 30 

predatory cyclopoid copepods, Macrocyclops albidus (Cyclopoida: Cyclopidae) and 31 

Megacyclops viridis (Cyclopoida: Cyclopidae), towards larvae of the mosquito Culex pipiens 32 

(Diptera: Culicidae) under temperatures representative of current and future climate. Both 33 

copepods exhibited potentially population destabilising Type II FRs, with increasing 34 

temperatures inducing greater magnitude FRs through increased attack rates and decreased 35 

handling times. Attack rates by M. albidus were higher than M. viridis, yet handling times 36 

and maximum feeding rates were similar between the species across all temperatures. The 37 

inclusion of abundance data drives an elevated RCP of M. albidus and the integration of 38 

fecundity drives greater RCP of M. albidus at peak temperatures. Q10 values are indicative of 39 

increased feeding activity by both copepods with temperature increases, however relative 40 

feeding level increases of M. viridis slowed towards the peak temperature. We present RCP 41 

calculations and biplots that represent the comparative efficacies of the two biological control 42 

agents across temperatures. The Relative Control Potential (RCP) metric thus provides a new 43 

tool for practitioners to better assess the potential efficacy of biocontrol agents before their 44 

integration into management approaches for pests, vectors and invasive species.  45 
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 48 

1. Introduction 49 

Biological control has been applied to manage pests, vectors and invasive species in a 50 

variety of ecological systems (O’Neil, 1990; Marten and Reid, 2007; Van Driesche and 51 

Bellows, 2011; Calvo et al. 2016). However, attempts to reveal agent efficacy through the 52 

coupling of functional and numerical responses (FRs, NRs) are limited in practice, reducing 53 

our predictive capacity for population-level effects (but see Heisswolf et al. 2009; Costa et al. 54 

2017). Further, natural systems are characterised by a number of abiotic and biotic context-55 

dependencies that can alter species interaction strengths, including structural complexity 56 

(Barrios-O’Neill et al. 2015), temperature (Wasserman et al. 2016; South et al. 2017), 57 

dissolved oxygen (Laverty et al. 2015), parasitism (Bunke et al. 2015; Laverty et al. 2017a) 58 

and multiple/higher predators (Alexander et al. 2013; Barrios-O’Neill et al. 2014). Thus, 59 

rapid and reliable FR and NR derivations under context-dependencies are critical for the 60 

future of biocontrol strategies. 61 

Effects associated with environmental change can be particularly profound in 62 

modulating natural systems. Indeed, climate change, coupled with urbanisation, is stimulating 63 

an unprecedented change in the population dynamics and status of mosquito vectors and their 64 

transmission of disease (Townroe and Callaghan, 2014; Medlock and Leach, 2015; Siraj et al. 65 

2017), with mosquito invasions increasing with the transportation of goods and humans (e.g. 66 

Yee, 2016; Medlock et al. 2017). The Culex pipiens (Diptera: Culicidae; Linnaeus, 1758) 67 

complex is widespread globally and act as one of the primary vectors of West Nile virus in 68 

the USA and continental Europe (Hubalek and Halouzka, 1999; Fonseca et al. 2004). 69 
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Freshwater cyclopoid copepods exhibit marked potential for the biological control of 70 

mosquitoes (Marten and Reid, 2007; Baldacchino et al. 2017), and have been operationalised 71 

in large-scale field applications (Kay and Nam, 2005). However, we require rapid assessment 72 

of the relative biocontrol potential of such agents under changing climatic conditions. In this 73 

study, we therefore present and apply a new metric, based on FRs and NRs, to compare the 74 

efficacy of two native and widely-distributed copepods, Macrocyclops albidus (Cyclopoida: 75 

Cyclopidae; Jurine, 1820) and Megacyclops viridis (Cyclopoida: Cyclopidae; Jurine, 1820) 76 

under current and predicted temperature regimes. 77 

Functional responses (FRs) quantify consumption under differing resource densities, 78 

describing the key components of search, capture and handling time. Three broad FR types 79 

have been described: the linear Type I, hyperbolic Type II and sigmoidal Type III (Solomon, 80 

1949; Holling, 1959). Functional response form and magnitude are both powerful predictors 81 

of the impacts of consumers on resource populations across taxonomic and trophic groups 82 

(Dick et al. 2014; 2017). However, as FRs only assess per capita impacts, incorporation of 83 

the Numerical Response (NR), that is the consumer population response, is also required to 84 

discern the Total Response (TR) of consumers, whereby: 85 

 TR = FR ×  NR 86 

(1) 87 

In comparison to FRs, NRs are inherently more nebulous and difficult to quantify (Dick et al. 88 

2017). Thus, simple consumer abundance (AB) has recently been proposed as a proxy for the 89 

numerical response, giving the ‘Impact Potential’ (IP) metric, which has proved robust in 90 

predicting ecological impact in the context of invasion biology (Dick et al. 2017; Laverty et 91 

al. 2017b): 92 

IP =  FR ×  AB 93 
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(2) 94 

where FR is the maximum feeding rate (reciprocal of handling time) and AB is a measure of 95 

consumer field abundance. In the context of biocontrol, we can express this as ‘Control 96 

Potential’, CP: 97 

CP =  FR ×  AB 98 

(3) 99 

where FR is the maximum feeding rate as above. However, in addition, we propose that 100 

attack rate be used as a second measure of FR. The attack rate parameter describes the slope 101 

of the FR curve at low prey densities and high attack rates can thus be particularly 102 

destabilising to prey populations. CP as an absolute measure is, however, rather meaningless, 103 

and needs a comparator. Thus, where two or more biocontrol agents require assessment as to 104 

their relative potential efficacies, CP can become ‘Relative Control Potential’ (RCP): 105 

 RCP = (
FR agent A

FR agent B
) × (

AB agent A

AB agent B
) 106 

(4) 107 

where RCP = 1, we predict no difference between biocontrol agents; for RCP < 1, we predict 108 

agent A to have lesser efficacy than agent B; whereas when RCP > 1, agent A is predicted to 109 

have greater efficacy than agent B. Further, increasing values above 1 indicate increasing 110 

relative efficacy of agent A compared to agent B.  111 

Furthermore, we propose the use of fecundity as a second proxy for NR, which 112 

enables the incorporation into RCP of how quickly biocontrol agents can proliferate. Error 113 

can also be incorporated into the RCP metric depending on data availability, using a 114 

probability density function (pdf) to generate confidence intervals (CIs) and probabilities that 115 

RCP > 1 or > 10 (see Dick et al. 2017). Moreover, as environmental gradients such as 116 
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temperature can have profound impacts on consumer-resource interactions (Englund et al. 117 

2011; Rall et al. 2012), RCP can be used to compare the efficacy of each biocontrol agent 118 

across environmental gradients. Here, we apply the RCP metric (Eqn. 4) to compare the 119 

biological control potentials of the copepods M. albidus and M. viridis towards the mosquito 120 

complex C. pipiens over a temperature gradient reflective of current and future UK climate 121 

change scenarios. We also apply the Q10 coefficient to further illustrate feeding activity 122 

responses of the two agents across temperatures (Bennett, 1990). 123 

 124 

2. Materials and methods 125 

2.1. Animal collection and rearing 126 

M. albidus and M. viridis were collected at Glastry Clay Pit Ponds, Northern Ireland 127 

(54°29'18.5"N; 5°28'19.9"W) in January 2017 and kept in Queen’s Marine Laboratory, 128 

Portaferry, N. Ireland, at 25 ± 2 oC under a 16:8 light:dark regime and 50 – 60% relative 129 

humidity, since these conditions stimulated proliferation. Cultures were initiated using 130 

ovigerous females, placed individually into 250 mL cups with dechlorinated tap water and 131 

fed ad libitum with Chilomonas paramecium and Paramecium caudatum to obtain nauplii. 132 

Starter cultures of these protozoans were available commercially (Sciento, Manchester, 133 

England) and cultured under the same laboratory conditions in 2 L glass beakers using 134 

autoclaved wheat seeds, with C. paramecium providing nourishment for nauplii and early 135 

copepodids and P. caudatum for late copepodids and adults. Adult copepods were identified 136 

by Maria Holyńska, Museum and Institute of Zoology, Warsaw, Poland. Copepods were 137 

mass-reared in 10 L tanks and fed ad libitum on the protozoan diet. At maturity, copepods 138 

were maintained at 12 ± 2 oC under a 12:12 light and dark regime and acclimatised for 7 d 139 
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prior to experimentation in 5 L holding arenas of 22 cm diameter fed ad libitum on the 140 

protozoan prey. 141 

Culex pipiens were obtained from a laboratory colony established at the University of 142 

Reading, England several years prior, originating from field-collected mosquitoes at the 143 

Pirbright Institute, Surrey, England. The colony was sustained under the same conditions as 144 

the copepod cultures, at 25 ± 2 oC in 32.5 × 32.5 × 32.5 cm cages (Bugdorm, Watkins and 145 

Doncaster, Leominster, England) and fed three times per week with defibrinated horse blood 146 

(TCS Biosciences, Buckingham, England) using a Hemotek® blood-feeding system 147 

(Hemotek Ltd., Accrington, England) and additionally provided with cotton pads soaked in a 148 

10% sucrose solution. Cages contained black cups filled with 200 mL dechlorinated tap water 149 

for oviposition. Egg rafts were extracted three times per week and placed into larval bowls 150 

containing 3 L dechlorinated tap water, and fed ad libitum with ground guinea pig pellets 151 

(Pets at Home, Newtownabbey, Northern Ireland) until pupation.  152 

2.2. Experimental procedure 153 

Non-ovigerous adult female M. albidus and M. viridis (1.6 – 1.8 mm and 2.0 – 2.3 154 

mm body length excluding caudal setae, respectively) were selected for experiments. We 155 

selected non-ovigerous females to standardise predators as cyclopoids are sexually dimorphic 156 

(Laybourn-Parry et al. 1988) and to eliminate cannibalism of hatching juveniles (Toscano et 157 

al. 2016). First instar C. pipiens larvae (1.1 – 1.3 mm) were used as prey. Functional response 158 

experiments were undertaken in transparent polypropylene cups (42 mm dia.) containing 20 159 

mL dechlorinated tap water from a continuously aerated source in a 12:12 light and dark 160 

regime over 24 h at temperatures representing reasonable current autumn/winter (12 oC), 161 

spring/summer (16 oC) and future spring/summer (20 oC) conditions in the UK (± 0.1 oC; 162 

Clifton NEIB water baths; Hulme et al. 2002; Hammond and Pryce, 2007). Dissolved oxygen 163 
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was monitored using a YSI model 550A meter (Letchworth, England) to ensure levels 164 

remained above 80% saturation. Both predators and prey were acclimatised to the two 165 

elevated temperatures over a two hour period prior to experiments; temperatures were 166 

increased every 30 minutes by either 1 oC or 2 oC (i.e. to 16 oC or 20 oC). Following the 167 

acclimatisation period, we added single adult females of either M. albidus or M. viridis to 168 

containers with prey densities of 2, 4, 8, 15, 30 and 60 (n = 4 per experimental group). 169 

Controls consisted of four replicates at each prey density and temperature in the absence of 170 

predators. Predators were individually starved for 24 h in containers of the same volume and 171 

diameter as the experimental arenas before being transferred to containers holding the 172 

corresponding prey density. Predators were removed from experimental arenas after 24 173 

hours, with the numbers of prey alive counted to derive the numbers killed in each replicate. 174 

2.3. Data manipulation and statistical analyses 175 

Statistical analyses were undertaken in R v3.3.1. (R Core Team, 2016). Logistic 176 

regression of proportion of prey killed as a function of prey density was used to infer FR 177 

types; Type II FRs are characterised by a significant negative first-order term and Type III 178 

FRs by a significant positive first order term followed by a significant negative second order 179 

term. To account for prey depletion, we fitted Rogers’ random predator equation for 180 

conditions without prey replacement (Trexler et al. 1988; Juliano, 2001): 181 

𝑁𝑒 = 𝑁0(1 − exp(𝑎(𝑁𝑒ℎ − 𝑇))) 182 

(5) 183 

where Ne is the number of prey eaten, N0 is the initial density of prey, a is the attack rate, h is 184 

the handling time and T is the total experimental period. The Lambert W function was 185 

applied due to the implicit nature of the random predator equation (Bolker, 2008). Attack 186 

rates and maximum feeding rates ‘1/h’ were non-parametrically bootstrapped (n = 30) to 187 
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facilitate modelling of FR parameters with respect to ‘predator’ and ‘temperature’ factors and 188 

their interactions. Bootstrapped parameters were analysed using generalised linear models 189 

(GLMs) assuming a quasi-Poisson distribution. F-tests were used in a step-deletion process to 190 

compare deviance between models (Crawley, 2007). We applied Tukey’s HSD method to 191 

infer specific pairwise differences using the ‘multcomp’ package in R (Hothorn et al. 2008).  192 

Benthic survey data for M. albidus and M. viridis (as Acanthocyclops viridis) derived 193 

from Tinson and Laybourn-Parry (1986) were used to calculate RCP based on maximum 194 

field abundances using pooled bootstrapped mean maximum feeding and attack rates across 195 

all three temperatures. To calculate RCP using fecundity, we used results from Laybourn-196 

Parry et al. (1988) to discern the proportion of total consumed energy devoted to reproduction 197 

across corresponding temperatures for the two copepods:  198 

Fecundity = (
𝑃𝑟

𝐶
) ×  100 199 

(6) 200 

where Pr is the quantity of energy expended through the production of eggs and C is the total 201 

energy consumed at a given temperature (Table 1). Reproductive energy proportions at 16 oC 202 

were supplemented with those available for 15 oC. We generated ‘RCP biplots’ to present the 203 

RCP (see Laverty et al. 2017b) of the two predators using both the abundance (AB) and 204 

fecundity (FE) proxies for the numerical response. 205 

We additionally calculated Q10 values to further quantify the effects of increased 206 

temperature on feeding rates and compare how these varied between predatory cyclopoids: 207 

𝑄10  = (
𝐹𝑅2

𝐹𝑅1
)

(
10

𝑇2−𝑇1
)  

  208 

(7) 209 
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where Q10 is a coefficient without units, FR1 is the maximum feeding rate at temperature T1 210 

and FR2 is the maximum feeding rate at temperature T2. The Q10 coefficient assesses how 211 

temperature increases of 10 oC affect the rate of biological processes (Bennett, 1990); values 212 

of 1 – 1.5 are associated with a thermal plateau and values of 2 – 4 indicate substantive 213 

increases in activity as temperature increases (Huey, 1982; Bennett, 1990).  214 

 215 

3. Results 216 

Prey survival in control treatments was a minimum of 98.5% across temperatures, and 217 

thus experimental deaths were attributed to predation by copepods, which was also directly 218 

observed. Type II FRs were found in all predator and temperature combinations, as indicated 219 

by significantly negative first order terms (Table 2; Figure 1). Overall, attack rates (initial FR 220 

slopes; see Figure 1) for M. albidus were significantly higher than for M. viridis (F1, 178 = 221 

7.25, p = 0.01) and increased significantly with temperature (F2, 176 = 74.41, p < 0.001). There 222 

were significant increases in attack rates between 12 oC and 16 oC (z = 5.61, p < 0.001), and 223 

12 oC and 20 oC (z = 6.75, p < 0.001), but not between 16 oC and 20 oC (z = 1.20, p = 0.45). 224 

There was a significant ‘predator × temperature’ interaction (F2, 174 = 3.09, p = 0.05), 225 

reflecting significantly greater attack rates by M. albidus only at 12 oC (z = 3.42, p = 0.01; 226 

Table 2; Figure 1). Overall, maximum feeding rates (asymptotes of FR curves; see Figure 1) 227 

did not differ significantly between the two predators (F1, 178 = 2.88, p = 0.09), but increased 228 

significantly with temperature (F2, 176 = 110.29, p < 0.001; Figure 1). There were significant 229 

increases in maximum feeding rates between all temperature levels (12 oC – 16 oC, z = 4.23, 230 

p < 0.001; 16 oC – 20 oC, z = 4.79, p < 0.001; 12 oC – 20 oC, z = 8.81, p < 0.001). There was a 231 

significant ‘predator × temperature’ interaction (F2, 174 = 3.46, p = 0.03), reflecting a non-232 

significant difference between maximum feeding rates of M. albidus at 20 oC and M. viridis 233 
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at 16 oC (z = 2.48, p = 0.13), compared to a significantly lower maximum feeding rate of M. 234 

albidus at 16 oC in comparison to M. viridis at 20 oC (z = 6.24, p < 0.001).  235 

The RCP calculations integrating field abundances with maximum feeding and attack 236 

rates are presented in Table 3. M. albidus displays much higher abundance than M. viridis, 237 

driving greater RCP using both FR parameters (Figure 2a and 2b). There is a general increase 238 

in the proportion of total consumed energy devoted to reproduction as temperature increases 239 

(Table 1). Anomalous to this is the response to warming of M. viridis at 20 oC, with fecundity 240 

here falling markedly (Table 1). There are relatively similar levels of RCP for the two species 241 

illustrated at both 12 oC and 16 oC, followed by a substantial decrease in efficacy of M. 242 

viridis at 20 oC (Table 4; Figures 2c and 2d). Indeed, the certainty of the RCP using fecundity 243 

strengthens at peak temperatures (Table 4). Under both NR proxies, differential efficacies 244 

between predators were more pronounced using the attack rate parameter (Figure 2). The Q10 245 

coefficients for the two predators across the temperature gradient indicate that between 12 oC 246 

and 20 oC both the feeding rates of M. albidus and M. viridis were highly responsive to 247 

temperature increases. There was a marked difference between the predators in the 248 

incremental drivers of this response, with M. viridis exhibiting a rapid increase between 12 oC 249 

and 16 oC which slowed between 16 oC and 20 oC. Conversely, M. albidus was consistent in 250 

its feeding response to increased temperatures (Table 5).  251 

 252 

4. Discussion 253 

Biological control of pests, disease vectors and invasive species can be effective (e.g. 254 

Hajek, 2007; Nam et al. 2012; Veronesi et al. 2015), but efforts to predict the efficacy of 255 

natural enemies are limited when per capita effects (e.g. Functional Responses; FRs) are 256 

solely considered (Lester and Harmsen, 2002; Fernández-arhex and Corley, 2003). The 257 
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complementary agent population response (e.g. Numerical Response; NR) is, however, 258 

somewhat nebulous and more difficult to derive, with proxies for the NR required to allow 259 

rapid assessment of the overall impact of a consumer (i.e. Total Response; TR; Dick et al. 260 

2017). Recent developments that combine functional and numerical responses (or their 261 

proxies) into the comparative Relative Impact Potential metric (RIP; Dick et al. 2017) yield 262 

high explanatory and predictive power for the ecological impacts of invasive species. Indeed, 263 

this RIP approach was 100% successful at identifying high impact invasive species, and the 264 

metric correlated tightly with degree of ecological impact (i.e. reduction of native species 265 

populations). Hence, the present RCP metric is promising to assess the efficacy of biocontrol 266 

agents, which are chosen on the same basis regarding impact on populations of target species 267 

(see Dick et al. 2017). Further value in the application of RCP surrounds the integration of 268 

context-dependencies associated with environmental change, which can strongly affect 269 

interactions between consumers and their resources (e.g. oxygen availability: Laverty et al. 270 

2015; habitat complexity: Barrios-O’Neill et al. 2015). Thus, we present the new Relative 271 

Control Potential (RCP) metric that uses per capita and consumer population responses to 272 

compare efficacy among biocontrol agents and can allow predictions of changes in such 273 

efficacies under context-dependencies.  274 

The risk of mosquito-borne disease at continental scales has reached unprecedented 275 

levels in recent decades (Medlock and Leach, 2015). Arboviruses such as Zika, West Nile, 276 

dengue and chikungunya present enormous public health concerns, with disease dynamics 277 

shifting rapidly under environmental change (Benelli and Mehlhorn, 2016; Siraj et al. 2017). 278 

Agricultural systems will additionally be impacted (Chevalier, 2013). This risk necessitates 279 

the formation of techniques to assess and compare the potential efficacies of biological 280 

control agents. Here, RCP revealed M. albidus as a more effective agent than M. viridis. 281 

Temperature was shown to mediate changes to the FR parameters of M. albidus and M. 282 
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viridis, driving higher magnitude FRs through increasing attack rates and decreasing handling 283 

times. The temperature-dependence of attack rates reported here contrasts to suggestions that 284 

this FR parameter is temperature-independent (Rall et al. 2012; Dell et al. 2014). We show 285 

that both predators exhibit high maximum feeding rates that exceed 30 of the West Nile virus 286 

vector C. pipiens per day at 20 oC. Critically, the Type II FRs found are indicative of a 287 

capacity to destabilise prey populations due to high proportional consumption at low prey 288 

densities (Long and Whitefleet-Smith, 2013). M. albidus and M. viridis show strong 289 

similarities in their per capita consumption, although the attack rates of M. albidus were 290 

significantly greater overall, illustrated by steeper gradients in the FR curves at low densities. 291 

As a result, M. albidus may be more effective in controlling C. pipiens populations.  292 

We demonstrate that integrating field abundances with RCP reveals far stronger 293 

control efficacies of M. albidus compared to M. viridis. The utility of abundance estimates 294 

lies in the projection of how many conspecifics may engage in the predator-prey (or other 295 

consumer-resource) interaction and it is thus a useful NR proxy. On the other hand, 296 

incorporating measures of fecundity estimates how rapidly biological control agents can 297 

reproduce when introduced. Using fecundity, we demonstrate temperature-dependencies of 298 

control efficacy. Large fecundity variabilities are illustrated in the RCP biplots, with the 299 

reproductive allocation of M. viridis declining rapidly at 20 oC, whilst that of M. albidus 300 

continues to rise. The reduction in fecundity shown by M. viridis at 20 oC is concurrent with a 301 

slowing feeding activity response discerned through Q10 analysis, whereas M. albidus 302 

displays a consistent incremental increase in feeding with warming. Overall, M. albidus 303 

displays greater potential for the control of West Nile virus vector C. pipiens than M. viridis, 304 

particularly under climate change projections where our certainty for differential efficacy 305 

increases (e.g. Hulme et al. 2002). This differential efficacy is more pronounced when the 306 

attack rate parameter is considered. An increased metabolic demand could enable M. albidus 307 
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to sustain efficiency in the consumption of C. pipiens, which proliferate more rapidly at 308 

higher temperatures, particularly in domestic and peri-domestic habitats in urbanised 309 

environments (Townroe and Callaghan, 2014). 310 

In this study, temperature had a profound effect on predator-prey interactions. It has 311 

been suggested that interaction strengths of ambush predators such as the benthic copepods 312 

examined here are temperature independent (Awasthi et al. 2012; Novich et al. 2014). Thus, 313 

marked thermal dependencies may result, rather, from individual prey foraging responses to 314 

temperature change, wherein motility and velocity may increase with warming. These 315 

interactions make predator-prey systems highly specific to both the species (Englund et al. 316 

2011) and environment (Broitman et al. 2011), with optimal foraging patterns of ectothermic 317 

prey potentially peaking at intermediate temperatures (Englund et al. 2011; Kalinoski and 318 

DeLong 2016). Further, for endotherms, such interactions are often dependent on the specific 319 

feeding strategy (Dell et al. 2014). In this study, feeding rates of candidate biocontrol agents 320 

peaked at the highest temperature, however the rate of increase slowed between 16 oC and 20 321 

oC, as compared to between 12 oC and 16 oC; this trend was particularly marked for M. 322 

viridis. Notably, these temperatures are well within the thermal tolerances of common 323 

cyclopoid copepods (Marten and Reid, 2007). Temperature additionally has a substantial 324 

influence on the development of the focal prey, C. pipiens, driving significant reductions in 325 

development times under conditions of warming (Loetti et al. 2011; Ruybal et al. 2016), and 326 

necessitating increased foraging intensity. Yet, increases in C. pipiens mortality due to 327 

drivers outside of predation are also evident as temperatures rise due to thermal stressors 328 

(Ruybal et al. 2016). M. albidus has been proved particularly effective against the invasive 329 

arbovirus vector A. albopictus following field trials (Marten, 1990; Veronesi et al. 2015).  330 

Previous research has suggested that copepods are more efficient consumers of Aedes spp. 331 

than Culex spp. as a result of morphological variations between the genera (Marten and Reid, 332 
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2007). However, laboratory trials have shown similar levels of overall predation by M. 333 

albidus towards both A. albopictus and C. pipiens (Veronesi et al. 2015), as well as by 334 

Mesocyclops annulatus (Micieli et al. 2002). Further field trials are required to elucidate 335 

whether their efficiencies towards C. pipiens translate empirically, particularly as it is the 336 

major West Nile virus vector in the USA and Europe (Hubalek and Halouzka, 1999; Fonseca 337 

et al. 2004) and part of one of the most widespread mosquito complexes in the world 338 

(Harbach, 2012).  339 

In conclusion, this is the first study to develop and apply the new RCP metric to 340 

biological control agent selection. We demonstrate that the integration of abundance and 341 

fecundity estimations can provide a means to differentiate between biocontrol agents that 342 

display similar per capita efficacies across temperature gradients. We additionally illustrate 343 

the value in the use of maximum feeding and attack rates for instructing agent selection. 344 

Adaptations of this metric have been applied successfully in the context of invasion biology 345 

to explain and predict the ecological impact of invasive species (Dick et al. 2017; Laverty et 346 

al. 2017b), and similar fundamental principles enable its application to the selection of 347 

biocontrol agents. Overall, temperature increases will induce greater per capita predation 348 

pressure by predatory copepods towards C. pipiens and likely other mosquito species. 349 

Copepod applications to waterbodies can form an integral part of mosquito control efforts 350 

(Baldacchino et al. 2015), with large-scale field trials having proved successful (e.g. Kay and 351 

Nam, 2005), particularly given their ability to thrive in both natural and artificial waterbodies 352 

(Marten and Reid, 2007). Importantly, copepods can be augmented synergistically using 353 

existing control methods, such as the use of bacterial Bacillus thuringiensis var. israelensis 354 

(Bti; Kosiyachinda et al. 2003). Nanoparticles have additionally been found to heighten 355 

predation (Murugan et al. 2015). The straightforward derivation of the RCP metric, and its 356 

visual representation in biplots, will allow comparisons of biological control agents across 357 
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many ecological systems, and could increase cost-effectiveness of natural enemies in the 358 

long-term. Further proxies for the numerical response, such as biocontrol agent longevity or 359 

biomass, can be integrated into the RCP metric as per the requirements of the assessed system 360 

or biocontrol approach, increasing the robustness and flexibility of the method. Moreover, the 361 

additional integration of a qualifier to account for target organism responses under matched 362 

environmental change scenarios could bolster the power of the RCP metric in reliably 363 

selecting biocontrol agents, and this is worth further consideration in future research. 364 
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Tables 564 

Table 1 565 

 

Species 

 

Temperature 

(oC) 
 

 

C (mJ) 

 

Pr (mJ) 

 

Fecundity 

(%) 

 

M. albidus 

 

 

12 

 

 

31210 

 

2355 

 

7.55 

 

M. albidus 

 

 

16 

 

 

26150 

 

2907 

 

11.12 

 

M. albidus 

 

 

20 

 

 

29150 

 

3691 

 

12.66 

 

M. viridis 

 

 

12 

 

 

34433 

 

2851 

 

8.28 

 

M. viridis 

 

 

16 

 

 

25311 

 

3020 

 

11.93 

 

M. viridis 

 

 

20 

 

 

24960 

 

1671 

 

6.70 
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 568 

 569 

 570 

 571 

 572 

 573 

 574 
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Table 2 575 

 

Species 

 

Temperature 

(oC) 

 

 

1st order 

term 

 

p 

 

Attack 

rate (a) 

 

p 

 

Handling 

time (h) 

 

p 

 

M. albidus 

 

12 

 

 

-0.02 

 

< 0.001 

 

1.28 

 

< 0.001 

 

0.07 

 

< 0.001 

 

M. albidus 

 

16 

 

 

-0.03 

 

< 0.001 

 

1.92 

 

< 0.001 

 

0.04 

 

< 0.001 

 

M. albidus 

 

20 

 

 

-0.04 

 

< 0.001 

 

2.37 

 

< 0.001 

 

0.04 

 

< 0.001 

 

M. viridis 

 

12 

 

 

-0.03 

 

< 0.001 

 

0.95 

 

< 0.001 

 

0.07 

 

< 0.001 

 

M. viridis 

 

16 

 

 

-0.03 

 

< 0.001 

 

1.90 

 

< 0.001 

 

0.04 

 

< 0.001 

 

M. viridis 

 

20 

 

 

-0.04 

 

< 0.001 

 

2.19 

 

< 0.001 

 

0.03 

 

< 0.001 
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 580 
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 582 

 583 
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 585 
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Table 3 586 

 

Agent A, agent 

B comparison 

 

 

Mean FR 

parameter (± 

SD) 

 

 

Mean 

abundance (ind. 

m-2 ± SD) 

 

 

RCP 

 

CIs 

pRCP > 1 (%) 

 

 

M. albidus, M. 

viridis 

 

 

1/h: 22.80 (± 

8.37), 24.41 (± 

10.55) 

 

6727 (± 

1018.23), 562 (± 

288.50) 

 

16.77 

 

6.79 – 23.78 

99.97*** 

 

M. albidus, M. 

viridis 

 

 

a: 1.98 (± 0.72), 

1.77 (± 0.67) 

 

6727 (± 

1018.23), 562 (± 

288.50) 

 

19.34 

 

8.18 – 27.35 

99.99*** 
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 590 
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 592 

 593 

 594 

 595 
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 597 

 598 

 599 
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Table 4 600 

 

Agent A, 

agent B 

comparison 

 

 

Temperature 

(oC) 

 

Mean FR 

parameter (± 

SD) 

 

 

Fecundity 

(%) 

 

RCP  

 

CIs 

pRCP > 1 (%) 

 

 

M. albidus, 

M. viridis 

 

12 

 

 

1/h: 15.88 (± 

4.36), 13.99 

(± 2.67) 

 

 

 

7.55, 8.28 

 

 

 

 

1.07 

 

 

 

 

0.77 – 1.34 

51.93 

 

 

  

M. albidus, 

M. viridis 

 

 

 

16 

 

 

 

 

1/h: 22.12 (± 

7.64), 25.98 

(± 9.68) 

 

 

11.12, 11.93 

 

 

 

 

0.90 

 

 

 

 

0.53 – 1.21 

32.58 

 

 

 

M. albidus, 

M. viridis 

 

20 

 

 

 

 

1/h: 30.42 (± 

5.24), 33.25 

(± 6.73) 

 

12.66, 6.70 

 

 

 

 

1.80 

 

 

 

 

1.39 – 2.17 

98.21* 

 

M. albidus, 

M. viridis 

 

12 

 

 

a: 1.43 (± 

0.52), 1.05 (± 

0.34) 

 

 

 

7.55, 8.28 

 

 

 

 

1.37 

 

 

 

 

0.82 – 1.83 

66.71 

 

 

 

M. albidus, 

M. viridis 

 

 

 

16 

 

 

 

 

a: 2.17 (± 

0.51), 2.02 (± 

0.39) 

 

 

 

11.12, 11.93 

 

 

 

 

1.04 

 

 

 

 

0.77 – 1.28 

49.04 

 

 

 

M. albidus, 

M. viridis 

 

20 

 

 

 

 

a: 2.34 (± 

0.75), 2.24 (± 

0.54) 

 

 

 

12.66, 6.70 

 

 

 

 

2.09 

 

 

 

 

1.39 – 2.69 

95.34* 
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Table 5 606 

 

Species 

 

 

Temperature (oC) 

 

Mean max. feeding 

rate (1/h) 

 

 

Q10 value 

 

M. albidus 

 

12 – 20  

 

 

15.88 – 30.42 

 

2.25 

 

M. albidus 

 

12 – 16 

 

 

15.88 - 22.12 

 

2.29 

 

M. albidus 

 

16 – 20 

 

 

22.12 – 30.42 

 

2.22 

 

M. viridis 

 

12 – 20 

 

 

13.99 – 33.25 

 

2.95 

 

M. viridis 

 

12 – 16 

 

 

13.99 – 25.98 

 

4.70 

 

M. viridis 

 

16 – 20 

 

 

25.98 – 33.25 

 

1.85 

 607 

 608 

 609 

 610 
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 612 

 613 

 614 

 615 
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 618 

 619 

 620 

 621 
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Captions 622 

Table 1. Fecundity (%) calculations, entailing proportion of total consumed energy (C) 623 

devoted to production of eggs (Pr) in adult female M. albidus and M. viridis across 12 oC, 16 624 

oC and 20 oC. Data relating to energetics adapted from Laybourn-Parry et al. (1988; n = 5; 625 

Eqn. 6). 626 

Table 2. Results of logistic regression to denote functional response type across all predator 627 

and temperature treatments, alongside the starting attack rate (a) and handling time (h) 628 

parameter estimates and associated p-values generated using the Rogers’ random predator 629 

equation (Eqn. 5). 630 

Table 3: Mean Relative Control Potential (RCP) using maximal abundances from Tinson and 631 

Laybourn-Parry (1986; n = 8) for M. albidus and M. viridis, alongside uncertainties reflected 632 

through 60% confidence intervals (CIs) and probability that the RCP output exceeds 1 using 633 

bootstrapped maximum feeding and attack rates. Asterisks denote significant levels of 634 

certainty that the RCP score is greater than 1 (* > 95%, ** > 99%, *** > 99.9%). 635 

Table 4: Mean Relative Control Potential (RCP) using fecundities (%) across temperature 636 

change for M. albidus and M. viridis alongside uncertainties reflected through 60% 637 

confidence intervals (CIs) and probability that the RCP output exceeds 1 using bootstrapped 638 

maximum feeding and attack rates. Asterisks denote significant levels of certainty that the 639 

RCP score is greater than 1 (* > 95%, ** > 99%, *** > 99.9%). 640 

Table 5: Q10 coefficient (Eqn. 7) values associated with mean bootstrapped maximum feeding 641 

rates for both predators between temperature gradients. 642 

Figure 1. Functional responses of M. albidus (a, b, c) and M. viridis (d, e, f) towards first 643 

instar C. pipiens larvae at 12 oC (a, d), 16 oC (b, e) and 20 oC (c, f) over the 24 hour 644 

experimental period. Means are ± SE at each prey density (n = 4). 645 
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Figure 2. RCP biplots comparing M. albidus and M. viridis using abundance estimates (a, b; n 646 

= 8) and fecundity calculations (c, d; Table 1), with FR parameters of maximum feeding (a, 647 

c) and attack rates (b, d). FR parameters in abundance biplots are pooled bootstrapped 648 

estimates across all temperatures (n = 90); those in fecundity plots are temperature-specific 649 

estimates (n = 30). Increasing CP is read from bottom left to top right. Abundance and FR 650 

parameter means are ± SE.  651 

 652 

 653 

 654 

 655 
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