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Abstract

In recent years, gradient vector flow (GVF) based algorithms have been
successfully used to segment a variety of 2-D and 3-D imagery. However,
due to the compromise of internal and external energy forces within the
resulting partial differential equations, these methods may lead to biased
segmentation results. In this paper, we propose MSGVF, a mean shift based
GVF segmentation algorithm that can successfully locate the correct bor-
ders. MSGVF is developed so that when the contour reaches equilibrium,
the various forces resulting from the different energy terms are balanced. In
addition, the smoothness constraint of image pixels is kept so that over- or
under-segmentation can be reduced. Experimental results on publicly ac-
cessible datasets of dermoscopic and optic disc images demonstrate that the
proposed method effectively detects the borders of the objects of interest.
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1. Introduction

Snakes or active contour models were first proposed by Kass et al. in
1987 [1]. Snakes or active contours refer to curves or surfaces that are de-
fined within the image domain with external constraint forces, and driven
by image forces towards the image features such as edges. Since their publi-
cation, these deformable models have received tremendous attention in the
research community [2, 3, 4, 5].

According to the representation and implementation, there are mainly
two groups of deformable models: parametric deformable models (PDMs)
and geometric deformable models (GDMs) [6]. GDMs describe curves or
surfaces as level sets of higher-dimensional scalar functions that evolve in an
Eulerian style, while PDMs explicitly parameterise curves or surfaces in a
Lagrangian fashion [6]. With remarkable success, these established models
continuously target the following two major technical problems: initialisa-
tion (or capture range) [7],[8] and topological changes [9],[10]. On the other
hand, there are also some interesting work related to nonparametric active
contours, which may render the boundary settlement independent of the
initialisation process, e.g. [11, 12].

GDMs are often used to address topological flexibility. For example,
Caselles et al. applied curve evolution theory [13] and developed a geomet-
ric active contour model [14], while Malladi et al. introduced a geomet-
ric active contour model [15] based on the level set principle [16]. Han et

al. [6] reported a topology-preserving level set method that achieved topol-
ogy preservation using the simple point concept. However, GDMs still face a
number of challenges in different aspects. For example, in a level set scheme
(one example of GDMs), topological constraints on the evolving boundary
need to be released in order for the scheme to deal with a higher dimensional
space [17]. Furthermore, GDMs can be further improved in the detection of
boundary gaps [18].

PDMs have been widely used in boundary detection, motion detection
and tracking, and object recognition. A number of algorithms have been es-
tablished for various applications by formulating new forms of the external
energy in the Snake model. These algorithms include balloons [19], distance
potential force [20], diffusion Snakes [21], gradient vector flow (GVF) [22]
and its generalisation [23], and further developments [24, 25]. GVF and
its variants have achieved tremendous success by attracting the active con-
tour towards object boundaries from a relatively large distance. These ap-
proaches are also capable of converging to object cavities in some appli-
cations. In spite of this progress, evidence shows that the performance of
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PDMs needs to be improved in automatic initialisation and splitting [10].
In recent years, numerous efforts have been made to provide potential

solutions towards the capture range or/and topological change problems.
A comprehensive survey has been reported in [26]. For example, a graph
theory based approach was introduced by Li et al. [10] within the external
force term in the Snake model to perform automatic Snake initialisation or
splitting. Chuang and Lie [27] presented a downstream algorithm based on
an extended GVF field model, where the downstream process starts with
a set of selected seeds by considering local gradient direction information
around each pixel. Yang et al. [28] proposed a robust colour GVF Snake
model which combines robust estimation and colour gradients using an L2E

robust estimation. Vasilevskiy and Siddiqi [29] demonstrated that their
gradient flow model can be used to maximise the rate of the flux of a vector
field in a two- or three-dimensional domain. This model can drive the vector
field to go along with outstanding magnitudes.

Paragios et al. [25] proposed an edge driven bi-direction geometric flow
for boundary detection by combining the geodesic active contour flow [30]
and the gradient vector flow model [22]. Tang and Acton [31] proposed a
multiscale gradient vector flow to elude clutter and to reliably localize the
vessel boundaries. Afterwards, Tang [32] presented a cancer image segmen-
tation algorithm, where the first part uses an anisotropic diffusion filter for
removing the noise and hairs, and the second part uses a multi-directional
GVF Snake to segment the suspicious areas. A motion gradient vector flow
model for tracking rolling leukocytes was introduced by Ray and Acton [33]
and utilises the direction of leukocyte movement. Michailovich et al. [34] de-
veloped an energy functional based on the Bhattacharyya distance to drive
curves towards the shape that embeds a maximal discrepancy between the
empirical distributions of the photometric variable inside and outside the
contours.

In this paper, we propose a new type of dynamic energy force for Snakes
combining local GVFs with mean shift. Our approach is largely different
from [35] that pursued a smooth vector field, where the contour evolution
relied on the summation of the current gradient vector and the mean differ-
ence of all the gradients. The proposed MSGVF scheme in our work seeks
an optimal solution to a newly designed Euler-Lagrangian function that sim-
ulates the energy minimisation of the evolving contour. Our algorithm is
developed in the way that both local (GVF) and global (mean shift) energy
minimisation are balanced, whilst the smoothness constraint of the image
pixels is kept. The proposed approach also significantly differs from those
published in [24, 36, 37, 38, 39]: our method uses a Lagrange multiplier to
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integrate the classical GVF and the mass density function of the boundary
into a combinatorial form. The boundary is considered as a solution of the
introduced Partial Differential Equation (PDE), and we use mean shift as
an optimisation approach to simplify the PDE computation. Comparably,
the classical approaches investigated the distance between the two centroids
of the previous and the present closed boundaries, where truncated Taylor
series gives a good approximation to the parameters used in the classical
Gradient Vector Flow. Mean shift was used as a stopping criterion for the
segmentation, and theoretical analysis for the asymptotic properties was
also given in the publications.

The remainder of the paper is organised as follows. In the next section,
the proposed Mean Shift based Gradient Vector Flow (MSGVF) algorithm is
presented. Section 3 provides experimental results and performance analysis.
Finally, conclusions and future work are given in Section 4.

2. Mean Shift based GVF algorithm (MSGVF)

2.1. Traditional Snakes and GVF

Snake (or active contour) models are used to detect object boundaries or
edges, given an initial guess of the evolving contours by the user. The major
challenge is to search for a global minimum over a non-convex functional
under predefined constraints, which leads to the desired solution [1]. Both
initial and boundary conditions appear very important as they significantly
affect the search for a contour of both global and local minimums. This has
been justified by the evidence that the evolving boundary can vanish into a
single point at a global minimum of the potential [9].

Classical Snake models consider a combination of internal and external
energy, in which the boundary will stop evolving when an energy balance
is obtained. The external energy force in the Snake model is restricted to
a small area which is close to the real boundary. If it is far from the real
boundary, the Snake may have difficulty in converging to the correct position
due to image noise or distractions that violate the objective function. To
address this, Xu et al. [22] proposed a GVF field map to represent the
external energy force in the Snake model. This GVF term is sensitive to
the object boundaries or edges appearing in the image and hence effectively
pushes the Snakes towards the real edges.

Let a Snake be a curve x(s) = [x(s), y(s)], s ∈ [0, 1], which evolves in an
image domain to reach a minimisation of the following energy function:

E(x) =

∫ 1

0

[1

2

(

α
∣

∣

∣

∂x

∂s

∣

∣

∣

2
+ β

∣

∣

∣

∂2x

∂s2

∣

∣

∣

2)

+ Eext(x)
]

ds, (1)
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(a) (b) (c) (d)

Figure 1: Example of GVF segmentation: (a) Original image with the initial contour, (b)
edge enhancement, (c) GVF field map and (d) final contour settlement (red color). The
parameters used in this example are α = 0.1, β = 0.01, γ = 1, κ = 0.6. Better viewed in
colour.

where α and β are the weights that determine the tension and rigidity of
the Snake respectively. The first order derivative ∂x

∂s
causes stretching while

the second order derivative ∂2
x

∂s2
leads to bending. The first two terms on the

right-hand side of Eq. (1) are referred to as the internal energy of the Snake,
and the third term is the external energy that attains small values at the
feature points. In the presence of high gradients at image boundaries (e.g.
step edges) the external energy is represented by −▽ (Gσ(x, y) ∗ I(x, y))

2.
In the case of line drawings, ±Gσ(x, y) ∗ I(x, y) is used instead, where Gσ is
a two-dimensional Gaussian function with standard deviation σ.

To obtain a minimisation, the contour should satisfy the following time-
dependent function:

γ
∂x

∂t
=

∂

∂s

(

α
∂x

∂s

)

−
∂2

∂s2

(

β
∂2x

∂s2

)

−▽Eext(x) = 0, (2)

where γ is the coefficient. In GVF Snakes, the external energy of Eq. (2),
−▽Eext(x), is replaced by a GVF field, which is defined as the solution of
the following Euler equations using the calculus of variations [40]:

{

vt = µ▽2 v − (v −▽f)| ▽ f |2,
v0 = ▽f,

(3)

where vt is the partial derivative of v with respect to t, ▽2 = ∂2

∂x2 + ∂2

∂y2
,

and f indicates an edge map of the image and attains large values at feature
points. Fig. 1 illustrates an example of GVF segmentation, where the edges
are enhanced via Gaussian filtering, and the GVF field map is calculated
according to the solution of Eq. (3).

The classical GVF Snake appears to be less effective in the presence of
distractions or noise in the vicinity of a real boundary (see the experimental
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section). As one of the possible solutions to this problem, in the previous
work, we proposed a mean shift based GVF strategy [24, 38]: when the
internal and external forces of the GVF Snake are balanced, we have the
Euler equation as follows:

g1(d)C
′′(s)− g2(d

−1)C ′′′′(s) + g3(d)V = 0, (4)

where g1(d), g2(d
−1) and g3(d) are the weighting functionals of the internal

and external energy terms, respectively, C(s) is the contour that delineates
the desired boundaries and d is the Euclidean distance between the presumed
centroid of the real boundary and the estimated one of the snake.

According to [39], after appropriate variations, Eq. (4) has a deformable

form as α̃dC ′′(s)− β̃
d
C ′′′′(s)+ γV = 0, where α̃ = g̃1(d1), β̃ = g̃2(d2), d1 and

d2 are two constants, and g̃1 and g̃2 are the variations of the functionals g1
and g2. The Euclidean distance between the two centroids, d, is proportional
to the average mean shift of the entire contour [38]. This is motivated by
the fact that upon the settlement of the Snake, these two centroids must be
able to match.

2.2. Contour deformation

As discussed above, the settlement of Snakes relies on the interaction
between the internal and external energy forces. If one of them has a larger
force than the other, the Snake will penalise the other term and hence the
Snake’s settlement may be biased, leading to over- or under-segmentation.
In the situation where there exists strong image noise or distractions next to
the target contour, a denoising process must be properly designed in order
to handle the bias issue. Fig. 2 illustrates dermoscopic images (a) with their
blurred outcomes (b) using a Gaussian filter in order to reduce noise during
the GVF segmentation procedure. However, a new challenge is that we
have no prior information about the level of image noise and the locations
of distractions and hence appropriate noise reduction may be very difficult
to achieve.

Another possible solution is to re-design the energy functional consid-
ering the combinatorial effects of the internal and external energy forces
within the objective function, i.e. Eq. (1). As a result, the newly designed
functional must be adaptive to different image circumstances. In particu-
lar, if the internal energy term dominates the evolution of the contour, the
external energy term will be used to constrain the diffusion of the evolu-
tionary contour in order to prevent over-evolution of the contour. Here, we
take a close look at the evolution of the contour with numerical modelling,
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(a) (b) (c)

Figure 2: Examples of ambiguous boundary detection that can result in under- or over-
segmentation (see the peaks in the graphs): (a) Original image, (b) image blurring by
Gaussian filtering and (c) volumetric representation of (b). Better viewed in colour.

based on a mass density function that describes the evolution of a curve.
This is a different view from the classical GVF strategies, using one of the
fundamental theories in physics.

The deformation of a region of interest can be considered as a map T+:
Ω → R2 with a continuously differentiable inverse T−. Let the mass density
function of the region, surrounded by a continuous contour, be ρ. The mass
of the region is given as follows:

mω =

∫

ω

dT+ρ(T+, t), (5)

where m is the mass in the range ω at time t.
Using the dynamical version T+0, ρ0 and ω0 of the parameters T+ re-

spectively, ρ and ω, the right-hand side of Eq. (5) can be decomposed as
follows [41]:

∫

ω0

dT+0ρ0(T+0) =

∫

ω0

dT+0det(▽T+(T+0, t))

ρ(T+(T+0, t), t), (6)

where the mass density function has an alternative form:

ρ(T+, t) = det(▽ρ0(q(T+, t))). (7)
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Here, q is the inverse transform depending on the deformation map T+. For
simplicity, we use a time-series function to describe the mass:

Q(t) =

∫

ω0

dT+0det(▽T+(T+0, t))ρ(T+(T+0, t), t). (8)

We understand that the surrounding contour cannot stop evolving until
an energy cost function has been satisfied. Therefore, we expect to find
out in what circumstance the contour can be settled. In a noise-free image
(almost impossible though), we are able to stop the evolution of the contour
if the following condition is met [41]:

∂Q(t)

∂t
= 0. (9)

Using Eq. (8), we have the following form, omitting the intermediate deriva-
tion:

∂Q(t)

∂t
=

∫

ω0

dT+0det(▽T+(T+0, t))
( ∂

∂t
ρ(T+(T+0, t), t)

+(▽·J)ρ(T+(T+0, t), t)
)

. (10)

In spite of its complexity, Eq. (10) delineates the progressive characteristics
of the contour during its evolution. In other words, the right hand side
of Eq. (10) must be of a global minimum absolute value when the contour
actually stops moving. For simplicity, we here discuss about the case where
(▽·J)ρ is positive definite, which is a common case in practice. As a result,
the following inequality holds:

∂ρ

∂t
+ (▽·J)ρ ≥

∂ρ

∂t
, (11)

where J is a spatial velocity field that denotes the motion vector of the
image points on the contour at time t with the following form:

J(T+, t) =
∂T+

∂t
(q(T+, t), t). (12)

Let T+0 be a vector with non-negative components. Combining Eqs. (11)
and (12) leads to:

∂Q(t)

∂t
≥

∫

ω0

dT+0det(▽T+(T+0, t))
∂ρ

∂t
(T+(T+0, t), t). (13)
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If the Snake settles on the correct boundary, both constraints Eqs. (2)
and (9) must be satisfied at the same time. To jointly satisfy these two
constraints in a single objective function, we consider applying the Lagrange
multiplier rule [42]. This approach has the advantage of using one of the
constraints as a regularisation term when the other is pursued. In other
words, we seek an optimal value for the parameter λ ∈ R such that:

[ ∂

∂s

(

α
∂x

∂s

)

−
∂2

∂s2

(

β
∂2x

∂s2

)

−▽Eext(x)
]

−λ
[

∫

ω0

dT+0det(▽T+(T+0, t))

( ∂

∂t
ρ(T+(T+0, t), t) + (▽·J)ρ(T+(T+0, t), t)

)]

= 0. (14)

Let the first term of the left-hand side of Eq. (14) be FT1
and the second

term FT2
. In our case, the curve x in FT1

is closely related to the map
function T+ in FT1

. In fact, the latter determines the location of x in the
image, and any change of T+ subsequently causes variations of x. In the
meantime, the Lagrange multiplier λ can be updated as

λ = inf
s∈[0,1],T+0∈ω0

FT1

FT2

, (15)

where the conditions of s and T+0 must be jointly satisfied. Substituting
Eq. (11) to (14), we have the following form:

[ ∂

∂s

(

α
∂x

∂s

)

−
∂2

∂s2

(

β
∂2x

∂s2

)

−▽Eext(x)
]

−

λ
[

∫

ω0

dT+0det(▽T+(T+0, t))
( ∂

∂t
ρ(T+(T+0, t), t)

)]

≥ 0. (16)

Let the left-hand side of Eq. (16) be L(t). Thus, we can re-write Eq. (16)
according to [43]: Φ(t) = LTL =‖ L ‖2. Eventually, the numerical solution
of Eq. (16) satisfies the following condition:

minΦ(t) = min(‖L ‖2). (17)

Using such a combinatorial way (i.e. Eq. (16)) helps handling the segmen-
tation problem in noisy images. This will be justified in the experimental
section. However, seeking such a minimisation as Eq. (17) is non-trivial.
First of all, compromising both the partial differential equation (PDE) and
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the mass function of a region during the contour evolution is not easy to
achieve due to the different objectives. Secondly, an analytical solution to
the PDE problem is extremely difficult to obtain as there are no prior in-
formation or boundary conditions to use. A fast and optimal solution to
Eq. (17) is therefore pursued in the next subsection.

2.3. Simplified solution to the segmentation problem

To obtain an optimal solution to Eq. (16), we first investigate the two
terms of the left hand side of Eq. (16), and seek corresponding solutions
for individual local energy minimisations. These two different operations
are intersectionally applied to the two energy terms before a global mini-
mum is found. According to [22], the gradient vector flow field is defined
as the vector field v(x, y) that minimises the following energy functional:
E =

∫ ∫

µ(u2x + u2y + v2x + v2y) + | ▽ f |2|v − ▽f |2dxdy, where v(x, y) =
[u(x, y), v(x, y)]. The solution to this minimisation is

{

µ▽2u− (u− fx)(f
2
x + f2

y ) = 0

µ▽2v − (v − fy)(f
2
x + f2

y ) = 0
(18)

where ▽2 is the Laplacian operator. Taking a closer look at the second term
of the left-hand side of Eq. (16), we have:

det(▽T+(T+0, t)) = Πreig(▽T+(T+0, t)), (19)

where r is the dimension and eig denotes the eigenvalues of ▽T+(T+0, t).
The derivative ▽T+(T+0, t) can be approximated to be the difference of two
neighbouring deformable shapes against the time interval:

▽T+(T+0, t) ≈
T+(T+0, t)− T+(T+0, t−△T )

△T
, (20)

where the initial state of ▽T+(T+0, t) is null and △T is the image sampling
interval (a constant in this case).

Now, we look at the parameterisation of ρ. The Euclidean distance
between the centre of the mass and each point j on the image is represented
as d((xj , yj), t). Similarly, the Euclidean distance between the centre of the
region and each point i on the contour is D(xi, yi). Therefore, the mass
density ρ is computed as follows:

ρ(T+(T+0, t), t) =

∫

j
d((xj , yj), t)

D(xi, yi)
. (21)
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Thus, we have:

∂ρ

∂t
(T+(T+0, t), t) =

∂(
∫

j
d((xj , yj), t))

D(xi, yi)∂t
≈

αd̄(t)

D(xi, yi)
, (22)

where α is a constant based on empirical results, and d̄(t) is the average
moving distance of the centre of the mass over a short period. Eq. (22)
shows that the variation of mass density ρ is proportional to the motion
distance of the mass centre.

We now attempt to work out an efficient technique in order to obtain
an optimal numerical solution to Eq. (22). Techniques such as image mo-
ments [44, 45], level sets [15], wavelets [46] or stochastic analysis [47] can
be used to handle this problem in different circumstances. Most of these
approaches require the objective functions to be parameterised. Moreover,
these methods require significant computation efforts before convergence is
reached. In our approach, which is significantly different from the classical
approaches, we use a mean shift based algorithm that can achieve fast sim-
ilarity search by examining the intensity distributions over two neighboring
iterations [48].

It is worth pointing out that the proposed algorithm significantly differs
from the classical approaches such as [24, 35, 38, 39] in the sense that the
convergence of the proposed algorithm relies upon the intensity histogram of
the region outlined by the contour, the distance between each point within
the region outlined by the contour and its mass centre and the distance
between each point of the contour and its centre. However, the approaches
presented in [24, 35, 38, 39] only depend on the distance between each point
of the contour and its centre. Evidence shows that the proposed algorithm
leads to better performance than the others due to the joint action of the
regional contents and the distances as mentioned.

2.4. Mean shift for contour evolution

Fig. 3 shows two exemplar images with corresponding intensity his-
tograms and final segmentation results (the boundaries are shown in green
colour). The mean shift analysis used in the energy minimisation is to en-
hance the discrimination capability of image pixels. Let K(φ) be a kernel
and f(φ) be a multivariate kernel density estimation of the intensity values
within the region outlined by the evolving contour (φ refers to the image
points). Then,

f(φ) =
1

n

n
∑

i=1

KH(φ− φi), (23)
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Figure 3: Interaction of neighbouring pixels in image segmentation: (a) Original images
superimposed by the segmentation contour, (b) intensity histogram of the regions outlined
by the contour (indicated by green colour), and (c) intensity histogram of the regions
outside the contour. Better viewed in colour.

where φi indicate the neighboring points, and KH(φ) = |H|−
1

2K(H−
1

2φ),
where H is a symmetric positive definite (l × l) bandwidth matrix and n is
the number of image points. In a real application, the bandwidth matrix H

can be diagonal H = diag[h21, ..., h
2
l ], or proportional to the identity matrix

H = h2I. Thus, we have f(φ) = 1
nhl

∑K
i=1

(

φ−φi

h

)

. We can use a radially

symmetrical kernel that satisfies K(φ) = Ck,lk(‖ φ ‖2), where Ck,l is a
normalised constant that enables K(φ) to be integrated to 1. As a result,

fh,k(φ) =
Ck,l

nhl

∑

k
(

∥

∥

∥

∥

φ− φi

h

∥

∥

∥

∥

2
)

. (24)

When the Snake settles, the intensity histograms over two neighboring it-
erations will be similar. If this occurs, the Snake possibly stops moving,
resulting in unchanged density estimations in this circumstance: ▽f(φ) =

0. Therefore, ▽f(φ) =
2Ck,l

nhl+2

∑

(φ − φi)k
′

(
∥

∥

∥

φ−φi

h

∥

∥

∥

2 )

= 0. Introducing
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G(φ) = −k′(φ), we have:

▽f(φ) =
2Ck,l

nhl+2

∑

(φ− φi)G
(

∥

∥

∥

∥

φ− φi

h

∥

∥

∥

∥

2
)

=
2Ck,l

nhl+2

[

n
∑

i=1

G
(

∥

∥

∥

∥

φ− φi

h

∥

∥

∥

∥

2
)

]

·







∑n
i=1 φiG

(
∥

∥

∥

φ−φi

h

∥

∥

∥

2 )

∑n
i=1G

(∥

∥

∥

φ−φi

h

∥

∥

∥

2 ) − φ







= 0. (25)

The mean shift is the last term of the right-hand side of Eq. (25), which can
be further simplified as follows:

mh,G(φ) =
1

2
h2C

▽fh,k(φ)

fh,G(φ)
, (26)

where fh,G(φ) has a similar form to that of Eq. (24) but uses G instead of
h. Referring to Eq. (22), we have

mh,G(φ) ≈ ckd̄(t), (27)

which indicates that the minimisation of mean shift is also equivalent to the
minimisation of the mass density function of Eq. (22) (ck is a scalar). This
mean shift procedure determines the grouping of the image points in the
whole image domain, whilst having the benefit of efficiently reaching the
convergence. Mean shift is parameter-free and its kernel can be modified
so as to adapt to different applications. Consequently, when implementing
Eq. (16), we include the computation of mean shift during each iteration for
the region surrounded by the evolving boundary.

Fig. 4 illustrates that, as the iteration proceeds, the GVF, a non-conservative
force based on the Helmholtz theorem, successfully approximates boundary
concavities and is capable of topological transformation in a certain way.
We also observe that the intensity histograms of the region outlined by the
evolving contour become stabilised after a number of iterations. The mean
shift will reach a minimisation that is evolutionarily stable, which affects
the settlement of the Snake through the varied λ (see Eq. 15). Without this
mean shift term for the regularisation purpose, the GVF would drive the
Snake to continuously shrink and cause over-segmentation in this particular
example.

13



Algorithm 1 Proposed mean shift based GVF image segmentation (MS-
GVF) algorithm.

1: Initialise the contour and the corresponding parameters
2: for Iterations i = 1:m (m is normally larger than 500) do
3: Employ the classical Snake (i.e. Eq. (2)).
4: Compute the mean of the intensity histogram of each region sur-

rounded by the evolving contour.
5: Obtain the difference of the two means in two neighboring iterations.
6: Introduce the above difference into Eq. (22).
7: Substitute Eqs. (19)-(22) and (26) into Eq. (16).
8: Calculate λ using Eq. (15).
9: Evaluate the left hand side of Eq. (16) for the differences over two

consecutive iterations.
10: Iterate steps 3-9 until Eq. (17) is satisfied or the difference between

two consecutive iterations < 0.001.
11: end for

2.5. Convergence analysis

The proposed Mean Shift based GVF algorithm is shown in Algorithm 1.
Looking at the energy function shown in Eq. (16), even though one of the
two functionals converges, Eq. (16) can still be further optimised for a better
settlement. The convergence properties of the energy function therefore can
be divided into two parts.

First, we examine the case of mean shift. Assume that S ⊆ Rd, ▽fh,k :
S → R and have continuous derivatives of 2nd order. ∀ηt ∈ S and▽2Fh,k(ηt)
(t = 1, 2, ...) is a negative definite matrix. Fh,k(ηt) can be expanded using
the Taylor series theorem given η = ηt + ξtdt ∈ S:

Fh,k(ηt + ξtdt) = Fh,k(ηt) + ξt▽Fh,k(ηt + θξtdt)
T , (28)

where 0 < θ < 1. Let ϕ(θ) = λt ▽ Fh,k(ηt + θξtdt)
Tdt. We then have [49]:

limθ→0 ϕ(θ) = ξt ▽ Fh,k(ηt+1)
T ▽ Fh,k(ηt) > 0. The derivative of ϕ(θ) is

ϕ′(θ) = (ηt+1 − ηt)
T▽2Fh,k(ηt + θξtdt)

T (ηt+1 − ηt) < 0. Therefore, ϕ(θ)
is monotonically decreasing, ∀θ(0, 1). This leads to Fh,k(ηt+1) > Fh,k(ηt).
Hence, Fh,k(ηt) is strictly monotonically increasing and convergent, resulting
in limFh,k→Fh,k(η̄) = 0, where η̄ ∈ S [49].

Second, we investigate the convergence of the left hand side of Eq. (16),
assuming that mean shift has reached its minimisation after a certain num-
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Figure 4: Intensity histograms (row 2) and GVF field maps (row 3) of the regions outlined
by the contour (row 1: green colour) in different iterations: (a) 5-th, (b) 25-th, and (d)
40-th. The parameters used in this example are α = 0.1, β = 0.01, γ = 1, κ = 0.6. Better
viewed in colour.

ber of iterations. Referring to [50], one has

L(u+ v)− L(v) = [µ| ▽ u|2 + 2µ▽ v · ▽u+ | ▽ f |2

|u|2 + 2| ▽ f |2(v −▽f) · u] + υ,

(29)

where v + u ∈ S and υ → 0 due to the slight variation in the mean shift
iteration. Given the Gâteaux variation of the functional as ǫL(v;u) =

limρ→0
L(v+δu)−L(v)

ρ
, we then have: L(v + u) − L(v) − ǫL(v;u) = µ| ▽

u|2 + | ▽ f |2|u|2 + υ ≥ 0, which indicates that the left hand side of Eq. (16)
is convex.

3. Experimental work

To fully evaluate our proposed MSGVF algorithm in terms of the initial-
isation invariance and convergence accuracy we use a set of 100 dermoscopic
images (30 invasive malignant melanoma and 70 benign) obtained from the
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EDRA Interactive Atlas of Dermoscopy [51] and the dermatology practices
of Dr. Ashfaq Marghoob (New York, NY), Dr. Harold Rabinovitz (Planta-
tion, FL) and Dr. Scott Menzies (Sydney, Australia). The benign lesions
include nevocellular nevi and dysplastic nevi. Manual borders were obtained
by selecting a number of points on the lesion border, connecting these with
a 2nd-order B-spline and finally filling the resulting closed curve. Three sets
of manual borders were determined by expert dermatologists and serve as a
ground truth for the experiments.

In addition, the algorithm was evaluated on a set of 40 retinal images
obtained from the DRIVE database [52]. These images have been randomly
selected from a screening database of 400 diabetic subjects aged 25-90. 33 of
the images do not show any sign of diabetic retinopathy while in 7 signs of
mild diabetic retinopathy are apparent. Each image is a true colour image of
768 by 584 pixels. The field of view of each image is circular with a diameter
of approximately 540 pixels.

In our current implementation, the color dermoscopic images are con-
verted to grayscale using the CCIR 601 standard (Luminance = 0.2989 ∗
Red + 0.5870 ∗ Green + 0.1140 ∗ Blue). Colour information may be used
in the future to improve the results. In the experimental evaluation, we
used a PC with Intel(R) Core(TM)2 CPU (2.66 GHz) and 2 GB RAM.
The algorithms we compare are the classical GVF algorithm [22], level set
segmentation [10] (LS), mean shift constrained GVF (MGVF) [24, 38, 39]
and the proposed MSGVF algorithm. For the two GVF based methods, the
parameters have been set to: α (tension of the Snake) = 0.05, β (rigidity
of the Snake) = 0.0, γ (step size in one iteration) = 1.0, and κ (external
force weight) = 0.6. These parameters have been chosen due to their best
resulting outcomes from these specific datasets.

3.1. Dermoscopic images

In this sub-task, the evaluation consists of four parts. First, the four
algorithms are evaluated using the dermoscopic images where the lesion
areas possess smooth and clear edges. This is the easiest case in the eval-
uation. Second, the performance of the overall algorithms is investigated
in the presence of irregular edges in the lesion regions. This examination
will bring certain challenges in terms of the algorithms’ capability in these
“noisy” environments. Third, we examine how these schemes perform if the
edges of the lesion areas look ambiguous. This test is more rigorous than the
above tests in the way that a segmentation algorithm needs to effectively
locate a vague boundary before the segmentation procedure starts. Finally,
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Figure 5: Segmentation results of dermoscopic images with smooth and clear lesion edges.
Row 1: original images; Row 2: ground truth; Row 3: level set; Row 4: classical GVF;
Row 5: MGVF; Row 6: MSGVF. Better viewed in colour.
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we evaluate the performance of the different algorithms (i.e. GVF, MSGVF
and level set) using changed initial contours.

In the first test, the various algorithms are evaluated in the presence
of smooth and clear edges. Image examples of the experimental results
are illustrated in Fig. 5. In general, the algorithms obtain similar outcomes.
However, taking a closer look, we can observe that the proposed MSGVF al-
gorithm has a better fit to the ground truth than the classical GVF method.
For example, the 2-nd and 3-rd columns of Fig. 5 illustrate that the classical
GVF algorithm leads to worse settlements, compared to the proposed MS-
GVF algorithm. Also, it can be noticed that the level set algorithm causes
a significantly misplaced boundary on the first image of Fig. 5.

In the second test, the lesion edges have irregular shapes that make
accurate segmentation more difficult as the energy functions used in the
iterations of these algorithms have to make more effort to handle various
saddle points in the optimisation. Exemplar results for this group of images
are presented in Fig. 6. We observe that MSGVF has the most consistent
outcomes compared to the other methods. The classical GVF technique
leads to some spikes on the final settlements as the evolution of the contour
struggles to capture the curvatures. For columns 2 and 3, it is clear that
the level set and MGVF methods exhibit difficulties in handling concave
shapes. In contrast, the proposed MSGVF algorithm is successful in driving
the contour to follow these shapes.

In the third test group, the skin images have ambiguous edges where a
segmentation algorithm needs to “define” a more clear boundary in the first
instance. Examples of this group are illustrated in Fig. 7, together with
the obtained segmentations. The classical GVF algorithm leads to local
convergence and numerous spikes along the final contours. Columns 1 and 4
of the level set method show that this approach is not successful in capturing
the geometric deformation in the images, compared to the proposed MSGVF
algorithm.

Finally, we investigate the case where the starting contours are changed
before segmentation is performed. Two sample images are given in Fig. 8.
It is observed that the proposed MSGVF algorithm has the most consistent
and accurate segmentation results, whereas the other two methods lack this
consistency, leading to failed converge onto the correct boundaries.

As ground truth information is available for the complete dermoscopic
image set, we can also evaluate the various algorithms in a quantitative
form. For each image segmentation we record the number of True Positives
TP (the number of pixels that were classified both by the algorithm and the
expert as lesion pixels), True Negatives TN (the number of pixels that were
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Figure 6: Segmentation results of dermoscopic images with irregular lesion edges. Row 1:
original images; Row 2: ground truth; Row 3: level set; Row 4: classical GVF; Row 5:
MGVF; Row 6: MSGVF. Better viewed in colour.
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Figure 7: Segmentation results of example dermoscopic images with ambiguous lesion
edges. Row 1: original images; Row 2: ground truth; Row 3: level set; Row 4: classical
GVF; Row 5: MGVF; Row 6: MSGVF. Better viewed in colour.
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Figure 8: Segmentation results of example dermoscopic images with different starting
contours. Row 1: original images superimposed by starting contours; Row 2: ground
truth; Row 3: GVF; Row 4: level set; Row 5: MGVF; Row 6: MSGVF. Better viewed in
colour.
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Table 1: Segmentation performance with reference to Figs. 5-7.

For each algorithm the median sensitivity/specificity are given.
Algorithms Fig. 5 Fig. 6 Fig. 7

classical GVF 0.75/0.95 0.71/0.99 0.66/0.99
level sets 0.79/0.96 0.74/0.99 0.73/0.91
MGVF 0.80/0.98 0.78/0.99 0.75/0.94
MSGVF 0.84/0.97 0.80/1.00 0.77/0.93

classified both by the algorithm and the experts as non-lesion pixels), False
Positives FP (the number of instances where a non-lesion pixel was falsely
classified as part of a lesion by an algorithm) and False Negatives FN (the
number of instances where lesion pixels were falsely classified as non-lesion
by an algorithm). From this we can then calculate the sensitivity SE (or
true positive rate): SE = TP

TP+FN
and the specificity SP (or true negative

rate): SP = TN
TN+FP

.
Table 1 gives the sensitivity and specificity obtained by all algorithms

over the image examples shown on Figs. 5-7 and compared to all three
ground truth segmentations (median SE and SP based on all three manual
segmentations are reported). It is observed that the proposed MSGVF has
the highest sensitivity and specificity values, indicating the best segmenta-
tion capability. In Table 2 we show the sensitivity and specificity obtained
by all algorithms over the entire dermoscopic database and compared to all
three ground truth segmentations (median SE and SP based on all three
manual segmentations are reported). It can be seen that the proposed MS-
GVF performs significantly better with an median sensitivity of 86% while
the other algorithms achieve a sensitivity of less than 81%. In addition,
MSGVF sustains more consistent results as indicated by the lowest stan-
dard deviations of both sensitivity and specificity. As specificity is fairly
similar for all algorithms, we can conclude that MSGVF provides the best
segmentation on the given dataset.

3.2. Optic disc images

We perform the evaluation on this dataset in two parts. First, the clas-
sical GVF, level set segmentation and our proposed MSGVF algorithms are
evaluated using the retinal images where the optic disc (OD) is clearly visible
from the observer’s point of view which represents the simplest case in our
evaluation. In addition, the performance of the algorithms is investigated in
the presence of vague optic discs in the retinal images. These examinations
allow the algorithms to be fully evaluated in different noisy environments.
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Table 2: Segmentation performance with reference to the complete dermoscopic dataset.

For each algorithms the median sensitivity and specificity are given.
Values in brackets indicate standard deviations of the measures.

Algorithms Sensitivity Specificity

classical GVF 0.74(0.13) 0.99(0.10)
level sets 0.76(0.09) 0.99(0.07)
MGVF 0.81(0.09) 0.99(0.08)
MSGVF 0.86(0.07) 0.99(0.05)

Second, we examine how the algorithms perform if the initial contours are
varied. This is a rigorous test that fails a segmentation algorithm if it does
not work in a consistent and stable manner.

Examples of the first test are illustrated in Fig. 9. As can be seen, for all
these images, the proposed MSGVF algorithm provides consistently accurate
results compared to the other two algorithms. This can be attributed to the
computation of mean fields in the domain of the proposed approach, which
dynamically balances internal and external energy forces during the contour
evolution. The poor performance of the classical GVF, MGVF and level set
algorithms is due to the distraction of the blood vessels nearby the optic
disc.

One of the main challenges in image segmentation is whether or not the
performance of a segmentation algorithm can be kept consistent for differ-
ent initialisation circumstances. To validate this, we randomly specify the
starting contours for the involved images. This is followed by the regular
routine of the algorithms. Fig. 10 demonstrates that despite varied initial
contour position, the resultant segmentation borders are visually indistin-
guishable. When the initial contour is relatively far from the actual one,
three approaches obtain similar segmentation results but it is clear that the
proposed MSGVF algorithm has more consistent outcomes than the other
algorithms.

Table 3 illustrates that the proposed MSGVF algorithm has the best
specificity and sensitivity, compared to the other algorithms. It is worthy
to point out that MGVF and level sets approaches lead to similar sensi-
tivity results, both of which are better than that of the classical GVF. It
is also observed that all of the tested algorithms share approximately the
same specificity results (0.99-1.00). This indicates that all of them correctly
exclude the areas that do not belong to the real regions of interest. To
better measure the similarity between a segmented region and the ground
truth, especially in the presence of a small segmentation area, we here apply
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Table 3: Segmentation performance with reference to the complete optic disc dataset.

Algorithms Sensitivity Specificity XOR

classical GVF 0.70(0.06) 0.99(0.04) 0.45(0.13)
level sets 0.72(0.07) 0.99(0.01) 0.39(0.11)
MGVF 0.74(0.09) 0.99(0.03) 0.37(0.09)
MSGVF 0.78(0.04) 1.00(0.0) 0.33(0.09)

Table 4: Comparisons of time consumption of each algorithm for a single image. Units:
seconds.

classical GVF level sets MGVF MSGVF

Time 16 14 17 22

an XOR operation. This XOR operation is defined as a ratio between the
non-overlapped area and the size of the ground truthed segmentation region.
The smaller XOR value is, the higher similarity between the segmentation
and the ground truth is achieved. The last column of Table 3 shows that
the proposed MSGVF algorithm has the least dissimilarity.

4. Conclusions and future work

In this paper we have presented a novel variational framework for image
segmentation. Both the accuracy and robustness of the proposed MSGVF
algorithm have been validated against competing approaches including clas-
sical GVF and level set. Unlike these state-of-the-art techniques, the pro-
posed method is fairly accurate as it obtains an optimal solution during the
iterations for energy minimisation. The proposed algorithm integrates the
classical GVF term with a mass density function. The final solution towards
this integrated functional is based on a numerical optimisation procedure
with the support of mean shift estimation.

The main drawback of the proposed algorithm is that it involves a
large amount of computation to achieve convergence. While it has been
shown that numerical convergence of the evolving contour is guaranteed,
the solution-rendering process is rather time consuming. An example of
time consumption of different algorithms for a single image is illustrated in
Table 4. Therefore, future work is directed towards reducing the complexity
of the computation by optimising the implementation whilst using gradient
descent methods.
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Figure 9: Segmentation results of optic disc images. Row 1: original images superimposed
by starting contours; Row 2: ground truth; Row 3: classical GVF; Row 4: level set; Row
5: MGVF; Row 6: MSGVF. Better viewed in colour.
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Figure 10: Segmentation results with different initial contours of optic disc. Column 1:
original images superimposed by starting contours; Column 2: classical GVF; Column 3:
level set; Column 4: MSGVF. Better viewed in colour.
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