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Soil aggregation has received a lot of attention in the last years; however, the 26 

focus was mostly on soil microorganismsor larger soil fauna, especially 27 

earthworms. The impact of the large group of microarthropods, e.g. Collembola 28 

and Acari, is nearly unknown and hence underrepresented in the literature. Here 29 

we propose and discuss potential direct and indirect mechanismsofhow 30 

microarthropods could influence this process with the focus on collembolans, 31 

which are in general a relatively well studied taxon.Indirect mechanisms are 32 

likely to have larger impacts on soil aggregation than direct effects. The variety 33 

of indirect mechanisms based on the provision of organic material like faecal 34 

pellets, molts and necromass as food source for microorganisms is high and 35 

given available evidence we propose that these mechanismsare the most 36 

influential. We highlight the need for overcoming the challenges of culturing and 37 

handling of these animals in order to be able to design small scale experiments 38 

and field studies which would enable us to understand the role of the different 39 

functional groups, their interaction with other soil faunaand the impact of land 40 

use practices on soil aggregation.  41 

Key words: soil structure; microarthropods; Collembola; Acari 42 

 43 

Introduction  44 

Soil structure plays a critical ecosystemic role in biogeochemical processes (e.g. 45 

Jastrow, 1996), water infiltration, gas exchange efficacy, and resistance against 46 

erosional loss, and influences the performanceof soil biota, including roots (Hartge and 47 

Stewart, 1995; Miller and Jastrow, 1992; Oades, 1984; Rillig and Mummey, 2006). Soil 48 

structureis often referred to as the arrangement of different macro- and microaggregate 49 
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size fractions (organic/mineral complexes of >250µm or <250µm, respectively) and the 50 

corresponding pore spaces (Hartge and Stewart, 1995; Rillig and Mummey, 2006). 51 

Inhierarchically structuredsoils, organic matter serves as the main binding agent to 52 

form and stabilize aggregates (Tisdall and Oades, 1982), but additionally, soil texture, 53 

soil microorganisms, roots, inorganic binding agents, the predominant environmental 54 

conditions, and the soil fauna are important for this process (Dexter and Horn, 1988; 55 

Rillig et al., 2015).  56 

While soil fauna is generally acknowledged as being important for soil aggregation, 57 

direct empirical evidence is scarce for microarthropods, including mites and 58 

collembolans, the two most abundantand diverse groups. This is surprising given that 59 

these animals can occur at high densities,and given their role in the processing of 60 

organic matter via chemical, physical and biological mechanisms (Lee and Foster, 61 

1991; Wolters, 2000). We are only aware of two studies that have experimentally 62 

quantified the impact of Collembola on soil structure (Siddiky et al., 2012a, b); these 63 

experimental data, however,revealed an effect size comparable to that of much more 64 

thoroughly studied soil biota, such as fungi. These experiments should be extended to 65 

the field as this might also be of agricultural interest. 66 

Among the various groups of soil biota, especially the effects of mycorrhizal fungi, 67 

bacteria, earthworms, and termites have been studied intensely (e.g.; Lee and Foster, 68 

1991; Oades and Waters, 1991; Bossuyt et al., 2005; Pulleman et al., 2005; Rillig and 69 

Mummey, 2006; Velasquez et al., 2007). It is known that the excretion of e.g. 70 

polysaccharides by bacteria and the physical enmeshment of soil particles by fungal 71 

mycelia have a positive effect (see e.g. Degens, 1997; Lynch and Bragg, 1985; Oades, 72 

1993; Rillig and Mummey, 2006; Tisdall, 1994b). Larger soil animals like earthworms 73 

and termites directly affect soil structure by their burrowing activities and by the 74 
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digestion and excretion of relatively large amounts of organic material and soil 75 

particles, which might also lead to increased soil aggregation (e.g. Lavelle, 1988; Lee, 76 

1985; Lee and Foster, 1991; or see review by Six et al., 2004; Tisdall, 1994a, 1994b).  77 

Given this striking asymmetry in our understanding of biotic contributions to soil 78 

aggregation, we here propose and discuss potential mechanisms forCollembola, which 79 

are also likely applicable to other soil microarthropods. We distinguish between direct 80 

and indirect effects (Fig. 1);however all the mechanisms we discuss would in reality 81 

take place simultaneously and in interaction with each other. As the collembolan 82 

Folsomia candida is very well studied, especially with regard to properties that might 83 

be involved in mechanisms of soil aggregation, we base our discussion mostly on this 84 

species, but we believe without much loss of generality. 85 

 86 

[Fig. 1]  87 

 88 

Direct mechanisms 89 

Direct effects of collembolans on soil structure can be categorized in terms of input of 90 

organic material, which positively contributes to soil structure, and degradation of 91 

aggregates, which is a negative effect. 92 

Organic matter inputs 93 

Possible positive, direct effects of collembolans on soil structure include the 94 

production, modification and movement of organic matter, which can then serve as 95 

binding agents, nuclei or building blocks for aggregates. Assimilated nutrients can 96 

either be contained in animal tissue or be excreted as metabolic waste.Especially 97 
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because microarthropods can occur in high numbers, they might produce a large 98 

amount of faecal pellets. It has to be assumed that many soils contain millions of faecal 99 

pellets per square meter (Hopkin, 2007). In this context,Kubiena (1953) reports about 100 

the so-called ‘alpine pitch rendzinas’ on limestone which are nearly completely 101 

composed of collembolan faeces forming a 15-20cm deep black humus layer.  102 

Collembolan eggs are deposited in clutches and need a couple of days to weeks to 103 

develop (Hopkin, 2007). Eggs of the collembolan family Sminthuridaemight be covered 104 

by a mixture of soil and collembolan waste to protect them from mold and dehydration 105 

(Betsch-Pinot, 1976, 1977; Dallai et al., 2008). After hatching, the remaining egg 106 

integuments might serve as source of fresh organic material to microorganisms (which 107 

will be discussed in the paragraph about indirect mechanisms) or, due to the attached 108 

soil particles and organic material, as nuclei for microaggregate formation. 109 

Collembolans go through several  instars, which might mean molting at fairly high rates. 110 

Most species molt throughout their whole life (up to 45 times). Specimens of Folsomia 111 

candida may live up to six months; however, for other species shorter or far longer 112 

(one year and longer) life-spanshave been reported (Hopkin, 2007), which means that 113 

their production of molts could be significant. Interestingly, some oribatid mites can 114 

even survive for up to three years (Capinera, 2008).Their molts are hard-bodied due 115 

to chitin and other components in the cuticle (see Weigmann, 2006) and hence their 116 

breakdown should be slower, and thus they could serve as more long-lived building 117 

blocks of aggregates. Finally, the production of necromassespecially in short-lived 118 

species besides faecalpellets, molts and eggs, can potentially influence soil 119 

aggregation. Unfortunately, there is no study dealing explicitly with the input of these 120 

types of organic material. Given the potentially high local abundances, this should 121 

clearly be a target of future research.  122 
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Degradationof soil aggregatesvia disturbance 123 

Collembola and Oribatida usually consist of populations in the order of 10,000 to 124 

100,000individuals per square meter (see Hopkin, 2007; Weigmann, 2006).  Canthey 125 

therefore counteract the formation of aggregates by crawling around or feeding on e.g. 126 

microorganisms, plant remains or various excretory products? The impact of this 127 

disturbance on a per capita basis might be low, but data about the impact of locally 128 

high abundant microarthropods on soil aggregation  are missing. 129 

 130 

Indirect mechanisms 131 

Several studies have investigated the soil food web, functional characteristics and 132 

feedbacks between the different organism groups also in relation to aboveground 133 

biota; however, there are few data on the impact of interacting taxa like fungi and 134 

microarthropods on soil aggregation (Salmon and Ponge, 2001, Siddiky et al., 2012a, 135 

2012b). Fungi and bacteria are directly and indirectly contributing to the production and 136 

release of materials and compounds that contribute to soil structure dynamicswhile soil 137 

animals affect the translocation and provision of organic material for colonization, like 138 

faecal pellets, molts, eggs, and necromass,and the modification of the activity of 139 

microorganisms by grazing (Coleman et al., 2002). There are studies suggesting that 140 

Collembola could have a positive effect on mycorrhizal functioning as their fungal 141 

grazing might enhance fungal growth and respiration (Lussenhop, 1992). Other studies 142 

suggest that collembolans could also have no or negative effects (Fitter and Garbaye, 143 

1994; Fitter and Sanders, 1992),which brought attention to collembolans as important 144 

regulators of the mycorrhizal symbiosisacting in a density-dependentfashion (Gange, 145 

2000). If there were positive effectson fungal growth or branching patterns, these 146 
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effects could enhance soilaggregation processes, while the reduction of fungal 147 

biomass could have either negative effects or change the composition of the soil 148 

microbial community with unclear functional consequences. It is also likely that the 149 

observed effects depend on the abundance of Collembola or other microarthropods, a 150 

hypothesis that should therefore be tested (for enchytraeids see Hedlund and 151 

Augustsson, 1995). It has also been shown that Collembola do feed on 152 

arbuscularmycorrhizal fungi (AMF), but, depending on the species, prefer non-AMF 153 

mycelia(e.g. Klironomos and Kendrick, 1996; Klironomos and Ursic, 1998; Moore et 154 

al., 1985; Thimm and Larink, 1995).Another important aspect of the interaction 155 

between the microbial community and microarthropods is the dispersal of spores 156 

(Klironomos and Moutoglis, 1999; Lussenhop, 1992). AMF spores can be far larger 157 

(20-500 µm)than non-AMF spores (Trappe, 1982) and it is more likely that spores are 158 

ingested by earthworms rather than by Collembola (Fitter and Sanders, 1992; Moore 159 

et al., 1985). Brown (1995)has shown that spores can survive the gut passageof 160 

earthworms with an increased germination rate afterwards (for more information about 161 

gut microbiota in various taxa see e.g. Pherson and Beattie, 1979; Ponge 162 

andCharpentie, 1981, König, 2006.). Still, collembolans are also  able to act as vectors 163 

by transporting spores attached to their cuticle (Gormsen et al., 2004), which is also 164 

known for one oribatid group, the Damaeidae (Weigmann, 2006).  Although this 165 

phenomenon might be restricted to only a few species it should be considered as 166 

important means of microbial transport which might have an impact on the composition 167 

of the microbial community. 168 

As described in the paragraph about the provision of organic material, one major 169 

question is how the organic materials influence the colonization by and composition of 170 
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microbial communities, which might lead to enhanced aggregate formation. There are 171 

several potential mechanisms which have been investigated only in part so far. 172 

Foster et al. (1983) report that fresh faecal pellets can be recognized as round and 173 

smooth surfaces under the scanning electron microscope, whereas older pellets are 174 

mostly densely covered by fungal hyphae; this highlights the importance of 175 

microarthropodsinassisting microbial colonization of organic matter. It is also known 176 

that during the molting of collembolans the whole midgut epithelium is also excreted to 177 

dispose of the accumulated toxins (Fountain and Hopkin, 2001; Humbert, 1979). The 178 

total gut volume of Folsomia candida was estimated up to 10nl, faecal pellets had a 179 

volume of approx. 1nl (Thimm et al., 1998) and contained approx. 1.55 x 104 bacterial 180 

cells (identified by light microscopy) of which only less than 0.01% were dead. Taking 181 

into consideration that, under laboratory conditions, the reported period between the 182 

ingestion and the defecation of bacterial cells can be less than one hour (Czarnetzki 183 

and Tebbe, 2004), the amount of living microbial cells excreted per individuum during 184 

a life cycle is enormous. Some authors (e.g. Hanlon, 1981; Thimm et al., 1998) have 185 

already highlighted the importance of the constant local input of gut (but also other 186 

ingested) bacteria which might lead to an enhanced competition between already 187 

existing soil microorganisms, and this might affect soil aggregation depending on the 188 

ensuing species composition.The same might also be true for other organic material 189 

provided through oviposition or necromass.  190 

Collembolans usually excrete urine via the labial nephridia, but can also release 191 

insoluble products via the midgut epithelium (Hopkin, 1997; Larsen, 2007). Most of the 192 

nitrogenous and phosphorus-containing waste products are released as ammonia 193 

(Sjursen and Holmstrup, 2004), uric acid and phosphate, depending on the species. In 194 

spite of the studies addressing these aspects(e.g. Cragg and Bardgett, 2001; Milcu et 195 
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al., 2006; Verhoef et al., 1988) it is not clear how these different waste 196 

productsinfluence local environmental conditions and hence the microbial 197 

community.Some studies have also investigated partly species-specific characteristics 198 

of nitrogen and carbon release (Petersen, 1980; Sjursen and Holmstrup, 2004), the 199 

influence of the available resource quality (Chen et al., 1995) and the creation of 200 

nutrient sources for heterotrophic microbes and primary producers (Rusek, 1998). 201 

These processes should therefore be recognized as integral components of soil 202 

structure (Fjellberg, 1986; Rusek, 1985). 203 

Indirect effects of microarthropods via the provision of organic material to 204 

microorganisms are not the only indirect mechanisms to be considered. The complex 205 

interactions with the larger components of the soil fauna have not yet been considered 206 

in detail in any study (but see Ponge 1988; Ponge, 1991;Salmon and Ponge, 2001). In 207 

our opinion, especially the interaction between different functional groups should be 208 

more closely investigated, as the biggest effect sizes are assumed to be found in this 209 

context rather than in studies dealing with direct effects.  210 

Another important aspect is the impact of different agricultural practices on soil fauna 211 

and soil aggregation as abiotic factors. Once the biotic interactions between different 212 

faunal groups have become clearer, another focus should be on the impact of tillage, 213 

ploughing or compaction of soil on these interactions. It is known that different 214 

taxonomic groups respond differently to agricultural practices in different types of soils 215 

and depending on fertilizer additions etc. (see e.g. van Capelle et al., 2012, Roger-216 

Estrade et al., 2010, for microarthropods see Ponge et al. 2013), however, closer 217 

investigation would be necessary in order to develop appropriate strategies to e.g. 218 

increase soil fertility and resistance towards erosional loss by increasing soil stability 219 

via soil fauna. 220 
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Conclusion 221 

Despite their underrepresentation in the soil aggregation literature, we highlighted and 222 

discussed several potential mechanisms via whichmicroarthropods could influence soil 223 

aggregation.  224 

Due to their relatively small body size and total biomass, which is lower than that of 225 

fungi, bacteria and other taxa such as nematodes and protozoa, microarthropods may 226 

rather indirectly than directly affect soil structure. However, in some cases the impact 227 

of the production of assumedly large amounts of organic material in form of necromass, 228 

eggs, etc. might play an important role as direct starting points for microaggregate 229 

formation. We propose to start studying soil aggregation formation with easy-to-handle 230 

species such asFolsomiacandidain experimental designs that allow assessing the 231 

direction and magnitude of the various possible mechanisms, especially direct vs 232 

indirect mechanisms.Difficulties with culturingmicroarthropodsforexperiments, but also 233 

withthe collection of direct observationshave hampered empirical studies to date. The 234 

usage ofhigh resolution filmingand photographing, which is nowadays very feasible 235 

given the remarkable advances in microscopy technologies, is necessary to observe 236 

how microarthropods act in the formation of soil aggregates. Coupling these 237 

technologies with small scale experimental designs will allow teasing apart the roles of 238 

various mechanisms that act simultaneously. An element of complexity and realisms 239 

will be given by studies addressing the impact of different taxa (e.g. Collembola and 240 

Acari) on soil structure in opposition to studies focusing onspecies-specific effects. In 241 

this context, a focus should in our opinion be on the interaction of functionally 242 

defined,trait-based groups across all soil biota. 243 

 244 
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Figure captions 450 

 451 

Fig. 1: Overview of potential mechanisms used by microarthropods for the formation 452 

of soil aggregates. Mechanisms are divided into direct and indirect processes and 453 

based on Collembola and oribatid mites as most abundant soil microarthropod 454 

representatives. 455 


