
Data Compression Device based on Modified LZ4 Algorithm

Liu, W., Mei, F., Wang, C., O'Neill, M., & Swartzlander, E. E. (2018). Data Compression Device based on
Modified LZ4 Algorithm. IEEE Transactions on Consumer Electronics, 64(1), 110-117. Advance online
publication. https://doi.org/10.1109/TCE.2018.2810480

Published in:
IEEE Transactions on Consumer Electronics

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2018 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.
javascript:void(0);

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:28. Apr. 2024

https://doi.org/10.1109/TCE.2018.2810480
https://pure.qub.ac.uk/en/publications/123a0939-fb46-4de1-aa18-0c72bf723ed7

Abstract—Data compression is commonly used in NAND flash-

based Solid State Drives (SSDs) to increase their storage

performance and lifetime as it can reduce the amount of data

written to and read from NAND flash memory. Software based

data compression reduces SSD performance significantly and, as

such, hardware-based data compression designs are required.

This paper studies the latest lossless data compression algorithm，

i.e., the LZ4 algorithm which is one of the fastest compression

algorithms reported to date. A data compression FPGA prototype

based on the LZ4 lossless compression algorithm is studied. The

original LZ4 compression algorithm is modified for real-time

hardware implementation. Two hardware architectures of the

modified LZ4 algorithm (MLZ4) are proposed with both

compressors and decompressors, which are implemented on a

FPGA evaluation kit. The implementation results show that the

proposed compressor architecture can achieve a high throughput

of up to 1.92Gbps with a compression ratio of up to 2.05, which is

higher than all previous LZ algorithm designs implemented on

FPGAs. The compression device can be used in high-end SSDs to

further increase their storage performance and lifetime.

Index Terms—Solid-State Drives (SSDs); Lossless compression;

LZ algorithms; LZ4; FPGA

I. INTRODUCTION

OLID-state drives (SSDs) based on NAND flash memory

have become popular in consumer electronic devices such

as smart phones, tablet and desktop systems [1-2]. It is highly

desirable to reduce the amount of data in SSDs and the

read/write data transmission time to/from SSDs as flash

memory has a finite number of program-erase (P/E) cycles thus

limited lifetime [3]. For example, older single-level cell (SLC)

NAND-flash memory was able to withstand 150,000 P/E cycles,

while multi-level cell (MLC) NAND-flash memory using 15-

19nm process technologies wears out after only 3,000 P/E

cycles [2], [4]. Furthermore, the performance of MLC flash

memory is also much slower than that of its SLC counterpart.

Also, more advanced triple-level cell NAND flash memory has

an even lower number of P/E cycles [5]. This problem is

expected to worsen with further scaling of the semiconductor

process. Therefore, to increase the lifetime and also the

performance of flash-based SSDs, the amount of data written to

and read from the SSDs should be reduced, which can be

achieved using data compression. Another benefit of using

lossless data compression in SSDs is to reduce the I/O latency.

Data compression for SSDs has been widely adopted. Data

compression can be implemented in three layers: the

application, the file system or the firmware of the storage device.

Most data compression algorithms are adopted in the

application layer and the file system using software

implementation. Software based data compression can be

useful in improving the lifetime of SSDs. However, the overall

performance of SSDs is reduced significantly due to the slow

compression and decompression speed. A recent study [6]

based on realistic data and systems show that applying data

compression in the firmware of the SSDs using a data

compression hardware accelerator is the best approach. A

typical SSD architecture with data compression acceleration is

shown in Fig. 1.

Although hardware-based compression is required for NAND

flash memory and SSDs, little research has been conducted on

how to design a high performance hardware compression

accelerator [7-13]. In [6], it was found that for high-end SSDs

with transaction rates of up to 3K per second,

compression/decompression rates of above 200MB/s (i.e.,

1.6Gbps) are required. However, existing designs are limited in

performance with compression speeds in the range of

0.567Gbps~1.6Gbps [7-13], which cannot meet the

requirement of high-end SSDs.

In this paper, the design of a hardware accelerator based on

the latest lossless data compression algorithm, i.e., LZ4 [14] for

data compression in high-end SSDs is studied and demonstrated

on an FPGA device. The original LZ4 algorithm is somewhat

difficult to implement in hardware as it was proposed for

software implementation. It is not possible to store all the text

in calculating the hash. Its output delay is uncertain and the

input data is limited by the address width of the hash table. As

a result, the LZ4 algorithm has been modified for hardware

Data Compression Device based on

Modified LZ4 Algorithm
Weiqiang Liu, Senior Member, IEEE, Faqiang Mei, Chenghua Wang, Maire O’Neill, Senior Member, IEEE

and Earl E. Swartzlander, Jr., Life Fellow, IEEE

S

This work is supported by grants from Fundamental Research Funds for

the Central Universities China (NS2017024).

W. Liu, F. Mei and C. Wang are with the College of Electronic and

Information Engineering, Nanjing University of Aeronautics and
Astronautics, Nanjing, Jiangsu, China (e-mail: {liuweiqiang, meifaqiang,

chwang}@ nuaa.edu.cn).

M. O’Neill is with Center for Secure Information Technologies, Queen’s
University Belfast, Belfast, UK (e-mail: m.oneill@ecit.qub.ac.uk).

E. E. Swartzlander, Jr. is with the Department of Electrical and Computer

Engineering, University of Texas at Austin, USA (e-mail:
eswartzla@aol.com).

DRAM

DRAM
Controller

Processor

SSD Controller

Flash
 B

u
s

C
o

n
tro

llers

D
M

A
 C

o
n

tro
ller

Compression
Module

Decompression
Module

Flash

H
o

st In
terface

H
O

ST

Flash

Flash

Flash

Fig. 1. A typical SSD architecture with data compression acceleration.

implementation in this paper to solve these problems. By using

the MLZ4 algorithm, the hash computation is improved for the

compression ratio and low output latency is achieved. The

implementation results on an FPGA platform show the

proposed MLZ4 architecture provides the highest throughput

performance compared with previous FPGA implementations

of LZ algorithms, which makes it suitable for high-end SSDs.

The paper is organized as follows: Section II reviews lossless

data compression algorithms and their hardware

implementations. The original LZ4 algorithm is also reviewed

in this section. Section III presents the modified LZ4 algorithm.

Two hardware architectures of both the MLZ4 compressors and

decompressors are proposed in Section IV. A comparison with

other FPGA hardware designs of LZ algorithms is provided in

Section V. Section VI concludes the paper.

II. REVIEW

A. Data Compression Algorithms and Implementations

There are two main categories of data compression, namely,

lossy and lossless compression [15]. As lossy compression

allows loss of accuracy to an acceptable level, it is usually used

for multimedia applications where errors can be tolerated [16].

Lossless compression can compress and then recover the data

from compressed data without loss of information; and it is used

for applications where even one single bit difference between

the original and reconstructed data cannot be tolerated.

The applications of lossless data compression have been

increasing significantly due to both the demand for increased

bandwidth [17-18] and the need to improve storage capacity [3].

Lossless data compression has been successfully deployed in

storage systems including tapes, hard disk drives, SSDs, file

servers and storage area networks (SAN).

Lossless data compression can be achieved using two

different approaches: statistical model based compression such

as Huffman coding [19] and dictionary based compression

including the Lempel-Ziv (LZ) algorithms [20-21]. The LZ

algorithms belong to adaptive dictionary based techniques,

which are the most popular lossless compression algorithms

when prior statistical characteristics of the data are unknown.

The LZ algorithms have been adopted by many compression

format standards such as Zip, GNU zip and Zlib [22].

LZ algorithms were proposed by Jacob Ziv and Abrahm

Lempel in 1977 [20] and 1978 [21] in their two landmark papers.

These papers presented two different approaches. The approach

based on the 1977 paper is referred to as the LZ77 (or LZ1)

family which includes LZ77, LZRW [23], LZSS [24], LZMA

[11] et. al. LZ77 algorithms use a sliding window to examine

the input sequence. Its principle is to find whether the sequence

being compressed appears in the previously input data. If so, a

pointer is used to point to the repeated strings. The dictionary

refers to a portion of the previously encoded sequence. The

approaches based on the 1978 paper are known as the LZ78 (or

LZ2) family which includes LZ78, LZW [25], et. al. LZ78

algorithms create a dictionary of phrases from the input data.

When a match with the phrases that have appeared in the

dictionary occurs, the encoder will output the phrase's index in

the dictionary rather than the phrase itself.

Yann Collet proposed the LZ4 algorithm in 2011 [13-14],

which is a variant of LZ77. The compression speed of a LZ4

software implementation is shown to be fastest among the LZ

algorithms. However, there is little research conducted on the

hardware implementation of LZ4 as it is much younger than

other LZ algorithms. Hardware designs of lossless data

compression algorithms are receiving increase attention due to

the exponential expansion in network communication and data

storage. FPGA implementations of LZ algorithms such as

LZRW3 [12], LZW [8], [10], the Lempel-Ziv-Markov chain

algorithm (LZMA) [11] and LZ4 [13] have been proposed to

meet real-time requirements. Thus, it is necessary to study

hardware architectures of LZ4 in order to explore its

performance for consumer electronic applications such as SSDs.

B. A Review of the LZ4 Algorithm

This subsection reviews the LZ4 algorithm. Its data format

and data flow are introduced. The shortcomings of the original

LZ4 algorithm and data format are also discussed.

LZ4 was initially defined as a form of compressed data format.

Compressed data files are composed of LZ4 sequences that

include a token, literal length, offset, and match length as shown

in Fig. 2. The token is used to indicate the length of unmatched

and matched characters. The literal length indicates the length

of uncompressed data and its value is equal to the value of the

length of uncompressed data minus 15. The uncompressed data

is stored as literals in the LZ4 sequence and it is copied from

the original data. When the input data finds data that appeared

before via searching, this data will be compressed. The value of

the offset indicates the address of the current data minus the

address of the prior data. Match length means the length of the

matching data.

The operation of the LZ4 algorithm is mainly divided into the

following five steps [14]: hash computation, matching,

backward matching, parameter calculation and data output,

which is shown in Fig. 3.

III. THE MODIFIED LZ4 ALGORITHM

An improved data format is proposed in this section along

with an improved algorithm to solve the defects in the original

LZ4 algorithm.

The original LZ4 algorithm was proposed for software

implementation in general processors. As such, there are some

issues with the LZ4 algorithm for hardware implementation:

1) The hash calculation is only performed for unmatched

characters. Hash calculation is not applied to the backward

matching. Thus, part of the matching data’s hash value will

not be calculated.

2) For Step 2 of the original LZ4 algorithm, when there is

hash conflict (different data have the same hash value),

Fig. 2. Data format of an LZ4 sequence.

more clock cycles are needed to recalculate the hash value,

which reduces the compression speed.

3) The input data is limited by the address width in the hash

table. The maximum number of memory addresses in the

hash table is the maximum size of the input data. It cannot

compress data constantly.

4) Output delay is uncertain. According to the original LZ4

data format, the length of matched characters and

unmatched characters should be obtained before outputting

the data. For example, if the unmatched character length is

40k bytes, data can only be outputted after all 40k bytes are

searched.

In order to increase the compression speed in hardware, the

LZ4 data format is changed as shown in Fig. 4. Note that the

format of the token and offset is consistent with the original

format. The main differences are as follows:

Literal Length：If the value of the first four bits of the token

is less than 15, there is no literal length. If the value of the first

four bits of token is 15, the length of unmatched literals is the

sum of all literal lengths.

Match length：If the value of the last four bits of the token is

less than 15, there is no match length. The value of the actual

match length is the value of the last four bits of token plus 4. If

the value of the last four bits of the token is 15, the value of the

match length is represented using 2 bytes after the offset. The

actual value of the match length is the sum of them.

The modified LZ4 (MLZ4) algorithm (addressing the issues

mentioned above) is detailed as follows：

1) To improve the compression ratio, the hash value of the

data can be calculated during the backward matching in the

modified algorithm to exploit the parallelism of hardware

implementation.

2) To reduce the delay when a hash conflict occurs and to

improve the compression speed, a hash dictionary that

corresponds to the hash table is added. The difference

between the hash table and the hash dictionary is that the

hash table stores the address, while the hash dictionary

stores the corresponding data based on the hash value.

During match searching, the data stored in the hash

dictionary can be read and compared when reading the

address at the same time. As a result, the number of clock

cycles can be reduced.

3) To allow continuous compression in hardware, a Valid Bit

is added in the hash table. When the data is valid, the Valid

Bit is set to ‘1’. When the data is invalid in a hash table, the

Valid Bit is reset to ‘0’ and a data cleaning process is also

added. In this way, when the data address reaches the

maximum address and continues to search for backward

matching, no matching error occurs, as there will be no

overlapped address. Thus, continuous compression can be

achieved.

4) To make sure the output delay is predictable, the LZ4 data

format is changed as shown in Fig. 4. When the unmatched

character length is longer than 300 bytes, the backward

match is ignored. For the above mentioned example, if the

length of the unmatched characters is 40k bytes, the data

can be output when the match length reaches 300 bytes

according to the new data format. Thus, the waiting time

for matching is reduced significantly.

A flow chart illustrating the operation of the MLZ4 algorithm

is shown in Fig. 5.

Fig. 4. The data format of MLZ4.

Begin

Input 4 bytes

Calculate the hash value

Read the Ref and its 4 bytes

Match?

Backward match

Calculate the match length

Calculate the literal length

Output the data

Finished?

End

No

Yes

No

Yes

Literal length>
300Byte?

No

Match length=4 bytes
Yes

Fig. 5. The flow chart of MLZ4 algorithm.

Begin

Input 4 bytes

Calculate the hash value

Read the Ref and save IP

Read the Ref 4 bytes

Match?

Backward matching

Yes

Calculate the literal and
match length

Output the data

Finished?End

No

Yes No

Fig. 3. The flow chart of original LZ4 algorithm.

IV. FPGA ARCHITECTURE AND IMPLEMENTATION OF THE

MLZ4 ALGORITHM

Compared with software, a hardware implementation offers

parallel processing that can allow multiple compressors to work

at the same time to increase the throughput of compression. The

FPGA implementation of the MLZ4 algorithm is presented in

this section with two FPGA hardware architectures, i.e., MLZ4-

1 and MLZ4-2, with both compressors (i.e., MLZ4C-1 and

MLZ4C-2) and decompressors (i.e., MLZ4D-1 and MLZ4D-2).

A. The 1st FPGA Architecture of MLZ4 Compressor

(MLZ4C-1)

The 1st hardware architecture of the LZ4-1 compressor is

shown in Fig. 6. It mainly consists of the input RAM, the output

RAM, word shift register, reading back control module (i.e.,

Ref. Control), search module (including Hash Engine, Word

Table, Hash Table, Hash Clear, Match and Backward Match),

literal length calculation module (i.e., Literal Length), match

length calculation module (i.e., Match Length) and output

control module (including Ports A, B and C Control).

The input and output RAM modules store the data before and

after compression both in a 64k RAM. Data are read from the

input RAM and then turned into 32-bit data through the word

shift register. The 32-bit data is fed to the Hash Engine to

compute the hash value. The Ref. Control module controls the

reading pointer to read the data, and then uses them to find the

backward matching data.

The search module performs the hash value calculation, reads

the Hash Table. It also changes the Ref. address, finds any

matching conflicts, judges the match length, calculates the

offset and judges whether the input data address (denoted as IP)

has reached the end.

Literal and match length calculation modules are used to

calculate the length of the unmatchable characters and matching

data. The Port A and B Control modules write the compressed

data to the output RAM according to the MLZ4 data format.

The Port C Control module is used to control the compressed

data from the Output RAM to the PCI-E interface.

The designs in this work are all implemented on a FPGA

evaluation kit. The MLZ4C-1 runs at a frequency of 100MHz

and its throughput is 0.8Gbps. The hardware resources used in

implementing the compressor are summarized in Table I.

IP
Calculate

Data[7:0]

Input
Buffer

dref

Word
Shift

data32

Ref ForwardIPRef
Control

Hash
Engine

Hash
Table

word
Table

R_data32

Hash
Clear

Data_valid

Data_start

Data_end

match

Backward Match

Data_zip

Data_zip_valid

Data_zip_start

Data_zip_end

Ref

matched

Match Offset

Format
Conversion

Literal
Length

Match
Length

PortA Control

PortB Control
literal_time

literal_length

token[7:4]

match_length

token[3:0]

Literal

Offset

Match Length

Token

Literal Length

token_time

PortC Control
Output

Addr

RAM

M
U

X

addrr

addrw

dinb

addrb

addra

dina

doutb
dip[7:0]

IP

Search
Module

Search
Module

Fig. 6. The hardware architecture of the MLZ4C-1 compressor.

Data_zip
FIFO_Ip

Input RAM

Data_zip_valid

Data_zip_start

Data_zip_end

IP
 C

alcu
late

Data_zip
Input Control

Data_end
Dip

Full_half

Full

ad
d

ra

D
in

a

ad
d

rb

D
o

u
tb

w
ea

Token

LiteralLength

MatchLength Copy_en

Offset

Write_en

IP Control

IP
M

U
X

Output
Memory

Choose

Output
Address
Control

doutb

addra

addrb

dina

Data

Data_valid

Data_start

Data_end

Unzip_end Unzip_end

Fo
rm

at
C

o
n

versio
n

Fig. 7. The hardware architecture of the MLZ4D-1 decompressor.

Compression results from testing the proposed designs with

benchmark files from the Calgary corpus (paper1 and paper2)

[26], the Canterbury corpus (asyoulik and cp) [26] and the

Silesia corpus (dickens) [27] are shown in Table II. It can be

seen that the compression ratio achieved is between 1.65 and

2.05.

B. The 1st FPGA Architecture of the MLZ4 Decompressor

(MLZ4D-1)

The decompressor is simpler than the compressor. The

information contained in token and literal length show the

length of unmatched characters. The unmatched character can

be output directly and the positions of offset and match length

can be calculated according to the length of unmatched

characters. Matched strings can be copied from decompressed

data based on the values of offset and match length. All data

can be decompressed after repeating the above operations. The

decompressor of the MLZ4D-1 is also designed and

implemented on a FPGA chip. Its hardware architecture is

shown in Fig. 7. The decompressor mainly includes three

modules: the input control module, the IP control module and

the output control module. The Input RAM is used to store the

data. The IP control module changes IP according to literal

length, offset and match length. The output control module is

used to control the storage of decompressed data and output the

final data.

The MLZ4D-1 decompressor can run much faster than the

MLZ4C-1 compressor as LZ4 is an asymmetric compression

algorithm. In this work, the MLZ4D-1 operates at 120MHz and

its throughput is 0.96Gbps. The hardware resources used by the

MLZ4D-1 design are also summarized in Table I.

C. The 2nd FPGA Architecture of the MLZ4 Compressor

(MLZ4C-2)

The 2nd hardware architecture of the LZ4 compressor is

shown in Fig. 8. The main difference between MLZ4C-1 and

Word
Shift

IP
Shift

Hash
Engine

Hash
Table

Word
Table

data32

data32_hash
Word

Compare

ip_hash[23:0]

data32_compare

RD32

IP
Compare

Ref

ip_comapre[23:0]

Match
Compare

match_word

match_ip

Ref
control

Input
Buffer

Ref_ture

ip[23:0]

Literal
Length

Backward
Compare

dip_compare

Match
Length

PortA Control

PortB Control

PortC
Control

literal_time

literal_length

token[7:4]

token[3:0]

Output
ControlLiteral

Offset

Match Length

Token

Literal
Length

RAMB

Output
Addr

addra

dina

dinb

addrb

RAMA

dref

Match
Flag

token_time

offset

addrc

match_end

Data_zip

Data_zip_valid

Data_zip_start

Data_zip_end

Format
Conversion

IP
Calculate

Data[7:0]

Data_valid

Data_start

Data_end

dip[7:0]
dzip[15:0] dzip_valid

dip_output

Search
Module

Search
Module

Fig. 8. The hardware architecture of the MLZ4C-2 compressor.

Data_zip
FIFO

Data_zip_valid
Dip

counter

Full

Token

LiteralLength

MatchLength Copy_en

Offset

Write_en

Read Control

Read_en

M
U

X

Output
Memory

Choose

Output
Address
Control

doutb

addra

addrb

dina

Data

Data_valid

Data_start

Data_end

Unzip_end

Fo
rm

at
C

o
n

versio
n

Fig. 9. The hardware architecture of the MLZ4D-2 decompressor.

MLZ4C-2 are the search module and the output module.

Additionally, MLZ4C-2 includes a new IP Shift block. The

detailed differences are as follows:

 The search module: The Match block in MLZ4C-2 is divided

into Word Compare, Match Compare and IP Compare blocks.

Furthermore, the Backward Match block is divided into

Backward Compare and Match Flag blocks. Therefore, the

critical path of both the match and backward match logic is

further reduced by inserting pipeline registers.

 The output module: The even and odd output bits are written

into RAM-A and RAM-B, respectively, by using two RAM

blocks. Both RAM blocks can output the data at the same time.

The even bits are in the 8 most significant bits of the output data,

i.e., dzip[15:8], and the odd bits are in the 8 least significant bits,

i.e., dzip[7:0], which is in the revised format as shown in Fig. 4.

The MLZ4C-2 design runs at a frequency of 240MHz and its

throughput is 1.92Gbps. The hardware resources used in

implementing the compressor are summarized in Table III. Test

results show that the compression ratios achieved by the

MLZ4C-2 design are the same as that listed in Table II.

D. The 2nd FPGA Architecture of the MLZ4 Decompressor

(MLZ4D-2)

The MLZ4D-2 is similar to MLZ4D-1, as shown in Fig. 9.

However, the input module that includes IP calculation, Input

Control and Input RAM blocks is now replaced with a FIFO.

The IP Control block in MLZ4D-1 is changed to a Read Control

block in MLZ4D-2, where the combinational logic has been

further divided and pipeline registers have been added to

increase the performance.

The MLZ4D-2 operates at 260MHz and its throughput is up

to 2080Mbps. The hardware resources used by the

decompressor are also summarized in Table III.

TABLE I
RESOURCES USED FOR BOTH 1ST

 COMPRESSOR (MLZ4C-1) AND 1ST

DECOMPRESSOR (MLZ4D-1)

Resource MLZ4C-1 MLZ4D-1 Total

Slices 571 365 936

FFs 605 604 1,209

LUTs 1,302 767 2,069

BRAMs 76.5 32.5 109

TABLE II
TEST RESULTS OF COMPRESSION RATIO USING MLZ4 ALGORITHM

Test
Files

Original
Size (Bytes)

Compressed
Size (Bytes)

Compression
Ratio

paper1 53,161 28,686 1.85

paper2 82,199 46,750 1.76
asyoulik 125,179 75,467 1.66

cp 24,603 11,993 2.05

dickens 10,192,446 6,161,433 1.65

TABLE III
RESOURCES USED FOR 2ND

 COMPRESSOR (MLZ4C-2) AND 2ND
 DECOMPRESSOR

(MLZ4D-2)

Resource MLZ4C-2 MLZ4D-2 Total

Slices 345 155 500

FFs 937 377 1314
LUTs 573 342 915

BRAMs 69 20 89

DSPs 4 0 4

E. Comparison between MLZ4-1 and MLZ4-2

Due to the optimized pipelined architecture, the 2nd design is

much faster than the 1st design. The throughput of MLZ4C-2

and MLZ4D-2 are 2.4 and 2.16 times that of MLZ4C-1 and

MLZ4D-1, respectively. At the same time, the hardware

required is also reduced significantly. MLZ4C-2 only uses 60%

of the slices and 90% of the BRAMs used in MLZ4C-1.

However, MLZ4C-2 uses 4 additional DSPs. MLZ4D-2 uses

much fewer slices compared with MLZ4D-1, where more than

half of slices are saved. The number of BRAMs used is also

reduced by over 38%. The comparison results show that the

second architecture is a much better design. Both MLZ4-1 and

MLZ4-2 are further compared with previous work in the

following section.

V. COMPARISON WITH OTHER FPGA IMPLEMENTATIONS OF

LZ ALGORITHMS

In this section the proposed designs are compared with other

LZ algorithm FPGA implementations. The designs compared

include X-MatchPROv4 [7] using the XMatchPRO algorithm,

the conventional LZW [8], the ELDC-3 core [9] that

implements four image compression algorithms, an improved

LZW VLSI Processor [10] which implements the New LZW

algorithm, LZMA [11], the LZWR3 Core [12] that implements

the LZRW3 algorithm and a LZ4 FPGA device [13].

The comparison is summarized in Table IV. The MLZ4C-1 is

a baseline design. Its performance is not so attractive compared

with the previous best design. However, the revised and

pipelined design, i.e., MLZ4C-2, has improved the compression

performance significantly. From the table, it is clear that the

proposed MLZ4C-2 offers the highest performance. Although

it consumes slightly more slices, MLZ4C-2 increases the

compression throughput by 20% compared with the best

previous design in [13] which is also an LZ4 FPGA design, as

shown in Fig. 10. The main difference between MLZ4C-2 and

the design in [13] is that a Word Table added in MLZ4C-2 is

used to find both the matched address and the matched data at

the same time, which reduces the delay; the output module uses

two RAM blocks; all combinational modules are further

divided and registers are inserted to pipeline the design.

MLZ4C-2 also outperforms (over 47% faster) the leading

commercial compression device, i.e., LZRW3 [12]. MLZ4D-2

is also the fastest decompressor compared with other state-of-

the-art designs. This confirms that the proposed MLZ4-2 design

is the fastest compression device, and hence, is suitable for

high-end SSDs.

VI. CONCLUSION

This paper presents a modified LZ4 algorithm and its FPGA

implementations. Several aspects of the original LZ4 algorithm

are modified for efficient hardware implementation. These

changes improve both the compression and decompression

speeds. The implementation on a FPGA chip shows that the

proposed designs can achieve compression and decompression

throughputs of up to 1.92Gbps and 2.08Gbps, which is 20% and

47% faster than the previous best compressor and decompressor

designs respsectively. The proposed MLZ4 and its hardware

architectures can therefore be used to increase the storage

performance and lifetime of high-end SSDs.

Fig. 10. Performance Comparison with state-of-the-art LZ compressors.

REFERENCES

[1] J. Luo, L. Fan, Z. Chen and Z. Li, “A Solid State Drive Architecture with

Memory Card Modules”, IEEE Trans. Consumer Electronics, vol. 62, no.
1, pp. 17-22, 2016.

[2] Y. Cai, S., E. Haratsch, Y. Luo, and O. Mutlu. “Error Characterization,

Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives”,
Proceedings of the IEEE, vol. 105, no. 9, pp. 1666-1704, 2017.

[3] Y. Park and J.-S. Kim, “zFTL: power-efficient data compression support

for NAND flash-based consumer electronics devices,” IEEE Trans.
Consum. Electron., vol. 57, pp. 1148-1156, 2011.

[4] J. H. Yoon and G. A. Tressler, “Advanced flash technology status, scaling

trends & implications to enterprise SSD technology enablement,” in Proc.
Flash Memory Summit, 2012.

[5] S. Lee, J. Park, K. Fleming, Arvind, and J. Kim, “Improving Performance

and Lifetime of Solid-State Drives Using Hardware-Accelerated
Compression”, IEEE Trans. Consumer Electronics, vol. 57, no. 4, pp.

1732-1739, 2011.

[6] A. Zuck, S. Toledo, D. Sotnikow, and D. Harnik, “Compression and SSD:

Where and How?”, Proc. 2nd Workshop on Interactions of NVM/Flash
with Operating System and Workload (INFLOW), pp. 1-10, 2014.

[7] Enhanced Lossless Data Compression (ELDC-3) IP-Core, GEMAC

mbH, Germany, 2007.
[8] S. Naqvi, R. Naqvi, R. Riaz, and F. Siddiqui, “Optimized RTL design and

implementation of LZW algorithm for high bandwidth applications,”

Electrical Review, vol. 87, no. 4, pp. 279-285, 2011.
[9] W. Cui, “New LZW data compression algorithm and its FPGA

implementation,” Proc. Picture Coding Symposium., pp. 1145-1148,

2007.
[10] J. L. Nunez, and S. Jones, “Gbit/s lossless data compression hardware,”

IEEE Trans. VLSI Systems, vol. 11, pp. 499-510, 2003.

[11] B. Li, L. Zhang, Z. Shang and Q. Dong, “Implementation of LZMA

compression algorithm on FPGA,” Electronic Letters, vol. 50, no. 21,

pp. 1522-1524, 2014.

[12] LZRW3 Data Compression Core for Xilinx FPGA, Helion Technology,
2008.

[13] M. Bartik, S. Ubik, and P. Kubalik, “LZ4 compression algorithm on

FPGA,” Proc. IEEE Int. Conf. Electronics, Circuits, and Systems, pp.
179-182, 2015.

[14] Yann Collet, Real time data compression: LZ4 explained, 2011.

[15] M. Nelson and J.-L. Gailly, The Data Compression Book (2nd edition),
New York: M&T Books, 1995.

[16] G. K. Wallace, “The JPEG still picture compression standard,” IEEE
Trans. Consum. Electron., vol. 38, pp. 18-34, 1992.

[17] Y. M. Siu, C. K. Chan and K. L. Ho, “Teletext data change detection and

noiseless data compression,” IEEE Trans. Consum. Electron., vol. 41, pp.
1061-1068, 1995.

[18] R. Mehboob, S. A. Khan, Z. Ahmed, H. Jamal, and M. Shahbaz,

“Multigig lossless data compression device,” IEEE Trans. Consum.
Electron., vol. 56, pp. 1927-1932, 2010.

[19] D. A. Huffman, “A method for the construction of minimum-redundancy

codes,” Proc. IRE, vol. 40, pp. 1098–1102, 1952.
[20] J. Ziv and A. Lempel, “A universal algorithm for sequential data

compression,” IEEE Trans. Inf. Theory, vol. 23, pp. 337-343, 1977.

[21] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE Trans. Inf. Theory, vol. 24, pp. 530-536,

1978.

[22] D. Harnik, E. Khaitzin, D. Sotnikov and S. Tharlev, “A fast

TABLE IV

COMPARISON OF LZ COMPRESSION AND DECOMPRESSION IMPLEMENTATIONS

Compression Device Algorithms
FPGA

Technology
Complexity

Clock Speed

(MHz)

Troughput

(Gbps)

X-MatchProv4 [7] X-MatchPRO 180nm 5367 LUTs 50
0.567

(Compression)

LZW [8] LZW 120nm/150nm

332 Slices

631 LUTs
50

0.700

(Compression)
247 Slices

474 LUTs
1.120~1.282

(Decompression)

ELDC-3 Core [9] CGF, GZIP, ELIC, PNG 90nm 5900 Slices 75
0.400~0.528

(Compression)

Improved LZW Processor [10] New LZW 90nm
3218 Slices

272 Kb RAMs
124

1.587
(Compression)

LZMA [11] LZMA 40nm NA 125
0.604

(Compression)

LZRW3 Core [12] LZRW3 28nm
227 Slices
789 FFs

4~36 BRAMs
210

1.300

(Compression)

LZ4 [13] LZ4 28nm
266 Slices
17 BRAMs

3 DSPs

200
1.600

(Compression)

MLZ4C-1
Modified LZ4 28nm

571 Slices
76.5 BRAMs

100
(Compression)

0.800
(Compression)

MLZ4D-1
365 Slices

32.5 BRAMs

120

(Decompression)
0.960

(Decompression)

MLZ4C-2
Modified LZ4 28nm

345 Slices

69 BRAMs

4 DSPs

240

(Compression)

1.920

(Compression)

MLZ4D-2
155 Slices

20 BRAMs
260

(Decompression)
2.080

(Decompression)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7430153
https://www.google.co.jp/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwjIpofO65TWAhXBx7wKHQZgDPYQFgg7MAM&url=http%3A%2F%2Ffastcompression.blogspot.com%2F2011%2F05%2Flz4-explained.html&usg=AFQjCNGBjtHVTnRnpvmXYDpvI1xtxk4QrA
http://marknelson.us/
http://gailly.net/

implementation of Deflate,” Proc. Data Compression Conference, pp.

223-232, 2014.

[23] R. N. Williams, “An extremely fast Ziv-Lempel data compression

algorithm,” Proc. Data Compression Conference, pp. 362-371, 1991.

[24] J. A. Storer and T. G. Syzmanski, “Data compression via textual

substitution,” J. ACM, vol. 29, pp. 928–951, 1982.

[25] T. Welch, "A technique for high-performance data compression,”
Computer, vol. 17, pp. 8-19, 1984.

[26] D. Salomon, “Data Compression: The Complete Reference (4th

edition)”, Springer, 2007.
[27] S. Deorowicz, “Universal lossless data compression algorithms”, Ph.D.

dissertation, Faculty of Automatic control, Electronics and Computer

Science, Silesian University of Technology, Silesian, Poland, 2003.

Weiqiang Liu (M'12-SM'15) received the

B.Sc. degree in Information Engineering

from Nanjing University of Aeronautics

and Astronautics (NUAA), Nanjing,

China and the Ph.D. degree in Electronic

Engineering from the Queen’s University

Belfast (QUB), Belfast, UK, in 2006 and

2012, respectively. In Dec. 2013, he joined

the College of Electronic and Information

Engineering, NUAA, where he is currently an Associate

Professor. He was a Research Fellow in the Institute of

Electronics, Communications and Information Technology

(ECIT) at QUB from Aug. 2012 to Nov. 2013. He has

published one research book by Artech House and over 50

leading journal and conference papers. His paper was finalist in

the Best Paper Contest of IEEE ISCAS 2011 and he is the co-

author of a Best Paper Candidate of ACM GLSVLSI 2015. He

serves as an Associate Editor of IEEE Transactions on

Computers (TC), the leader of The Multimedia Team at TC

Editorial Board, and the Guest Editors of two special issues of

IEEE Transactions on Emerging Topics in Computing. He has

been a technical program committee member for several

international conferences including ARITH, ASAP, ISCAS,

and ICONIP. He is a member of IEEE CASCOM Technical

Committee. His research interests include VLSI design for

digital signal processing and cryptography, and emerging

technologies in computing systems.

Faqiang Mei received the B.Sc. degree in

Information Engineering from Nanjing

University of Aeronautics and

Astronautics (NUAA), Nanjing, China, in

2016. He is currently a Master student in

Circuit and Systems, College of Electronic

and Information Engineering, NUAA. His

research interest includes FPGA design for

lossless data compression algorithms, and cryptographic

hardware.

Chenghua Wang received the B.Sc. and

M.Sc. degrees from Southeast University,

Nanjing, China, in 1984 and 1987,

respectively. In 1987, he joined the

College of Electronic and Information

Engineering, Nanjing University of

Aeronautics and Astronautics (NUAA),

Nanjing, where he became a full Professor

in 2001. He has published 6 books and

over 100 technical papers in journals and

conference proceedings. He is the

recipient of more than ten teaching and research awards at the

provincial and ministerial level. His current research interests

include testing of integrated circuits, and circuits & systems for

communications.

Maire O’Neill (M’03-SM’11) obtained

an M.Eng. degree with distinction and a

Ph.D. in Electrical and Electronic

Engineering from Queen’s University

Belfast (QUB) in 1999 and 2002

respectively. She is currently Research

Director of the Centre for Secure

Information Technologies (CSIT) at

QUB. She previously held a prestigious

UK Engineering and Physical Sciences Research Council

(EPSRC) Leadership Fellowship (2008-2015) and was a former

holder of a UK Royal Academy of Engineering (RAEng)

research fellowship (2003-2008). She has received numerous

awards for her research to date which include a 2014 UK Royal

Academy of Engineering Silver Medal, the Women’s

Engineering Society (WES) prize at the 2006 IET Young

Woman Engineer of the Year awards and she was named British

Female Inventor of the Year in 2007. She has authored two

research books and has over 125 international peer-reviewed

conference and journal publications. She is Associate Editor for

IEEE Transactions on Computers and IEEE Transactions on

Emerging Topics in Computing and has acted as guest editor

for a number of journals, including the IET Information

Security (2005) launch issue and a special issue on

‘Cryptography in the coming decade’ in ACM Trans. on

Embedded Computing (2015). She has been a technical

program committee member for many international

conferences, including DAC, CHES, DATE, SOCC, ISCAS,

IET ISSC and RFIDSec. She is an IEEE Circuits & Systems for

Communications (CASCOM) Technical committee member

and was treasurer of the Executive Committee of the IEEE

United Kingdom and Ireland (UKRI) Section, 2008-09. She is

a member of the Royal Irish Academy and a Fellow of the Irish

Academy of Engineering.

Earl E. Swartzlander Jr. (SM'79-F'88-

LF'11) received the B.S. degree from

Purdue University in 1967, the M.S.

degree from the University of Colorado in

1969, and the Ph.D. degree from the

University of Southern California in 1972,

all in electrical engineering. He is a

professor of electrical and computer

engineering at the University of Texas at

Austin. In this position, he and his

students conduct research in computer engineering with

emphasis on application-specific processor design, including

high-speed computer arithmetic, embedded processor

architecture, VLSI technology, and nanotechnology. As of

December 2016, he has supervised 46 Ph.D. students. He is the

author of two books, editor of 11 books and the author or

coauthor of 86 refereed journal papers, 41 book chapters, and

310 conference papers. He was the editor-in-chief of the IEEE

Transactions on Computers from 1990 to 1994 and was the

founding editor-in-chief of the Journal of VLSI Signal

Processing. In addition, he has served as an associate editor for

https://books.google.com/?id=ujnQogzx_2EC&pg=PA12&dq=%22calgary+corpus%22+%22canterbury+corpus+started%22#v=onepage&q=%22calgary%20corpus%22%20%22canterbury%20corpus%20started%22&f=false

the IEEE Transactions on Computers, the IEEE Transactions

on Parallel and Distributed Systems, and the IEEE Journal of

Solid-State Circuits. He has been a member of the Board of

Governors of the IEEE Computer Society (1987-1991), the

IEEE Signal Processing Society (1992-1994), and the IEEE

Solid-State Circuits Council/Society (1986-1991). He has been

a member of the IEEE History Committee (1996-2004), the

IEEE Fellows Committee (2000-2003), the IEEE James H.

Mulligan, Jr., Education Medal Committee (2007-2011), the

IEEE Awards Planning and Policy Committee (2011-2013), the

IEEE Awards Board Awards Review Committee (2014-2016),

the IEEE Awards Board (2015-2016), and the IEEE Awards

Policy and Portfolio Review Committee (2017). He has chaired

a number of conferences. He is a life fellow of the IEEE and

has been honored with the IEEE Third Millennium Medal, the

Distinguished Engineering Alumnus Award from the

University of Colorado, the Outstanding Electrical Engineer

and Distinguished Engineering Alumnus Awards from Purdue

University, and the IEEE Computer Society Golden Core

Award.

