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Abstract—Data compression is commonly used in NAND flash-

based Solid State Drives (SSDs) to increase their storage 

performance and lifetime as it can reduce the amount of data 

written to and read from NAND flash memory. Software based 

data compression reduces SSD performance significantly and, as 

such, hardware-based data compression designs are required. 

This paper studies the latest lossless data compression algorithm， 

i.e., the LZ4 algorithm which is one of the fastest compression 

algorithms reported to date. A data compression FPGA prototype 

based on the LZ4 lossless compression algorithm is studied. The 

original LZ4 compression algorithm is modified for real-time 

hardware implementation. Two hardware architectures of the 

modified LZ4 algorithm (MLZ4) are proposed with both 

compressors and decompressors, which are implemented on a 

FPGA evaluation kit. The implementation results show that the 

proposed compressor architecture can achieve a high throughput 

of up to 1.92Gbps with a compression ratio of up to 2.05, which is 

higher than all previous LZ algorithm designs implemented on 

FPGAs. The compression device can be used in high-end SSDs to 

further increase their storage performance and lifetime. 

 
Index Terms—Solid-State Drives (SSDs); Lossless compression; 

LZ algorithms; LZ4; FPGA 

I. INTRODUCTION 

OLID-state drives (SSDs) based on NAND flash memory 

have become popular in consumer electronic devices such 

as smart phones, tablet and desktop systems [1-2]. It is highly 

desirable to reduce the amount of data in SSDs and the 

read/write data transmission time to/from SSDs as flash 

memory has a finite number of program-erase (P/E) cycles thus 

limited lifetime [3]. For example, older single-level cell (SLC) 

NAND-flash memory was able to withstand 150,000 P/E cycles, 

while multi-level cell (MLC) NAND-flash memory using 15-

19nm process technologies wears out after only 3,000 P/E 

cycles  [2], [4]. Furthermore, the performance of MLC flash 

memory is also much slower than that of its SLC counterpart. 

Also, more advanced triple-level cell NAND flash memory has 

an even lower number of P/E cycles [5].  This problem is 

expected to worsen with further scaling of the semiconductor 

process. Therefore, to increase the lifetime and also the 

performance of flash-based SSDs, the amount of data written to 

and read from the SSDs should be reduced, which can be 

achieved using data compression. Another benefit of using 

lossless data compression in SSDs is to reduce the I/O latency. 

Data compression for SSDs has been widely adopted. Data 

compression can be implemented in three layers: the 

application, the file system or the firmware of the storage device. 

Most data compression algorithms are adopted in the 

application layer and the file system using software 

implementation. Software based data compression can be 

useful in improving the lifetime of SSDs. However, the overall 

performance of SSDs is reduced significantly due to the slow 

compression and decompression speed. A recent study [6] 

based on realistic data and systems show that applying data 

compression in the firmware of the SSDs using a data 

compression hardware accelerator is the best approach. A 

typical SSD architecture with data compression acceleration is 

shown in Fig. 1. 

Although hardware-based compression is required for NAND 

flash memory and SSDs, little research has been conducted on 

how to design a high performance hardware compression 

accelerator [7-13]. In [6], it was found that for high-end SSDs 

with transaction rates of up to 3K per second, 

compression/decompression rates of above 200MB/s (i.e., 

1.6Gbps) are required. However, existing designs are limited in 

performance with compression speeds in the range of 

0.567Gbps~1.6Gbps [7-13], which cannot meet the 

requirement of high-end SSDs. 

In this paper, the design of a hardware accelerator based on 

the latest lossless data compression algorithm, i.e., LZ4 [14] for 

data compression in high-end SSDs is studied and demonstrated 

on an FPGA device. The original LZ4 algorithm is somewhat 

difficult to implement in hardware as it was proposed for 

software implementation. It is not possible to store all the text 

in calculating the hash. Its output delay is uncertain and the 

input data is limited by the address width of the hash table. As 

a result, the LZ4 algorithm has been modified for hardware 
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Fig. 1. A typical SSD architecture with data compression acceleration. 

 



 

implementation in this paper to solve these problems. By using 

the MLZ4 algorithm, the hash computation is improved for the 

compression ratio and low output latency is achieved. The 

implementation results on an FPGA platform show the 

proposed MLZ4 architecture provides the highest throughput 

performance compared with previous FPGA implementations 

of LZ algorithms, which makes it suitable for high-end SSDs.  

The paper is organized as follows: Section II reviews lossless 

data compression algorithms and their hardware 

implementations. The original LZ4 algorithm is also reviewed 

in this section. Section III presents the modified LZ4 algorithm. 

Two hardware architectures of both the MLZ4 compressors and 

decompressors are proposed in Section IV. A comparison with 

other FPGA hardware designs of LZ algorithms is provided in 

Section V. Section VI concludes the paper. 

II. REVIEW 

A. Data Compression Algorithms and Implementations 

There are two main categories of data compression, namely, 

lossy and lossless compression [15]. As lossy compression 

allows loss of accuracy to an acceptable level, it is usually used 

for multimedia applications where errors can be tolerated [16]. 

Lossless compression can compress and then recover the data 

from compressed data without loss of information; and it is used 

for applications where even one single bit difference between 

the original and reconstructed data cannot be tolerated. 

The applications of lossless data compression have been 

increasing significantly due to both the demand for increased 

bandwidth [17-18] and the need to improve storage capacity [3]. 

Lossless data compression has been successfully deployed in 

storage systems including tapes, hard disk drives, SSDs, file 

servers and storage area networks (SAN).  

Lossless data compression can be achieved using two 

different approaches: statistical model based compression such 

as Huffman coding [19] and dictionary based compression 

including the Lempel-Ziv (LZ) algorithms [20-21]. The LZ 

algorithms belong to adaptive dictionary based techniques, 

which are the most popular lossless compression algorithms 

when prior statistical characteristics of the data are unknown. 

The LZ algorithms have been adopted by many compression 

format standards such as Zip, GNU zip and Zlib [22]. 

LZ algorithms were proposed by Jacob Ziv and Abrahm 

Lempel in 1977 [20] and 1978 [21] in their two landmark papers. 

These papers presented two different approaches. The approach 

based on the 1977 paper is referred to as the LZ77 (or LZ1) 

family which includes LZ77, LZRW [23], LZSS [24], LZMA 

[11] et. al. LZ77 algorithms use a sliding window to examine 

the input sequence. Its principle is to find whether the sequence 

being compressed appears in the previously input data. If so, a 

pointer is used to point to the repeated strings. The dictionary 

refers to a portion of the previously encoded sequence.  The 

approaches based on the 1978 paper are known as the LZ78 (or 

LZ2) family which includes LZ78, LZW [25], et. al. LZ78 

algorithms create a dictionary of phrases from the input data. 

When a match with the phrases that have appeared in the 

dictionary occurs, the encoder will output the phrase's index in 

the dictionary rather than the phrase itself. 

Yann Collet proposed the LZ4 algorithm in 2011 [13-14], 

which is a variant of LZ77. The compression speed of a LZ4 

software implementation is shown to be fastest among the LZ 

algorithms. However, there is little research conducted on the 

hardware implementation of LZ4 as it is much younger than 

other LZ algorithms. Hardware designs of lossless data 

compression algorithms are receiving increase attention due to 

the exponential expansion in network communication and data 

storage. FPGA implementations of LZ algorithms such as 

LZRW3 [12], LZW [8], [10], the Lempel-Ziv-Markov chain 

algorithm (LZMA) [11] and LZ4 [13] have been proposed to 

meet real-time requirements. Thus, it is necessary to study 

hardware architectures of LZ4 in order to explore its 

performance for consumer electronic applications such as SSDs. 

B. A Review of the LZ4 Algorithm 

This subsection reviews the LZ4 algorithm. Its data format 

and data flow are introduced. The shortcomings of the original 

LZ4 algorithm and data format are also discussed. 

LZ4 was initially defined as a form of compressed data format. 

Compressed data files are composed of LZ4 sequences that 

include a token, literal length, offset, and match length as shown 

in Fig. 2. The token is used to indicate the length of unmatched 

and matched characters. The literal length indicates the length 

of uncompressed data and its value is equal to the value of the 

length of uncompressed data minus 15. The uncompressed data 

is stored as literals in the LZ4 sequence and it is copied from 

the original data. When the input data finds data that appeared 

before via searching, this data will be compressed. The value of 

the offset indicates the address of the current data minus the 

address of the prior data. Match length means the length of the 

matching data. 

The operation of the LZ4 algorithm is mainly divided into the 

following five steps [14]: hash computation, matching, 

backward matching, parameter calculation and data output, 

which is shown in Fig. 3. 

III. THE MODIFIED LZ4 ALGORITHM 

An improved data format is proposed in this section along 

with an improved algorithm to solve the defects in the original 

LZ4 algorithm. 

The original LZ4 algorithm was proposed for software 

implementation in general processors. As such, there are some 

issues with the LZ4 algorithm for hardware implementation: 

1) The hash calculation is only performed for unmatched 

characters. Hash calculation is not applied to the backward 

matching. Thus, part of the matching data’s hash value will 

not be calculated. 

2) For Step 2 of the original LZ4 algorithm, when there is 

hash conflict (different data have the same hash value), 

 
Fig. 2. Data format of an LZ4 sequence. 



 

more clock cycles are needed to recalculate the hash value, 

which reduces the compression speed.  

3) The input data is limited by the address width in the hash 

table. The maximum number of memory addresses in the 

hash table is the maximum size of the input data. It cannot 

compress data constantly. 

4) Output delay is uncertain. According to the original LZ4 

data format, the length of matched characters and 

unmatched characters should be obtained before outputting 

the data. For example, if the unmatched character length is 

40k bytes, data can only be outputted after all 40k bytes are 

searched.  

In order to increase the compression speed in hardware, the 

LZ4 data format is changed as shown in Fig. 4. Note that the 

format of the token and offset is consistent with the original 

format. The main differences are as follows: 

Literal Length：If the value of the first four bits of the token 

is less than 15, there is no literal length. If the value of the first 

four bits of token is 15, the length of unmatched literals is the 

sum of all literal lengths. 

Match length：If the value of the last four bits of the token is 

less than 15, there is no match length. The value of the actual 

match length is the value of the last four bits of token plus 4. If 

the value of the last four bits of the token is 15, the value of the 

match length is represented using 2 bytes after the offset. The 

actual value of the match length is the sum of them. 

The modified LZ4 (MLZ4) algorithm (addressing the issues 

mentioned above) is detailed as follows： 

1) To improve the compression ratio, the hash value of the 

data can be calculated during the backward matching in the 

modified algorithm to exploit the parallelism of hardware 

implementation.  

2) To reduce the delay when a hash conflict occurs and to 

improve the compression speed, a hash dictionary that 

corresponds to the hash table is added. The difference 

between the hash table and the hash dictionary is that the 

hash table stores the address, while the hash dictionary 

stores the corresponding data based on the hash value. 

During match searching, the data stored in the hash 

dictionary can be read and compared when reading the 

address at the same time. As a result, the number of clock 

cycles can be reduced. 

3) To allow continuous compression in hardware, a Valid Bit 

is added in the hash table. When the data is valid, the Valid 

Bit is set to ‘1’. When the data is invalid in a hash table, the 

Valid Bit is reset to ‘0’ and a data cleaning process is also 

added. In this way, when the data address reaches the 

maximum address and continues to search for backward 

matching, no matching error occurs, as there will be no 

overlapped address. Thus, continuous compression can be 

achieved. 

4) To make sure the output delay is predictable, the LZ4 data 

format is changed as shown in Fig. 4. When the unmatched 

character length is longer than 300 bytes, the backward 

match is ignored. For the above mentioned example, if the 

length of the unmatched characters is 40k bytes, the data 

can be output when the match length reaches 300 bytes 

according to the new data format. Thus, the waiting time 

for matching is reduced significantly.  

A flow chart illustrating the operation of the MLZ4 algorithm 

is shown in Fig. 5. 

 

 

Fig. 4. The data format of MLZ4. 
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Fig. 5. The flow chart of MLZ4 algorithm. 
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Fig. 3. The flow chart of original LZ4 algorithm. 

 



 

IV. FPGA ARCHITECTURE AND IMPLEMENTATION OF THE 

MLZ4 ALGORITHM 

Compared with software, a hardware implementation offers 

parallel processing that can allow multiple compressors to work 

at the same time to increase the throughput of compression. The 

FPGA implementation of the MLZ4 algorithm is presented in 

this section with two FPGA hardware architectures, i.e., MLZ4-

1 and MLZ4-2, with both compressors (i.e., MLZ4C-1 and 

MLZ4C-2) and decompressors (i.e., MLZ4D-1 and MLZ4D-2).  

A. The 1st FPGA Architecture of MLZ4 Compressor 

(MLZ4C-1) 

The 1st hardware architecture of the LZ4-1 compressor is 

shown in Fig. 6. It mainly consists of the input RAM, the output 

RAM, word shift register, reading back control module (i.e., 

Ref. Control), search module (including Hash Engine, Word 

Table, Hash Table, Hash Clear, Match and Backward Match), 

literal length calculation module (i.e., Literal Length), match 

length calculation module (i.e., Match Length) and output 

control module (including Ports A, B and C Control). 

The input and output RAM modules store the data before and 

after compression both in a 64k RAM. Data are read from the 

input RAM and then turned into 32-bit data through the word 

shift register. The 32-bit data is fed to the Hash Engine to 

compute the hash value. The Ref. Control module controls the 

reading pointer to read the data, and then uses them to find the 

backward matching data. 

The search module performs the hash value calculation, reads 

the Hash Table. It also changes the Ref. address, finds any 

matching conflicts, judges the match length, calculates the 

offset and judges whether the input data address (denoted as IP) 

has reached the end. 

Literal and match length calculation modules are used to 

calculate the length of the unmatchable characters and matching 

data. The Port A and B Control modules write the compressed 

data to the output RAM according to the MLZ4 data format. 

The Port C Control module is used to control the compressed 

data from the Output RAM to the PCI-E interface.  

The designs in this work are all implemented on a FPGA 

evaluation kit. The MLZ4C-1 runs at a frequency of 100MHz 

and its throughput is 0.8Gbps. The hardware resources used in 

implementing the compressor are summarized in Table I. 
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Fig. 6. The hardware architecture of the MLZ4C-1 compressor. 
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Fig. 7. The hardware architecture of the MLZ4D-1 decompressor. 



 

Compression results from testing the proposed designs with 

benchmark files from the Calgary corpus (paper1 and paper2) 

[26], the Canterbury corpus (asyoulik and cp) [26] and the 

Silesia corpus (dickens) [27] are shown in Table II. It can be 

seen that the compression ratio achieved is between 1.65 and 

2.05. 

B. The 1st FPGA Architecture of the MLZ4 Decompressor 

(MLZ4D-1) 

The decompressor is simpler than the compressor. The 

information contained in token and literal length show the 

length of unmatched characters. The unmatched character can 

be output directly and the positions of offset and match length 

can be calculated according to the length of unmatched 

characters. Matched strings can be copied from decompressed 

data based on the values of offset and match length. All data 

can be decompressed after repeating the above operations. The 

decompressor of the MLZ4D-1 is also designed and 

implemented on a FPGA chip. Its hardware architecture is 

shown in Fig. 7. The decompressor mainly includes three 

modules: the input control module, the IP control module and 

the output control module. The Input RAM is used to store the 

data. The IP control module changes IP according to literal 

length, offset and match length. The output control module is 

used to control the storage of decompressed data and output the 

final data. 

The MLZ4D-1 decompressor can run much faster than the 

MLZ4C-1 compressor as LZ4 is an asymmetric compression 

algorithm. In this work, the MLZ4D-1 operates at 120MHz and 

its throughput is 0.96Gbps. The hardware resources used by the 

MLZ4D-1 design are also summarized in Table I.  

C. The 2nd FPGA Architecture of the MLZ4 Compressor 

(MLZ4C-2) 

The 2nd hardware architecture of the LZ4 compressor is 

shown in Fig. 8. The main difference between MLZ4C-1 and 

Word
Shift

IP
Shift

Hash
Engine

Hash
Table

Word
Table

data32

data32_hash
Word

Compare

ip_hash[23:0]

data32_compare

RD32

IP
Compare

Ref

ip_comapre[23:0]

Match
Compare

match_word

match_ip

Ref
control

Input
Buffer

Ref_ture

ip[23:0]

Literal
Length

Backward
Compare

dip_compare

Match
Length

PortA Control

PortB Control

PortC 
Control

literal_time

literal_length

token[7:4]

token[3:0]

Output 
ControlLiteral

Offset

Match Length

Token

Literal 
Length

RAMB

Output
Addr

addra

dina

dinb

addrb

RAMA

dref

Match
Flag

token_time

offset

addrc

match_end

Data_zip 

Data_zip_valid

Data_zip_start

Data_zip_end

Format 
Conversion

IP 
Calculate

Data[7:0]

Data_valid

Data_start

Data_end

dip[7:0]
dzip[15:0] dzip_valid

dip_output

Search 
Module

Search 
Module

 
Fig. 8. The hardware architecture of the MLZ4C-2 compressor. 
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Fig. 9. The hardware architecture of the MLZ4D-2 decompressor. 



 

MLZ4C-2 are the search module and the output module. 

Additionally, MLZ4C-2 includes a new IP Shift block. The 

detailed differences are as follows: 

 The search module: The Match block in MLZ4C-2 is divided 

into Word Compare, Match Compare and IP Compare blocks. 

Furthermore, the Backward Match block is divided into 

Backward Compare and Match Flag blocks. Therefore, the 

critical path of both the match and backward match logic is 

further reduced by inserting pipeline registers.  

 The output module: The even and odd output bits are written 

into RAM-A and RAM-B, respectively, by using two RAM 

blocks. Both RAM blocks can output the data at the same time. 

The even bits are in the 8 most significant bits of the output data, 

i.e., dzip[15:8], and the odd bits are in the 8 least significant bits, 

i.e., dzip[7:0], which is in the revised format as shown in Fig. 4. 

The MLZ4C-2 design runs at a frequency of 240MHz and its 

throughput is 1.92Gbps. The hardware resources used in 

implementing the compressor are summarized in Table III. Test 

results show that the compression ratios achieved by the 

MLZ4C-2 design are the same as that listed in Table II. 

D. The 2nd FPGA Architecture of the MLZ4 Decompressor 

(MLZ4D-2) 

The MLZ4D-2 is similar to MLZ4D-1, as shown in Fig. 9. 

However, the input module that includes IP calculation, Input 

Control and Input RAM blocks is now replaced with a FIFO. 

The IP Control block in MLZ4D-1 is changed to a Read Control 

block in MLZ4D-2, where the combinational logic has been 

further divided and pipeline registers have been added to 

increase the performance.  

The MLZ4D-2 operates at 260MHz and its throughput is up 

to 2080Mbps. The hardware resources used by the 

decompressor are also summarized in Table III. 

TABLE I  
RESOURCES USED FOR BOTH 1ST

 COMPRESSOR (MLZ4C-1) AND 1ST
 

DECOMPRESSOR (MLZ4D-1) 

Resource MLZ4C-1 MLZ4D-1 Total  

Slices 571 365 936 

FFs 605 604 1,209 

LUTs 1,302 767 2,069 

BRAMs 76.5 32.5 109 

TABLE II  
TEST RESULTS OF COMPRESSION RATIO USING MLZ4 ALGORITHM 

Test  
Files 

Original  
Size (Bytes) 

Compressed 
Size (Bytes) 

Compression 
Ratio 

paper1 53,161 28,686 1.85 

paper2 82,199 46,750 1.76 
asyoulik 125,179 75,467 1.66 

cp 24,603 11,993 2.05 

dickens 10,192,446 6,161,433 1.65 

TABLE III  
RESOURCES USED FOR 2ND

 COMPRESSOR (MLZ4C-2) AND 2ND
 DECOMPRESSOR 

(MLZ4D-2) 

Resource MLZ4C-2 MLZ4D-2 Total  

Slices 345 155 500 

FFs 937 377 1314 
LUTs 573 342 915 

BRAMs 69 20 89 

DSPs 4 0 4 

 

E. Comparison between MLZ4-1 and MLZ4-2 

Due to the optimized pipelined architecture, the 2nd design is 

much faster than the 1st design. The throughput of MLZ4C-2 

and MLZ4D-2 are 2.4 and 2.16 times that of MLZ4C-1 and 

MLZ4D-1, respectively. At the same time, the hardware 

required is also reduced significantly. MLZ4C-2 only uses 60% 

of the slices and 90% of the BRAMs used in MLZ4C-1. 

However, MLZ4C-2 uses 4 additional DSPs. MLZ4D-2 uses 

much fewer slices compared with MLZ4D-1, where more than 

half of slices are saved. The number of BRAMs used is also 

reduced by over 38%. The comparison results show that the 

second architecture is a much better design. Both MLZ4-1 and 

MLZ4-2 are further compared with previous work in the 

following section. 

V. COMPARISON WITH OTHER FPGA IMPLEMENTATIONS OF 

LZ ALGORITHMS 

In this section the proposed designs are compared with other 

LZ algorithm FPGA implementations. The designs compared 

include X-MatchPROv4 [7] using the XMatchPRO algorithm, 

the conventional LZW [8], the ELDC-3 core [9] that 

implements four image compression algorithms, an improved 

LZW VLSI Processor [10] which implements the New LZW 

algorithm, LZMA [11], the LZWR3 Core [12] that implements 

the LZRW3 algorithm and a LZ4 FPGA device [13]. 

The comparison is summarized in Table IV. The MLZ4C-1 is 

a baseline design. Its performance is not so attractive compared 

with the previous best design. However, the revised and 

pipelined design, i.e., MLZ4C-2, has improved the compression 

performance significantly. From the table, it is clear that the 

proposed MLZ4C-2 offers the highest performance. Although 

it consumes slightly more slices, MLZ4C-2 increases the 

compression throughput by 20% compared with the best 

previous design in [13] which is also an LZ4 FPGA design, as 

shown in Fig. 10. The main difference between MLZ4C-2 and 

the design in [13] is that a Word Table added in MLZ4C-2 is 

used to find both the matched address and the matched data at 

the same time, which reduces the delay; the output module uses 

two RAM blocks; all combinational modules are further 

divided and registers are inserted to pipeline the design.  

MLZ4C-2 also outperforms (over 47% faster) the leading 

commercial compression device, i.e., LZRW3 [12]. MLZ4D-2 

is also the fastest decompressor compared with other state-of-

the-art designs. This confirms that the proposed MLZ4-2 design 

is the fastest compression device, and hence, is suitable for 

high-end SSDs. 

VI. CONCLUSION 

This paper presents a modified LZ4 algorithm and its FPGA 

implementations. Several aspects of the original LZ4 algorithm 

are modified for efficient hardware implementation. These 

changes improve both the compression and decompression 

speeds. The implementation on a FPGA chip shows that the 

proposed designs can achieve compression and decompression 

throughputs of up to 1.92Gbps and 2.08Gbps, which is 20% and 



 

47% faster than the previous best compressor and decompressor 

designs respsectively. The proposed MLZ4 and its hardware 

architectures can therefore be used to increase the storage 

performance and lifetime of high-end SSDs. 

Fig. 10. Performance Comparison with state-of-the-art LZ compressors. 
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