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Abstract 

With the current UK expansion of proton therapy, there is a great opportunity for clinical 
oncologists to develop a translational interest in the associated scientific base and clinical 
results. In particular, the underpinning controversy regarding the conversion of photon dose 
to proton dose by the relative biological effectiveness (RBE) must be understood, including its 
important implications. At the present time, the proton prescribed dose includes an RBE of 1.1 
regardless of tissue, tumour and dose fractionation. A body of data has emerged against this 
pragmatic approach, including a critique of the existing evidence base, due to choice of dose, 
use of only acute-reacting in vivo assays, analysis methods, and the reference radiations used 
to determine the RBE. 

Modelling systems, based on the best available scientific evidence, and which include the 
clinically useful BED concept have also been developed to estimate proton RBEs for different 
dose and linear energy transfer (LET) values. The latter reflect ionisation density which 
progressively increases along each proton track. Late reacting tissues such as the brain, 
where /β=2 Gy, show a higher RBE than 1.1 at low dose per fraction (1.2-1.8 Gy) at LET 
values used to cover conventional target volumes and can be much higher. RBE changes with 
tissue depth appear to vary depending on the method of beam delivery used.  

To reduce unexpected toxicity, which does occasionally follow proton therapy, a more rational 
approach to RBE allocation, using a variable RBE which depends on dose per fraction and 
the tissue and tumour radiobiological characteristics such as /β is proposed. 
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Introduction 

Radiotherapy is the major treatment modality for around 50% of all cancer treatments 

internationally and is continuing to go through a rapid phase of technological development.   

Intensity modulated radiotherapy, arc therapies, stereotactic therapy, image guidance and 

recently MRI-linacs all aim to deliver highly conformal beams to maximise tumour dose. For 

high energy photon exposures the high reproducibility and accuracy is driving the rapid testing 

of stereotactic and hypofractionated treatments combined with novel molecular and 

immunotargeting strategies [1]. For many years in parallel, proton therapy has been 

developing based on the physical properties of the Bragg curve. As of the end of 2015, 

131,240 patients had been treated (Proton Therapy Cooperative Group (PTCOG)) across a 

wide range of tumour types and as of June 2017 there are 62 centres being built or planned 

internationally, including 2 NHS centres and 4 private centres in the UK (see www.ptcog.ch). 

Carbon ions are also currently used for therapy but only in a few centres internationally and at 

a much lower level than protons with by 2015, 19,376 patients having being treated (PTCOG). 

All therapeutic interventions have risks and benefits. For new pharmacological agents, there 

is considerable legislation that demands satisfactory pre-clinical experimental studies before 

human exposures are allowed; the same is not true for radiation therapy, where the legal 

emphasis is on quality assurance relating to dose associated with particular techniques. 

However, radiotherapy evolved pragmatically with its scientific base of radiobiology providing 

phenomenological support, sometimes with useful applications through the use of relatively 

simple mathematical models. Clinical Oncologists will be familiar with how the biological 

effective dose (BED) and equivalent dose in 2 Gy (EQD-2)  concepts have multiple uses and 

can be used to make radiotherapy much safer, for example dealing with gaps in treatment  [2]. 

Most oncologists consider proton therapy to be an extension of conventional therapy and 

should be integrated within the present clinical service provisions. This viewpoint is highly 

desirable for involvement of ‘site specialist’ oncologists, but the knowledge base of 

practitioners must be increased to cover the salient physical and radiobiological aspects of 

proton therapy.  

In the context of proton therapy, which is regarded as the most promising modern form of 

treatment in certain clinical situations, there is a significant body of existing radiobiology 

research, although it is limited in scope as far as the applicability to human exposures and 

paucity of information for late normal tissue reactions. In this short paper we will consider the 

challenges and opportunities around protons, focussing on Relative Biological Effectiveness. 

Proton therapy offers delivery of radical treatment doses, often with reduced energy deposition 

in the body, and avoidance of unnecessary direct radiation doses to many organs due to the 
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Bragg peak effect [1]. There are three potential disadvantages that must be overcome to 

optimise the safety and effectiveness of their use:   

1. Bragg peak placement inaccuracy due to physical reasons such as heterogeneous 

tissue densities, patient movement, daily positioning, and beam delivery related 

factors such as lateral scattering of the beam.  

2. Within Bragg peaks, energy is deposited as clustered rather than sparse ionisation 

events. This causes more complex DNA damage that is more difficult or impossible 

for enzymatic DNA repair mechanisms to restore, resulting in enhanced biological 

effects. These may be advantageous within a cancer, but possibly deleterious for 

normal tissues in the tumour vicinity and which require to be treated to full or near-

full dose to achieve local tumour control. 

3. Currently, the medical prescription of proton therapy dose includes a 10% 

reduction in dose to all tumours and tissues to compensate for enhanced bio-

effectiveness. This correction factor is being challenged, but to understand this 

issue, it is necessary to be familiar with the physics and biology terms associated 

with enhanced bio-effectiveness, and how this is modified by physical and 

biological characteristics. 

 

Underpinning physics and radiobiology 

Along individual radiation tracks, the closeness of ionisations is expressed by the Linear 

Energy Transfer (or LET), which essentially averages the energy released per micrometre 

distance and is reported in units of keV per micron. As protons enter the body at high energy 

and slow down, the ionization density and hence the LET increases delivering the 

characteristic Bragg peak shape.  

The other essential definition is that of relative biological effectiveness (or RBE). It is formally 

defined as a ratio, and in the context of proton therapy is:  

	 	 	 	 	 	

	 	 	 	
 , each dose achieving the same specified 

biological effect. 

Protons are typically prescribed to patients at doses where the photon-equivalent RBE-

weighted dose (denoted as Gy (RBE)) matches the photon physical dose. As a result, the 

actual delivered physical proton dose is equal to the physical photon (or x-ray) dose divided 

by the proton RBE, presently assumed to be 1.1 in all tissues and tumours, irrespective of 

dose per fraction. If this 1.1 value is incorrect, the prescribed doses will also be incorrect. 
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LET and RBE are closely related, with RBE initially increasing approximately linearly with LET. 

At higher LETs this rate of increase slows and eventually reaches a turning point after which 

RBE falls, due to energy ‘wasting’. The magnitude of the RBE is inversely related to the dose 

and is also related non-linearly to the intrinsic cellular radiosensitivities (α and β parameters 

explained below).  

In proton therapy Bragg peaks are ‘spread out’ to cover the tumour: tissues receive a mixture 

of Bragg peak (high LET) and non-Bragg peak (low LET) regions, often resulting in average 

LET`s around 1-2 keV.µm-1 in the tumour region, although can be higher and up to 8-10 

keV.µm-1, depending on field arrangements and technique used. Pencil beam delivery can 

result in higher average LETs [3], with perhaps additional bio-effects due to differences in how 

the protons are modulated compared with passively scattered (wider) beams.  

The average LET of conventional megavoltage radiotherapy is around 0.2 keV.µm-1, which 

has an immediate implication that the mid SOBP LET may be around 6-9 times higher. Another 

complicating factor is that much of the research on LET and RBE (for protons and other forms 

of radiation) used low voltage x-ray beams, whose LET was already around 1-1.5 keV.µm-1, 

and was frequently used to estimated proton RBEs despite introducing the risk of 

underestimating RBEs. 

For further understanding it is necessary to describe the simple, but elegant mathematical 

relationship between radiation dose (d) and bio-effectiveness (E) described by the linear-

quadratic (LQ) model (see Table 1): 

Some general trends have been confirmed from LET-RBE experimental studies that have 

used a variety of radiation modalities, including fast neutrons (that mainly produce recoil 

protons), low energy x-rays, alpha particles, carbon, and other light ions [4-9]. These include 

the fact that the α parameter increases by more than the β parameter with LET, which leads 

to the inverse relationship between RBE and dose. At very low dose per fraction the RBE will 

be close to the ratio / , (often referred to as the RBEmax), while at high doses the RBE 

falls, becoming closer and closer to the ratio /  (the RBEmin) [10]. These RBE limits 

are contained in the BED equation shown in table 1 and figure 1.   

Radiobiological data and modelling 

Significant radiobiological effort has determined the RBE responses of a range of in vitro cell 

culture modes which have been extensively reviewed by Paganetti [11]. These studies, 

although extensive, have significant limitations, specifically they have been performed on a 

limited range of 2D cell culture models and most have used high doses per fraction where 

RBE is lowest. There is also in vivo data, but again limited to a small range of predominantly 
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acute early-reacting tissue assays such as the upper intestinal (ileal) crypt assay (/β=10Gy), 

acute skin and lung reactions (pneumonitis rather than fibrosis). What is clear from these 

studies is that the biological response varies significantly with LET and more specifically the 

underlying α/ 	values of the biological system being studied. The high /β ratios of acute-

reacting systems (and for rapidly growing tumours) tend to have lower RBEs at low dose per 

fraction. Also, RBE by definition requires a reference radiation and one aspect of the variability 

from different datasets is that this has varied from different low LET radiations such as gamma-

rays, kV and MV X-rays which in themselves have different effectiveness. It is clear from a 

clinical perspective that a high energy linac (4-6MV) is the most appropriate radiation to use 

for future RBE experiments. In the influential data set of Paganetti et al [12], many studies 

used low energy X-ray reference radiations, whose higher LETs led to reduced RBE 

observations. Within this data set, this was corrected for by scaling proton LETs to ‘normalised’ 

LETs, taking a 6 MV linac as the baseline radiation quality, although the conversion factor 

used was not necessarily correct for late effects. In addition, many experiments were 

performed at high fractional doses (around 10-14 Gy, since these doses were used for treating 

uveal melanomas), which also highlighted the dependence of RBE on dose, with higher 

average doses leading to lower RBEs.  

While the conclusion of this review was that an average proton RBE between 1.1 and 1.15 

was a good approximation of the average across all results within the limited range of assays 

used, there was significant heterogeneity, which could lead to significant differences in clinical 

treatments [12]. Many other authors have expressed concern about the use of a constant RBE 

[12, 13-18]. Experiments by various groups [19, 20] show unequivocal changes in RBE with 

dose per fraction at various positions along a proton beam (see figure 2).  Radiobiology 

research has also highlighted that different variants of the same tumour type could potentially 

have different RBE values. For example Liu et al [21] have reported variable proton RBEs in 

a large panel of non-small cell lung tumour lines with deficiencies in the Fanconi’s 

anemia/BRCA pathways predicting an increased RBE. There is also evidence that RBE can 

be influenced by the choice of DNA double-strand break repair pathway available [22] against 

a background of an understanding that many tumours may have compromised DNA repair 

pathways [23]. 

RBE changes with LET can be modelled using phenomenological or theoretical models or a 

combination of each [24-26]. They either relate RBE inversely to the α/β ratio of the control 

radiation, or involve separate treatment of α, or α and β, coupled with saturation effects that 

limit the maximum possible increases. The later assumption, developed by Jones [10, 35], is 

used to generate figures 3 (a-c) for three α/β values (characteristic α/β values are: 2 Gy for 

the central nervous system, 5-12 Gy for many cancers and even higher for highly 
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radiosensitive tumours such as lymphomas and childhood cancers). The baseline LET value 

is set to 0.22 keV.µm-1, being representative of clinical megavoltage photons. 

It can be seen that the predicted RBE ranges could modify treatment outcomes considerably 

and it is reasonable to suggest that a greater dose reduction than 10% should be used within 

the CNS for volumes where LET values exceed 1.5 keV.µm-1. 

Indeed figures 3 (a-c) not only show that RBE will change with dose per fraction, but also that 

the acute and late reacting systems with different /β ratios effectively cross over. In other 

words, at low dose per fraction late-reacting tissues or tumours with low /β ratios of 2-3 Gy 

have higher RBEs than acute-reacting tissues or tumours with high /β ratios (7 Gy or more), 

but this order may be reversed at high dose per fraction, leading to lower RBEs in the late 

reacting tissues. Of the three examples in figure 3 (a-c), the first two represent LET values 

typically within spread-out Bragg peaks that cover a Planning Treatment Volume (PTV). The 

third (example c) will be more typical of conditions further towards the end of range of proton 

fields, and without the PTV in some instances when using scanned beams [3]. Much higher 

LET (10-20 keV.m-1) and consequently RBE values than given in (c) occur towards the end 

of the Bragg peaks [10, 35, 37] with RBE`s often greater than 2. While there remain significant 

differences between the predictions of different models, clinical oncologists should compare 

these estimates with the standard value of 1.1 RBE at all doses per fraction and for all tissue 

types, and reflect on how these changes might influence normal tissue reactions, and it is 

important that the results of new radiotherapy techniques such as proton therapy are published 

with full assessment of late toxicities. Reports of higher than expected proton brain and 

brainstem toxicity, including radiological changes, have been reported [17, 27-29]. 

One centre has published a serious neurological toxicity (blindness and brain necrosis) of 

around 12.3% [30], a result that would be unacceptable after photon-based therapy. Also, 

long-term results of children treated with protons in Japan show significant grade 3 toxicities 

of 6%, 17% and 17% at five, ten and twenty years respectively [31].  

Are these results due to Bragg peak placement errors or radiobiology uncertainties or perhaps 

both effects? Realistic assessment is needed. It is self-evident that errors in Bragg peak 

placement (away from the target) could result in reduced tumour control and be associated 

with increased normal tissue dose and so result in an increased risk of tissue side effects. 

Proton therapy dosimetry has significant additional challenges when compared to photon 

therapy, particularly at the end of range where even small shifts in patient setup or changes 

in anatomy can significantly impact on the dose delivered behind the target volume. As a 

result, there is significant research activity to deliver more accurate dose delivery information 

for protons [32]. However, range uncertainties arising from these effects are typically believed 
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to be on the level of a few percent of the treatment dose/beam range in most cases. By 

contrast, experimental data and modelling has shown much greater uncertainties in proton 

RBE, up to nearly a factor of 2 for some tissues, suggesting that this may play a much more 

significant role in these ‘unexpected’ toxicities. 

Different radiobiology for different beam delivery systems? 

Proton beams are delivered using two alternate physical processes: (1) passive scattering 

where a metallic filter is used to create beam dispersion with inverse square fall off of intensity, 

which is then shaped using a second scatterer and collimator to deliver a uniform field at the 

target volume, (2) active scanning, where magnets are used to bend thin proton ‘pencil beams’ 

laterally and vertically to cover a target volume. Even at the same depth, the proton spectrum 

delivered can be quite different in the two systems. Since average LET is a linear 

measurement it does not reflect these differences, which can lead to differences in the density 

and complexity of tracks. Consequently, some index of LET distribution or track separation 

may also be required. 

Passively scattered beams 

There is evidence that if the same LET and dose is given at the same SOBP positions situated 

at markedly different depths, achieved by using a different incident energies, then the RBE is 

reduced in the deepest position [33]. These experiments used two different incident energies 

of 76 and 201 MeV, with mid SOBP`s at 20.5mm and 160 mm respectively, and SOBP distal 

ends at 26.9 and 185 mm respectively, each position with identical LET and dose 

characteristics. The only physical differences appeared to be the beam widths: 3cm diameter 

at around 2 cm depth, and 12cm diameter at 16 cm depth, showing greater lateral dispersion 

at the increased depth after passive beam scattering. In two human cell lines, the highest 

RBE`s (1.3-1.33) at 2-3cm depth, reduced to be close to 1.0 at 16-18 cm depth. Although the 

dose rates reduced with increasing depth, the longer time cannot account for the RBE 

changes. A model of these results, using an exponential fit, is shown in figure 4. 

Actively scanned beams 

In contrast, [19] found no such effect on RBE with increasing depth in two cell lines with 

incident energies of 87 and 200 MeV at Bloomington, but where scanned beams were used. 

Scanned beams, without metallic filter-related scatter, consist of essentially parallel tracks and 

so deliver potentially shorter inter-track separation distances (s) over most of their range, with 

a narrower spread of particle energies. They exhibit little geometric dispersion until the end of 

range, so s is relatively well preserved with depth and the LET distribution remains narrow. 
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Further research is required to investigate these important findings in greater detail, at 

intervening depths and with a larger range of cell types etc. 

Treatment Volumes and Normal Tissue sparing. 

The ICRU definition of treatment volumes (GTV, CTV and PTV) are also used for proton 

therapy. Since the GTV and PTV consists of normal tissue (with some microscopic tumour 

cells), great care is required to assess if any excess RBE (and consequently dose) beyond 

the RBE=1.1 used in current treatment planning software systems will influence tissue viability 

and functionality. It is only in some organs systems that complete loss of function is accepted, 

and great care is required in the central nervous system, since the low /β of 2 Gy will drive 

up RBE at low dose per fraction. Outside the PTV, it is equally important to check if any 

disadvantage due to RBE values exceeding 1.1 will exert any changes in expected side 

effects. Where there is uncertainty in RBE assessments, the intended dose sparing ratio 

between the PTV dose and an organ at risk dose outside the PTV should sometimes be 

improved to accommodate the RBE uncertainty [34]. A further cause of concern is that with 

scanned proton beams tissues receiving considerably lower doses outside the PTV may have 

a higher average LET value than within the PTV. In such cases, modelled RBE values could 

be used to check if tissue tolerances are breached. Tables of LET and RBE values generated 

by one model for this purpose are available in [35] as supplementary information and a matrix 

of ICRU volumes and consequences of reduced or increased RBE values is given elsewhere 

[10]. 

Discussion: How can radiobiology improve proton therapy? 

Some groups have proposed LETDose as being a good predictive index, which bypasses 

the need for the RBE concept. However, the product does not have meaningful dimensions 

and RBE becomes a hidden variable (related to each parameter in a different way). As a result, 

plots of this product against cell survival do not show significant correlation [35] and obscure 

the potential underlying biology. 

The invariant 1.1 RBE value used currently has been extensively criticised on the basis of LQ 

model theory, use of inappropriate short-term bio-assays and use of non-megavoltage control 

irradiation. When will the constant RBE be replaced? Will this be left to individual institutions 

to decide will international bodies (e.g. ICRU and ICRP) intervene or will it be left to the 

collective accrual of long term toxicity data? 

In the case of Carbon ions, but not as yet with protons, the depth-dose profile of each single 

SOBP field was designed to compensate for the inevitable increase in LET along its path [36]: 

deeper regions, where the LET is highest, receive less dose; shallower regions are allowed a 
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higher dose because of the lower prevalent LET. These principles are shown in figure 5. 

Confirmation of a marked increase in RBE for lung fibrosis in patients treated by single SOBP 

proton fields has increased this concern (Underwood et al 2017, personal communication). 

The weighting of proton dose towards the distal end of the beam should be reduced to 

compensate for such an effect.   

A major challenge faces every proton therapy clinician: should they adopt different RBE values 

to limit toxicity and ensure better effectiveness in some situations, despite the inherent 

uncertainty in RBE values? Should randomised control studies be done to test RBE 

allocations? For example, by allowing randomisation of patients to either the standard RBE or 

to an RBE of 1.2 in the CNS normal tissues [10]. Also, very radiosensitive tumours with very 

high α/β ratios and correspondingly very low RBEs, such as medulloblastoma where α/β=28 

Gy, have an estimated RBE of 1.06 (from the model used to generate figures 3(a-c)). In such 

situations, a tumour RBE reduction of only 1.03 -1.05, or not using an RBE at all could be 

used, provided that critical structures are not overdosed, but where an RBE of 1.2 or above 

might be applied protectively. Such an approach might increase safety and effectiveness.  

It remains to be seen if clinicians will adopt these suggestions. Considerable reflection and 

active involvement in the radiobiological issues will be required by future clinicians who use 

proton beams. 

Future opportunities 

Proton therapy has significant potential in the treatment of cancer, but must be used carefully 

with respect given to the underpinning physics and radiobiology. It is imperative that further 

preclinical research and model development aims to predict and quantify the optimal treatment 

approaches for proton therapy so that their full potential can be realized in the advancing era 

of personalized medicine. 

Acknowledgements 

KMP acknowledges support from MRC (G1100014/1) and EPSRC (Ep/K022415/1). 

 

  



11 
 

Tables and Figures 

Table 1: The linear quadratic model adapted for high LET radiations 

The bioeffectiveness E is given by  

E= αd+βd2,   where α and β are radio-sensitivity coefficients, α predominating at 

low dose and β at high dose. For the same bio-effect, protons and conventional 

megavoltage x-rays (photons) can be represented as:  

proton effect = x-ray(photon) effect,  

or 

E= αHdH+βHdH
2= αLdL+βLdL

2 

where subscripts L and H refer to the lowest and higher LET radiations. The RBE 

is then the dose ratio dL/dH, which should always exceed 1. These relationships can 

be seen in figure 1, where it can also be noted that the RBE is larger at lower dose 

and effectiveness levels (this is due to the linear quadratic shapes of each curve). 

The Biological effective dose (BED) is then 

	 , where the two RBE limits act as modifiers of the 

reference low LET /β ratio (see [35]). 

All standard applications of BED may then be used in proton therapy using this 

approach. 
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Figures 

Figure 1: Demonstration of the RBE principle for two dose effectiveness curves produced by 

x-rays (photons) and protons (assuming αL=0.15 Gy-1, αH=0.24 Gy-1, βL=0.03 Gy-2, βH=0.032 

Gy-2) and where two different iso-effect levels [1] and [2] are considered and their 

corresponding RBEs are shown. The numbers 3, 3.8, 5 and 6 refer to the physical doses 

where each iso-effect line meets each curve and so are respectively dH followed by dL for 

isoeffect [1] and dH and dL for isoeffect [2]; the RBE is given by dL/dH in each case and is shown 

on top of the frame. (Reproduced from [37]) 
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Figure 2 Comparison of relative biological effectiveness (RBE) weighted or biological dose 

(the product of physical dose and RBE, which is expressed as Gy(RBE), calculated using 

clinical constant and experimental variable RBE values. Application of variable RBE resulted 

in an increase of RBE weighted dose in the tumour region (ie, spread-out Bragg peak plateau). 

Experimental data was obtained from cells irradiated at various positions on the SOBP. A 

comparison of the Physical and RBE-weighted dose versus depth for a 220 MeV single 

fraction proton beam. b) Measurement of cell killing RBE relative to 225 kVp X-rays as a 

function of proton dose per fraction at 4 experimental positions on the SOBP. Analysis of  data 

adapted from [20] 
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Figure 3 (a-c): three examples of estimated RBE at different proton dose per fraction, for (a) 

LET of 1.1 keV.µm-1, (b) 1.8 keV.µm-1. (c) 3.6 keV.µm-1. It should be noted that (a) and (b) are 

typical Let values within spread out Bragg peaks, whereas (c) will be found towards the end 

of end of Spread out Bragg peaks and even in normal tissue outside the PTV when scanned 

beams are used.  

   (a) 
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(b) 

 

 

 

(c)  
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Figure 4. Modelled relationship between RBE with depth at the mid-SOBP and distal SOBP 

obtained from data averaged for two human cell lines (HeLa and a head and neck squamous 

cell cancer line) for Caesium and Cobalt referenced RBE values by [33] and assuming RBE 

falls to around 1.02-1.03 which is consistent with 1 in the biological experiments. (reproduced 

from [6]) 
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Figure 5: Schematic diagram, based on concept in [36] of how a deliberately designed dose 

profile (blue) can be used to compensate for increasing LET (black) and RBE (brown) with 

depth, the net effect being a uniform BED across the target volume (red).  
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