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Visualizing Big Energy Data 

Rob J Hyndman, Xueqin Liu and Pierre Pinson 

 

Visualization is a crucial component of data analysis. It is always a good idea to plot the data before 

fitting any models, making any predictions, or drawing any conclusions. As sensors of the electric 

grid are collecting large volumes of data from various sources, power industry professionals are 

facing the challenge of visualizing such data in a timely fashion. In this article, we demonstrate 

several data visualization solutions for big energy data through three case studies involving smart 

meter data, phasor measurement unit (PMU) data, and probabilistic forecasts, respectively.  

 

1. Visualizing Smart Meter Data 

 

Smart grid initiatives worldwide have deployed millions of smart meters to the electric grid. A small 

to medium sized utility company could have thousands of meters spread across its territory, recording 

electricity demand at hourly or sub-hourly intervals. But how should one actually plot data on 

thousands of smart meters, each comprising thousands of observations over time? We cannot simply 

produce time plots of the demand recorded at each meter, due to the sheer volume of data involved. 

One approach is to convert each long series of demand data to a single two-dimensional point which 

can be plotted in a simple scatterplot. In that way, all the meters can be seen in the scatterplot; so 

outliers can be detected, clustering can be observed, and any other interesting structure can be 

examined. In this section, we will present a solution to this problem by first converting the data from 

each smart meter into series of probability distributions, which are then used to compute pairwise 

distances between load profiles. Finally, the households are embedded in two-dimensional space to 

enable simple but informative plots to be constructed. 

 

Irish smart meter data 

 

To illustrate, we will use data collected during a smart metering trial conducted by the Commission 

for Energy Regulation (CER) in Ireland. For demonstration purposes, we will use measurements of 

half-hourly electricity consumption gathered from 500 residential consumers over 535 consecutive 

days. Every meter provides the electricity consumption between July 14th, 2009 and December 31st, 

2010. Many of the series have periods of missing data. The CER data set does not account for energy 

consumed by heating and cooling systems. Either the households use a different source of energy for 

heating, such as oil and gas, or a separate meter is used to measure the consumption due to heating. 

Further, no installed cooling system has been reported in the study. 

Data from two smart meters are shown as simple time series plots in Figure 1. While it is obvious that 

these meters have very different demand patterns, it is not possible to say much more — the time of 

day and day of week patterns are hidden due to the volume of data, and even the median demand is 

not clear from such plots. 

 



 

Figure 1: Two examples of smart meter demand from the CER data set. 

 

Percentiles by time of week 

 

One way to see intra-day and intra-week patterns, is to plot the demand against the time of the week, 

rather than against the time since the beginning of data collection. Figure 2 shows the same data as 

were displayed in Figure 1, but as a scatterplot against the time of the week. Now, the morning and 

evening peaks for meter 1539 become clear, and it also becomes apparent that meter 1549 has a 

different pattern on weekends than on weekdays.  

To further look into the intra-day load profiles, we can leverage the concept of percentile, which 

describes the distribution of the observations. The 10th percentile, for example, is the value below 

which 10% of the observations may be found. Widespread percentiles indicate widespread 

observations. On the other hand, depending upon the thickness of the percentiles on a plot, they may 

be overlapping each other, which indicate that the observations are close to each other. In the extreme 

case where all observations are identical, the percentiles are identical too. 

Overlaid on the individual demand data, Figure 2 also shows some percentiles of the demand 

distributions as they vary by half-hour and day of the week, allowing us to see 48 × 7 = 336 

probability distributions per household. For some periods, such as early morning around 4 am for 

meter 1549, the selected percentiles are indistinguishable, indicating similar load levels. This is 

because electricity consumption activities during sleeping hours is low and relatively certain. The 

evening hours (e.g., hours 18 to 24) are showing widespread percentiles, as the result of varying 

electricity consumption activities. 

The percentiles are smoothed a little over time, by combining neighboring half-hours. For example, 

the percentiles for half-hour h are estimated using the data for half-hours h – 1, h, h + 1. This is 

equivalent to a form of kernel smoothing across half-hours. We use a simple estimate of each 

percentile to compute these curves. In this context, simple estimates are better than kernel density 

estimates (or some other more sophisticated estimate of the distribution) because the data set contains 

a large number of zeros, making the distribution a mixture of a discrete component and a continuous 

component. Also, the high skewness of the data, and the non-negative nature of demand, makes it 

problematic to use kernel density estimates. 



There are several advantages in working with the percentiles rather than the data directly. It avoids 

problems with missing observations, and with the specific timing of household events (e.g., parties), 

and focuses attention on typical behavior of a household throughout the week. Although only five 

percentiles are shown in Figure 2, we actually compute percentiles for probabilities 1, 2, … , 99%. 

 

 

Figure 2: Demand plotted against time of the week for two smart meters from the CER data set. 

 

Typical and anomalous households 

 

In order to study the whole group of household demand distributions, we will first compute the 

differences in electricity consumption patterns between pairs of households. Statistically speaking, we 

call these differences “distances”. Note that the “distance” used in this section refer to the distance 

between two probability distributions rather than the physical distance between two houses.  One way 

to measure the distance between two distributions is the Jensen–Shannon divergence. We have 336 

probability distributions per household, one for each half-hour period of the week, so we have 336 

Jensen–Shannon distance measures for each pair of households. We can measure the overall distance 

between the distributions from two households by summing these 336 Jensen–Shannon distance 

measures. In this way, we can find the distance between each pair of households in the data set. 

From these pairwise distances, we can compute a measure of the “typicality” of a specific household, 

by seeing how many similar houses are nearby according to Jensen–Shannon divergence. If there are 

many households with similar probability distributions, the typicality measure will be high. But if 

there are few similar households, the typicality measure will be low. This gives us a way of finding 

anomalies in the data set—they are the smart meters corresponding to the least typical households. 

The most anomalous (i.e., least typical) household is shown in Figure 3. This is clearly a very strange 

demand distribution, with extremely low demand almost all of the time, reflected by almost 

overlapping percentiles.  

 



 

Figure 3: Demand distribution of the least typical household out of the 500 smart meters included in 

the analysis. 

 

Visualization via embedding 

 

The pairwise distances between households can also be used to create a plot of all households 

together. If we compute 99 percentiles for 48 half-hours per day and 7 days a week, each of the 

household distributions can be thought of as a vector in K-dimensional space where K = 99 × 48 × 7 = 

33,264. To easily visualize these, we need to project them onto a two-dimensional space. There are 

several ways of doing this, such as principal components analysis, multi-dimensional scaling, and so 

on. The method that we’ve used here is a “Laplacian eigenmap” to keep the most similar points in K-

dimensional space as close as possible in the two-dimensional space. 

Figure 4 shows a two-dimensional embedding of the 500 households in this data set. The colors are 

taken from the measure of typicality, with the most typical 1% of points shown in red, and the least 

typical 1% of points in black. The remaining points are divided into two groups with all orange points 

being more typical than the yellow points. The blue numbers show the ranking of anomalous points. 

The most anomalous point (#1) corresponds to the data shown in Figure 3.  

The colors can also be interpreted as corresponding to highest density regions (HDRs) in the original 

K-dimensional space. This way of plotting the data easily allows us to see the anomalies, to identify 

any clusters of observations in the data, and to examine any other structure that might exist. 

 



 

Figure 4: A two-dimensional representation of the data from all 500 households. The most typical 

points are shown in red, and the most anomalous are shown in black. 

 

2. Visualizing PMU Data 

 

Since the first prototype PMUs were developed by Virginia Tech in 1988, networked PMUs have been 

rapidly deployed in the last few years. As of early 2016, China and the US have the world’s largest 

PMU networks, each having more than 2000 PMUs in operation. Unlike the existing supervisory control 

and data acquisition (SCADA) systems which provide measurements every 2 to 4 seconds, PMUs can 

report data, with accurate and precise time-stamps, 10 to 60 times per second. Consequently, we receive 

large volumes of high dimensional PMU data continuously, day in and day out. Taking 30 PMUs for 

example, the system operator needs to manage approximately 15 MB of data per minute, 20 GB per 

day, 140 GB per week or 7 Terabytes per year. The volume of PMU data will increase dramatically 

when thousands of PMUs are installed.  

The problem of ‘too much data, too little information’ must be solved – as it is becoming increasingly 

difficult for the system operator to make use of the raw PMU data for real-time decision making. On 

the one hand, there is an explosion in the availability of high rate data streams due to advances in 

monitoring PMU devices, leading to data overload. On the other hand, there is limited understanding 

on how to extract actionable information from these data-intensive monitoring devices for real-time 

monitoring and control purposes. “Big-data visual-analytics” offers a way forward, helping to convert 

these big data streams into actionable insight in real-time, and will aid development of next generation 

energy management systems. In this section, we will demonstrate the most basic dimension reduction 

technique, principal component analysis (PCA), as a fundamental tool for the initial steps of visualizing 

PMU data.  

 



A simple dimension reduction tool – Principal Component Analysis 

 

PCA, first proposed in 1901, is one of the most popular dimension reduction techniques. Using PCA, 

we can remove the correlation between the variables and select only a few linearly uncorrelated 

variables to represent the original data. We can view PCA as a form of orthogonal rotation, where the 

new axes can capture the maximum variance of the data. The orthogonal direction of the maximum 

variance can be identified by carrying out eigenvalue and eigenvector analysis of the covariance matrix 

of the sample data, so that the maximum variance corresponds to the largest eigenvalues. The 

transformed new variables are called the principal components, while the first few principal components 

can explain most of the variance of the data. Thus we only require a reduced set of them to represent 

most of the information from the original data.  

For event detection and diagnosis purpose, we define two statistics, the 𝑇2 and 𝑄. The 𝑇2 constructed 

by the principal components, is associated with the PCA model space and represents significant 

variation of the original data. The 𝑄  represents the squared error of the model mismatch and the 

variation of the data within the residual subspace.  Applying PCA on PMU data, we can analyze many 

sets of measurements from various locations simultaneously. We will demonstrate the elegance and the 

beauty of PCA through two case studies, selected from the Great Britain and the Irish power networks.      

 

Case 1: Visualizing frequency data to distinguish multiple events in the Great Britain networks  

 

The data used here were recorded from six sites in the Great Britain networks with a 10 Hz sampling 

rate through the OpenPMU project, including one located in Southern England, one in Manchester and 

four in Orkney Islands.  The well-documented event on September 30th, 2012 saw a loss of load at 02:28 

in the morning. Later in the same day a Great Britain - France interconnector trip event at 15:03, resulted 

in a Great Britain frequency drop from to 49.97 to 49.60 Hz in a matter of 10 seconds. The initial rate 

of change of frequency (RoCoF) activated RoCoF based islanding protection, erroneously 

disconnecting distributed generation.  

We can group data from this single day into four different classes, the normal data, the loss of load, the 

generation dip, and the islanding event. To visualize this in Figure 5, we have plotted seven days of data 

randomly selected from two locations to obtain frequency coverage for normal operating conditions. It 

ranges from 49.8 Hz to 50.2 Hz, represented by the black dots surrounded by the red box – this depicts 

the 99.9% confidence limit. The normal data from September 30th, 2012 fall in this category. In Figure 

5, we have also plotted the loss of load, the generation dip, and the islanding events from two locations. 

How should we interpret the patterns in this figure? Frequency is the universal parameter of the 

synchronous power grid, and it possesses simple and elegant characteristics. That is, the frequency data 

points from two locations are approximately aligned with the 𝑦 ≈ 𝑥 line. The first principal component 

𝑡1, which captures 99% of the total variance of the frequency data, is thus following this direction. In 

other words, we can use only one principal component to represent all frequency variables recorded 

across the grid. In Figure 5, we also notice that the generation dip and loss of load events are in line 

with the first principal component direction, but outside the red box, with the loss of load sitting at the 

higher end, and the generation dip sitting at the lower end. When the loss of load and generation dip 

events occurred in the system, the frequency variables may significantly deviate from the nominal value 

(50 Hz in this case), but not deviate against each other significantly. However, for the islanding event, 

it is more likely that the islanded frequency deviates significantly from the rest of the system frequency, 

and thus is not in line with the principal component direction. That is to say, the islanding data has its 

projection to the orthogonal direction to 𝑡1 (represented by the 𝑄 axis) and is outside the red box. In 



comparison to traditional time series graph, the relative relationship of multiple events in comparison 

to normal operation conditions are much more straightforward, as illustrated in the scatterplot of Figure 

5.  

 

 

Figure 5. The 2-D illustration for multiple events on September 30th, 2012 recorded in the Great 

Britain networks. Black, blue, cyan, and purple dots represent the normal data, generation dip, loss of 

load, and islanding event, respectively. 

 

Once an islanding event is detected in the system, the system operator will try to find out where the 

event is located. We can accomplish this task by a simple contribution plot to visualize the contribution 

of individual frequency variables to the pre-defined PCA statistics. If the contribution of a particular 

frequency variable toward the 𝑄 statistic is large, an islanding site can be identified.  Figure 6 illustrates 

variable 5 (representing PMU installed in the Orkney Island, where the islanding occurred) dominates 

the contribution to 𝑄 statistic during the 9 minutes when it happened from 15:03:30 to 15:12:30. Both 

systems synchronized at 15:12:30.  

 

Figure 6. Contribution plot to the 𝑄 statistic for case 1. 



 

Case 2: Visualizing post-disturbance voltage data from multiple locations in the Irish networks  

 

We illustrate the post-disturbance voltage trajectory during an East West Interconnector (EWIC) 

500MW export trip test event in the Irish network, to further demonstrate PCA as a powerful dimension 

reduction tool for visualization.  

 

Traditionally the system operator will monitor the voltage traces from various locations. However, it is 

difficult to manage hundreds of PMUs through this traditional approach. In addition, the interaction 

among multiple voltage variables embedded in multiple locations is unknown. By applying PCA on the 

PMU data collected from twenty locations across the network, we found that three principal components 

are enough to monitor voltages across the entire network. The three selected principal components are 

capable of explaining 98% of the variance of the data during the test. As illustrated in the scatterplot of 

the three principal components in Figure 7, the original steady state is represented by the yellow dots, 

as the event progresses, it goes from the black dots to the red ones and the blue ones, and finally settled 

to a new steady state represented by the green dots. The spiral trace indicates the oscillatory behavior 

during this test. The graphical visualization in Figure 7 provides a faster and easier way to interpret 

information, which helps reduce the decision-making time. 

 

 

Figure 7. Scatterplot of three principal components of twenty voltage variables recorded in the Irish 

networks for case 2  

 

3. Visualizing Probabilistic Forecasts 

 

While visualizing the data at the beginning of data analysis is well-known to be a must-have step, 

visualizing the results from sophisticated models is equally important. Here we will present another 

case study, focusing on the visualization of forecasting results. Specifically we will use wind power 

forecasts as an example, although the methodology can be generally applied to other energy forecasts, 

such as solar power forecasts and load forecasts.  



Uncertainty has always been around in power system operation and planning. For example, 

operational decision and control problem uncertainties originate from contingencies (generation units 

and lines), incomplete or erroneous overview of the system state, and projections of future demand. 

Today however, with the rapid deployment of renewable energy generation capacities throughout the 

world, new uncertainties are appearing that directly relate to how much power may be generated in 

the following minutes, hours, days, and beyond. Similarly on the electricity consumption side, 

uncertainties are growing, due to changes in consumption patterns (electric vehicles, more proactive 

consumers, etc.), but also to behind-the-meter power generation. All in all, combined with an all-time 

high availability of relevant data, this has supported the increased focus on developing new 

approaches to analytics and forecasting for power system operations and control.  

While traditional point (or single-valued) forecasts can provide the expected values for the variable of 

interest, probabilistic forecasts, which have now been around for more than a decade, can further 

quantify the future uncertainties via quantiles, intervals, or probability distributions. Nevertheless, it is 

challenging to visualize such uncertainties, so that the probabilistic forecasts can be effectively 

communicated to and ultimately accepted by the business consumers of these forecasts. In this 

section, we will introduce and discuss alternative approaches to visualizing probabilistic wind power 

forecasts. 

 

“River-of-blood” fan chart 

A prominent example of communicating probabilistic forecast information is through a “river-of-

blood” fan chart as depicted in Figure 8. An earlier version of it was used in a significant number of 

technical presentations and broad-audience articles to introduce and illustrate the concept of 

probabilistic wind power forecasting since 2005. This plot aims at illustrating hourly power 

generation from wind power (in this case, for the whole wind power generation of western Denmark), 

with an hourly resolution up to nearly two days ahead. This visualization proposal is inspired by the 

Bank of England probabilistic forecasts for inflation, published on a quarterly basis from 1996, 

comforting it as a pragmatic and intuitive approach to convey uncertainty information.  

This so-called “river-of-blood” fan chart associates the traditional single-valued forecasts, telling 

about the mean of potential renewable power generation in the near future (formally, the conditional 

expectation), with a number of prediction intervals. These prediction intervals have an increasing 

nominal coverage rate, hence intuitively getting wider for lighter colors. For a given lead time, a 

prediction interval gives a range within which power generation may lie, given a certain a-priori 

probability, i.e., its nominal coverage rate. Those prediction intervals are centered in probability on 

the median. The interest of that visualization is that it appeals to both a broad audience and expert 

practitioners. The former may be content with a simple and intuitive way to see how uncertain the 

forecasts are, while the latter is actually provided with enough information to reconstruct full 

predictive densities to be used as input to a wide range of decision and control problems in a 

stochastic optimization framework. Note that Figure 8 does not mean to show accurate wind power 

forecasts, so readers may ignore the fact that many observations are falling outside the 90% prediction 

interval. 



 

Figure 8. Probabilistic forecasts represented as a river-of-blood fan chart, with decreasing shade 

intensity for higher nominal coverage rate of the prediction intervals, for the whole wind power 

generation of western Denmark, with an hourly resolution up to nearly two days ahead. 

 

Ensemble forecasts 

 

While the visualization in Figure 8 is appealing, it is not the only way to communicate probabilistic 

forecast information. Indeed, instead of focusing on how uncertain the future may or may not be, an 

alternative approach aims at providing the forecast user with a set of alternative trajectories in the 

future. This approach was championed by the meteorological community, which coined the term of 

‘ensemble forecast’ for it. In practice, this has translated to a number of high value applications, for 

instance related to trajectories of storms and cyclones and their potential impact.  

For the case of renewable energy generation, this type of representation has attracted increased 

interest due to the additional information it conveys, also allowing the use of these alternative futures 

as input to existing tools for operations and control within a deterministic framework. As an example, 

Figure 9 depicts the ensemble forecasts that are used to convey the probabilistic forecast information 

for Western Denmark, for a given day in the past. Since they are based on related methods, the 

general probabilistic information shown in Figures 8 and 9 has similarities, especially in terms of 

trends and uncertainty levels. However, the ensemble forecasts in Figure 9 provide an additional 

information in terms of dependencies among lead times, which is not conveyed by river-of-blood fan 

charts. 



 

Figure 9. Probabilistic forecast information conveyed by ensemble forecasts for the whole wind 

power generation of western Denmark. 

 

Concluding Remarks  

 

 

In this article, we have offered a few examples of visualizing big energy data. Although these 

examples spread across distribution (smart meter data), transmission (PMU data) and generation 

(wind power forecast data), and cover both pre-modeling and post-modeling stages, the paper does 

not attempt to be comprehensive. There are many other insightful plots we are not able to present due 

to page limitation, such as maps for geospatial information (e.g., load growth and penetration of 

electric vehicles). Moreover, some insights are better presented dynamically via animation rather than 

on a static paper, such as changes of load and temperature relationship over time, and customer 

behavior changes due to the adoption of demand response programs. We hope that this article can 

inspire more and more researchers and practitioners to create effective plots from energy data.  
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