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Abstract

The simulation of the complex flow in a wind turbine wake is a challenging problem. To date,
much of the research has been inhibited by both the time and computational costs associated
with turbulence modelling. Additionally, the majority of numerical investigations focus on
turbine performance and therefore neglect the near wake of a Horizontal Axis Wind Turbine
(HAWT) entirely. This investigation focuses on experimentally and numerically quantifying
the near wake structure of a model HAWT. The Shear Stress Transport (SST) k − ω,
Elliptical-Blending Reynolds Stress Model (EB-RSM) and the Reynolds Stress Transport
(RST) turbulence models were used to model a turbine wake in the current study, with
the results verified against experimental hot-wire data. Near wake velocity and turbulence
characteristics were investigated to determine if low-order models can accurately predict the
magnitude and distribution of velocity and turbulence values in the near wake of a model
HAWT. The HAWT model was operated at two TSR values of 2.54 and 3.87. All models
predicted velocity deficit values to within 2–4% and 4–7% of experimental results for TSR
values of 2.54 and 3.87 respectively. Results showed that all models were able to accurately
predict the mean velocity deficit generated in the near wake. All models were able to
predict the fluctuating u and v velocity components in the near wake to the correct order of
magnitude with the fluctuating velocity components having an inverse Laplace distribution
in the wake. However, all models under-estimated the magnitude of these velocity values
with predictions as low as -43% of experimental results.

Keywords: Wind turbine aerodynamics, SST k-ω turbulence model, Reynolds Stress
Transport turbulence model, Computational Fluid Dynamics, Hot-wire Anemometry

1. Introduction1

Up until recently, most aerodynamic modelling of wind turbines has been greatly simplified,2

with only a few researchers [1, 2, 3, 4] simulating the full turbine structure. The application3
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of Computational Fluid Dynamics (CFD) models have been hindered due to the complex-4

ity associated with modelling the relative motion between rotating and stationary turbine5

components [5]. In addition, high performance computational resources are often not avail-6

able, which results in CFD models being highly simplified. These simplifications include7

neglecting the tower structure or just modelling one turbine blade, taking advantage of the8

120◦ periodicity [6, 7, 8, 9]. Such models are not able to model the unsteady phenomena9

associated with rotor tower/nacelle interaction, which has been shown to contribute very10

high levels of turbulent kinetic energy and Reynolds stress in the wake [10, 11]. Removing11

the tower from numerical simulations has a direct impact on the wake structure and velocity12

deficit experienced behind a turbine. Not only does this corrupt the structure of the rotor13

wake, but the increased turbulence leads to a faster reduction of the velocity deficit in the14

lower half of the turbine wake. With respect to future wind turbine structural modelling15

attempts, an understanding of the spatial distribution of stresses generated within the wake16

is important. The fluctuating velocity components in the flow directly contribute to the17

unsteady forces acting on turbine blades [5].18

19

Noted in a review by O’Brien et al. [5], due to limited resources, most models are solved20

using steady time [12, 13, 14, 15, 9, 7, 8]. The transient effects of tower interaction, dynamic21

stall and wake meandering are difficult to model when using steady simulations [16, 17]. A22

study by Gomez-Iradi et al. [1] simulated rotor/tower interference for an upwind configu-23

ration turbine. This work simulated the displacement of the upwind stagnation point and24

boundary layer separation points of the tower at a periodic frequency of three times per25

revolution (for a three-bladed rotor). This resulted in periodic lateral loading of the tower.26

This pulsating displacement of the stagnation point was not observed in steady simulations.27

28

Primarily, near wake research (particularly numerical research) is focused on power produc-29

tion and turbine performance [18]. However, this can be attributed to the fact that most30

numerical models are validated against earlier experimental works, which, as noted by Ver-31

meer et al. [18] focused on HAWT performance. Additionally, most numerical models are32

validated against the NREL Phase VI measurement campaign of Hand el al. [19], which33

only investigated aerodynamic rotor loads and pressure distributions over the blades [5]. The34

current investigation focuses on the study of the near wake with a particular emphasis on35

the near wake structure. The near wake is taken as the area just behind the rotor, where the36

properties of the rotor can be discriminated [18]. The current investigation aims to validate37

numerical models against detailed near wake measurements of a full model turbine structure.38

39

Wake turbulence, especially in a wind farm setting, contributes to the unsteady loading on40

wind turbine blades. As noted by Zhang et al. [20], limited information about the spatial41

distribution of turbulence and vortex behaviour in the near wake hinders the capability of42

the engineering community to predict wind turbine power production and fatigue loads in43

wind farms. However, our understanding of such engineering quantities is further reduced44

if the limitations of current turbulence modelling strategies with regards to predicting these45

phenomena is not explored. However, keeping computational costs in mind, there are newly46
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released models available such as a new Elliptic Blending Reynolds Stress Model (EB-RSM)47

released by STAR CCM+ as noted by O’Brien et al. [5]. This model was developed to meet48

industrial needs whereby it is more detailed than two equation eddy-viscosity models, but49

not as costly as a Reynolds Stress Transport model. This is accomplished by use of the50

elliptic relaxation concept proposed by Durbin [21], whereby the redistributive terms in the51

Reynolds stress equations are modelled by an elliptic relaxation equation. This model could52

provide a compromise between cost and accuracy for future HAWT modelling attempts.53

Detailed investigations of the near wake are valuable, especially for the validation of nu-54

merical models as the near wake structure effectively provides the “building blocks” for far55

wake analysis. However, to date, such measurements in the near wake are very rare [18, 22].56

Finally, for future research regarding full scale modelling of HAWTs, the aerofoil data asso-57

ciated with large scale blades is often not available due to commercial sensitivity. Therefore,58

it is necessary to assess direct modelling techniques to ensure they accurately predict wake59

characteristics, as opposed to ADM (Actuator Disk model) and ALM (Actuator Line model)60

techniques. ADM and ALM were both neglected in the current study as they both rely on61

the BEM method in order to compute body forces. BEM methods are highly reliant on the62

aerofoil data chosen and dependant on empirical corrections to 2D aerofoil data.63

64

In order to accurately model turbulence in any flow simulation, accurate modelling of the65

boundary layer of a solid surface is important. Interaction between airflow and a solid sur-66

face is in many engineering applications the origin of turbulence. In most commercial CFD67

codes this is usually done by the allocation of pressure-strain relationships. However, many68

pressure-strain relationships are dependant on y+ wall treatments, which influence not only69

the ability of the solver to resolve the boundary layer, but also how it applies wall functions70

within the boundary layer to mimic turbulence dissipation rates and the two-component71

turbulence limit. The review by O’Brien et al. [5] has noted that many numerical simula-72

tions of HAWT wakes have been carried out, with mesh refinements in most cases taking y+73

values into consideration. The pressure-strain relationship and wall treatment used in these74

studies is often not mentioned, which has a major impact on a turbulence model’s ability75

to solve for turbulence in the flow. No study has yet been carried out (to the knowledge76

of the authors) to access the ability of different pressure-strain relationships to accurately77

model turbulence in HAWT wakes. This is essential for future FSI simulations, as noted78

by Zhang et al. [20]. Additionally, modelling of flow/solid-surface interaction is the most79

expensive and difficult part of any CFD simulation. Investigating different pressure-strain80

relationships and how they impact the accuracy of a turbulence model could be used to81

determine the least expensive approach to HAWT wake modelling.82

83

This study aims to investigate the ability of low-order turbulence models to accurately84

predict the turbulent characteristics of HAWT wakes. The ability of low-order turbulence85

models to predict the turbulence characteristics of HAWT wakes, speaks to their suitability86

for use in future FSI simulations of HAWTs.87

88

The objectives of this study are as follows:89

3



 To carry out an experimental measurement campaign in a wind tunnel of the near90

wake of a model Horizontal Axis Wind Turbine (HAWT) structure in order to validate91

numerical codes.92

 To model, using advanced transient CFD the wake of the model HAWT to capture93

the development of a HAWT near wake including the root vortex structure.94

 To establish a meshing strategy for near wake analysis.95

 To assess the ability of the SST k-ω model (coupled with the Vorticity Confinement96

model), the EB-RSM and the RST model to accurately represent the mean and fluc-97

tuating velocity characteristics of the near wake.98

2. Experimental Setup99

2.1. Wind Tunnel Facility100

This investigation was carried out in a closed loop return wind tunnel at Queens University,101

Belfast. The wind tunnel (see figure 1) has an enclosed test section of 0.85 m (height) x102

1.15 m (width) x 3 m (length) with optically transparent side walls and can operate to a103

maximum freestream velocity of 40 m/s. For the current investigation, the wind tunnel had104

an average background freestream turbulence intensity of 0.19%. The turbine model was105

mounted 0.75 m from the test section entrance.

Y

X Traverse system

(fixed to test section roof)

X-wire

HAWT model

Optically

transparent side

walls

Test

section

entrance
0.52 m

0.85 m

3 m

0.75 m

0.3 m

0.37 m

Figure 1: Wind tunnel schematic

106
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2.2. Wind Turbine Model107

The wind turbine model used for the present study was a three-bladed horizontal axis wind108

turbine. The turbine model was designed taking into account the Wind Atlas Analysis and109

Application Program (WAsP) wake model of [23], where the wind turbine wake is assumed110

to expand linearly with distance downstream. The wind turbine model has a rotor diameter111

of 0.3 m and a hub height of 0.37 m. Images of the turbine model and the main geometric112

parameters are given in figure 2. The blockage ratio for this study, defined as the ratio of113

the blade swept area to test section cross-sectional area is 7.22%. This was consistent with114

previous studies as the blockage ratio varies between 1-10% with 10% being the upper-most115

limit [24, 25, 26, 27, 28, 29]. The 10% upper limit criteria in this design was also based116

on a study carried out by McTavish et al. [30], which identified that the expansion of the117

near wake of a HAWT was not significantly modified if the blockage ratio remained between118

6–10%. Values greater than 14% caused the wake to narrow by 35% [30].119

120

The rotor blades for this study have a continuous FFA-W3-241 blade profile. The blades121

are twisted linearly with a pitch angle of 10◦ at the tip and 35◦ at the root. The chord122

of the blades also tapers linearly, with a tip chord of 10 mm and a root chord of 30 mm.123

The turbine model has a cone and tilt angle of 0◦ and the rotor plane was perpendicular124

to the free stream at all times. The turbine was rotated by a brush-less DC electric motor,125

which was controlled via a speed controller. During experimentation the turbine was run126

at two Tip Speed Ratios (TSR): 2.54 (1622 rpm) and 3.87 (2465 rpm). It should be noted127

that the turbine model freely rotated at a TSR of 2.54 with no input from the DC electric128

motor (optimum TSR). The rotational speed of the turbine was monitored using a high129

speed camera. A highly reflective tape was fixed to the rotor hub and was recorded using130

the high speed camera. All images were recorded at a frequency of 2 kHz which allowed for131

the rotational speed of the turbine model to be calculated and monitored during experiments.132

133

The inlet velocity profile was recorded one diameter upstream of the turbine model before134

wake velocity measurements were taken. The wind speed was found to be 10 m/s at hub135

height (i.e. U∞=10 m/s). This free stream velocity value was kept constant for all measure-136

ments. This resulted in a Reynolds number range of 21.7× 103 to 20.4× 103 and 20.8× 103137

to 29.9× 103 for TSR of 2.54 and 3.87 respectively. The Reynolds number was based on the138

tip chord length of 10 mm. The Reynolds number and relative velocity definition are given139

in equations 1 and 2,140

Re =
ctipVrel

ν
(1)

Vrel = U∞

√

(1− a)2 +

(
rΩr

U∞
(1 + a′)

)2

(2)

141

142
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R
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a b

d-nacelle

d-tower

c

Figure 2: Schematic (A), physical (B) and numerical (C) images of the wind turbine model used in the
current experimental investigation

where a and a′ are the axial and tangential interference factors, ν is the kinematic viscosity143

of air, r is radius and Ωr is rotational velocity.144

145

Few experiments regarding the near wake have been undertaken with most been performed146

at low Reynolds numbers (as related to blade chord and rotational speed). Despite these147

types of experiments not resembling a full-scale turbine, they can be used to verify numerical148

models [18]. The fundamental behaviour of the helical tip vortices and turbulent wake flow149

downstream of wind turbines is almost independent of the chord Reynolds number [31, 6, 11].150

Performance characteristics were not recorded for the current study as the main focus was151

to investigate mean and fluctuating velocity components as opposed to performance.152

2.3. Velocity Measurement Techniques and Experimental Uncertainty153

All velocity measurements were recorded using a two-component hot-wire x-probe. The154

Constant Temperature Anemometry (CTA) system used in this study was a TSI IFA 300155

system with a Dell Optiplex GX620 computer and THERMALPRO software. All measure-156

ments were recorded with a TSI 1240-T1.5 5 µm x-wire. In an attempt to capture the157

root vortex system, a measurement grid spacing of 1 cm across the entire rotor plane was158

adopted. This resulted in 30 measurement points across the rotor diameter and a total of159

1558 data points per plane. The probe was mounted to a two-axis traverse system, which160

was attached to the roof of the test section. The mean percentage errors associated with161
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the x-probe were less than 3% for velocities between 0 m/s and 3 m/s and less than 1% for162

velocities greater than 3 m/s, as computed by the THERMALPRO software. The sampling163

rate and time for the hot-wire probe were 1 kHz and 1 s respectively. Velocity measurements164

were recorded in 3 separate planes (0.66D, 1D and 1.5D) downstream from the rotor plane165

(where D is defined as the rotor diameter). A numerical representation of the measurement166

planes is shown in figure 3.167

168

The recording time of 1 s at each recording location corresponded to measurements recorded169

for 27 and 41 full rotor revolutions. The transient flow disturbances are the vortex shedding170

from the tower and the rotational effects of the turbine. The vortex shedding from the171

tower was estimated to be in the region of 83 Hz based on a Strouhal number of 0.2 (circular172

cylinder) and the rotation of the turbine corresponded to 27-41 Hz, so in sampling at 1173

kHz the likelihood of these effects dominating the signal is reduced. Given the large volume174

of data that was collected in this study a 1 s sampling duration per grid point location in175

the planes downstream of the turbine was considered adequate. This would eliminate any176

transience in the recorded data and proved a statistically averaged data for comparison to177

numerical data.178

3. Numerical Simulation179

3.1. Introduction180

All simulations were carried out using the finite volume solver Star CCM+ and were181

solved using a HPC cluster (Fionn) of the Irish Centre for High-End Computing (ICHEC).182

Both the SST k − ω and RST models (EB-RSM model included) were run using 192 cores183

respectively. All models simulated 2s of physical time with a timestep value that repre-184

sented one degree of rotation. The timestep used in this study is similar to that used by185

Li et al. [3] and Valiadis et al. [32]. Convergence criteria were enabled on the x, y and186

z-momentum equations, turbulent dissipation and kinetic energy equations (only applied to187

the SST k − ω model). These convergence criteria prevented the solution from advancing188

to the next timestep until the residual values reduced below 1 × 10−4. Residuals in Star189

CCM+ are a measure of the imbalance of the conservation equations and the degree to which190

their discretized form is satisfied. In effect, they represent the solution error of a particular191

variable. However, in Star CCM+ the residual errors are auto-normalized by its maximum192

recorded value in the first five iterations. The normalized residuals represent the order of193

magnitude in which these values fall from their peak values.194

195

The RST and EB-RSM models did not have any convergence criteria enabled on the x,y196

and z-momentum criterion as the models proved to be numerically very robust. The RST197

model was unable to meet the previously mentioned x,y,z criterion after 132,000 iterations198

and therefore the models could not advance to the next timestep. This pointed to the solvers199

requiring additional steps within each timestep in order to solve the physics to a satisfactory200

level. For both RST and EB-RSM simulations, the number of inner iterations (defined as201

the number of iterations computed by the solver for a single timestep) per timestep was202
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increased to 10 from the default value of 5. Residual values reduced below 1× 10−6 for both203

SST k − ω simulations and below 1× 10−5 for all RST and EB-RSM simulations. The SST204

k − ω, EB-RSM and RST models required 50 hours, 119 hours and 144 hours to complete205

respectively. All models were run using a 2nd order central spatial discretization scheme206

with a double precision.207

208

For all simulations, velocity point data was recorded using presentation grids. A presentation209

grid samples data from regularly spaced intervals on a finite plane. These are illustrated in210

figure 3. Velocity data were recorded in the same locations for both the numerical solution211

and experimental investigation. All velocity measurements were recorded after the solution212

domain had experienced two flow throughs. One flow through is defined as the length of213

time required for a fluid particle to enter and exit the solution domain. At this point each214

simulation had built up to a statistically steady state.215

0.66D
1D 1.5D

X
Z

Y

Figure 3: Positioning of presentation grids behind the wind turbine CFD model

3.2. SST k-ω Turbulence Model216

Numerical simulations were firstly carried out using the implicit unsteady Shear Stress Trans-217

port (SST) k−ω turbulence model. SST is an aerospace industry standard turbulence model218

and is a good benchmark for higher fidelity models such as unsteady Reynolds Stress Trans-219

port (RST) and Large Eddy Simulation (LES) models. The governing equations for the SST220

k-ω model are the k and ω equations, given below as equations number 3 and 4, respec-221

tively, with the source terms omitted [33]. The reader is referred to Wilcox [33] for further222

information regarding the SST k − ω model.223

∂(ρk)

∂t
+∇ • (ρk~U) = ∇ •

[

(µ+
µt

ρk
)∇k

]

+ Pk − Yk (3)
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∂(ρω)

∂t
+∇ • (ρω~U) = ∇ •

[

(µ+
µt

ρω
)∇ω

]

+ Pω − Yω +Dω (4)

224

225

The shortcomings of eddy viscosity models representing highly complex rotational flows has226

been well documented [34, 35, 36]. However, attempts have been made to overcome the227

shortfalls of the k − ω model by adding correction terms. For the current study, the k − ω228

model was coupled with curvature correction terms using second order discretization and the229

Vorticity Confinement Model of Steinhoff [37] and later refined by Löhner [38]. The curva-230

ture correction term supplies the effects of strong curvature and frame-rotation by altering231

the turbulent energy production term according to local rotation and vorticity rates. This232

term is applied as vortices tend to dissipate early with two equation models. The Vorticity233

Confinement Model adds a forcing term (fω) to the momentum equations in all directions234

in order to preserve the vortex – see equations 5 and 6, which highlight the addition of fω235

to the momentum equation in the x-direction.236

237

An example of the modified x-direction momentum equation is defined as238

∂u

∂t
+∇ • (u~u) = −1

ρ

∂p

∂x
+ υ∇ • (∇u) + fω (5)

where the forcing term is defined as239

fω = −ǫρ (n̂× ~ω) (6)

where ~ω is vorticity, ǫ is a user-defined constant (default value of 0.04 for three-dimensional240

cases) and n̂ is the unit vector. The flow was modelled as an unsteady turbulent gas,241

assuming constant density with a segregated flow model. An unsteady transient model was242

selected as the aerodynamic phenomena associated with wind turbine aerodynamics cannot243

be completely modelled when using steady time simulations.244

3.3. Reynolds Stress Transport Turbulence Model245

The RST turbulence model was used to investigate the accuracy of a Reynolds Stress Trans-246

port model coupled with the linear pressure-strain two-layer term modelled using the lin-247

ear approach of Gibson and Launder [39] to predict the characteristics of a turbine wake.248

By solving the Reynolds Stress Tensor, this model naturally accounts for effects such as249

anisotropy, which is associated with swirling motion, streamline curvature and rapid changes250

in strain rate. The model does not use Boussinesq’s eddy viscosity hypothesis to compute251

the Reynolds stresses, but instead solves transport equations for each of the six Reynolds252

stresses and a model equation for the isotropic turbulent dissipation ǫ. This is the same253

equation used in the standard k-ǫ turbulence model. The Reynolds stress transport equa-254

tion from Versteeg et al. [40] is given in equation 7 with the isotropic turbulent dissipation255

ǫ given by equation 8. In equation 8, S ′ij represents terms from the fluctuating strain rate256
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tensor.257

258

UnsteadyTerm
︷ ︸︸ ︷

∂
(
ρu′iu

′

j

)

∂t
+

Cij≡Convection
︷ ︸︸ ︷

∂

∂xk

(
ρuku′iu

′

j

)
= −

DT,ij≡TurbulentDiffusion
︷ ︸︸ ︷

∂

∂xk

[

ρu′iu
′

ju
′

k + p(δkju′i + δkiu′j)
]

+

DL,ij≡MolecularDiffusion
︷ ︸︸ ︷

∂

∂xk

[

µ
∂

xk

(u′iu
′

j)

]

−

Pij≡StressProduction
︷ ︸︸ ︷

ρ

(

u′iu
′

k

∂uj

∂xk

+ u′ju
′

k

∂ui

∂xk

)

+

Πij≡PressureStrain−Interaction
︷ ︸︸ ︷

p

(
∂u′i
∂xk

+
∂u′j
∂xi

)

−

Ωij≡Rotation
︷ ︸︸ ︷

2ρΩk

(
u′ju

′

meikm + u′iu
′

mejkm
)
−

ǫij≡Dissipation
︷ ︸︸ ︷

2µ
∂u′i
∂xk

∂u′j
∂xk

(7)

ǫ = 2
µ

ρ
S ′ijS

′

ij (8)

The RST model used the same physics continua at the SST k-ω model.259

3.4. Pressure-Strain Term used in Reynolds Stress Transport Model260

The pressure strain relationship is highly important regarding the subject of turbulence261

modelling. The computational complexity and expense of Reynolds Stress Models (RSM)262

models is often driven by the difficulty of modelling the effects of solid walls on adjacent263

turbulent flows. These effects include pressure fluctuations due to eddies interacting with264

each other with other areas of the freestream which have a different mean velocity.265

266

The Linear Pressure-Strain Two Layer Term was investigated as the relationship is defined267

as a two-layer formulation which is suitable for low-Reynolds number flows. Essentially, the268

model was favoured as it allowed the RST model to use an all y+ wall treatment which269

would be more suitable for the mesh used in this investigation.270

271

This model extends the linear model of Gibson et al. [39] so that it can be applicable to the272

near-wall sub-layer where viscous effects are dominant. The extension allows the usual log-273

law/local equilibrium matching to be discarded and enables boundary-layer problems to be274

tackled where the flow structure in the inner region departs from what is usually termed the275

“universal” wall law [41]. As noted by Launder et al. [41], there are many situations where276

the application of local equilibrium conditions to turbulent stresses and energy dissipation277

rates near the wall is not appropriate as this condition would be too complex to enforce.278

For example, a study carried out by Launder et al. [42] highlighted that at high rotation279

rates, turbulent mixing near the suction surface was annihilated. This feature cannot be280

modelled if the wall-law approach is enforced. Additionally, streamwise pressure gradients,281

body forces, strong secondary flows and separation can cause the flow to deviate from “uni-282

versal” wall behaviour [41].283

284
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The linear pressure-strain model used in this case expresses the pressure-strain term as three285

components:286

Πij = Πij,1 +Πij,2 +Πij,3 (9)

287

288

The so called “slow” pressure-strain or “return-to-isotropy” term Πij,1 represents a physi-289

cal process within the flow where there is a reduction of the anisotropic properties of the290

turbulent eddies due to their mutual interactions. The “rapid” pressure-strain term is de-291

fined as Πij,2. This terms supposes that the rapid pressure partially counteracts the effect292

of production to increase the Reynolds-stress anisotropy [43]. The “wall reflection” term is293

defined as Πij,w. This term is responsible for the redistribution of normal stresses near the294

wall. It damps normal stresses perpendicular to the wall, while enhancing stresses that are295

parallel to the wall. The reader is referred to Gibson et al. [39] for further information.296

3.5. Elliptical Blending Reynolds Stress Turbulence Model297

A more robust and industry-friendly Reynolds Stress model was developed by Manceau et298

al. [44]. It will be referred to as the Elliptic Blending Reynolds Stress Model (EB-RSM).299

The model was developed to meet industrial needs and was noted by O’Brien et al. [5] as300

a possible substitute to a full RST model for HAWT analysis. While simple and robust,301

the model preserves the elliptic relaxation concept proposed by Durbin [21] whereby the302

redistributive terms in the Reynolds stress equations are modelled by an elliptic relaxation303

equation. This method avoids the need to use damping functions at the wall. However,304

the model proposed by Manceau et al. [44] uses only one scalar elliptic equation instead305

of six as proposed by Durbin [21]. Durbin’s original model consisted of six elliptic dif-306

ferential equations with boundary conditions to reproduce the near-wall behaviour of the307

redistributive term. The EB-RSM model is a low-Reynolds number model that is based on308

an inhomogeneous near-wall formulation of the quasi-linear Quadratic Pressure strain term.309

A blending function is used to blend the viscous sub-layer and the log-layer formulation310

of the pressure-strain term. This approach requires the solution of an elliptic equation for311

the blending parameter α. The EB-RSM model used in this investigation is based on the312

EB-RSM model of Meanceau [44] and revised by Lardeau et al. [45]. The main objective of313

the Elliptic Blending approach is to account for the influence of wall blockage effects towards314

the wall-normal component of turbulence, which is required to produce the two-component315

limit of turbulence at the wall.316

317

The EB-RSM is based on a blending of near-wall and quadratic pressure-strain models for318

the pressure strain and dissipation, defined as follows:319

φ⋆
ij − ǫij = (1− α3)(φw

ij − ǫwij) + α3(φhij − ǫhij) (10)

320

321
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where φ⋆
ij is the pressure-strain tensor and ǫij is the dissipation-rate tensor. The term α322

is a blending parameter. The blending parameter α is the solution of the following elliptic323

equation:324

α = L2∇2α = 1 (11)

325

326

whereby the solution of this equation goes to zero at the wall and close to unity far from327

the wall. The length-scale L defines the thickness of the region of influence of the near wall.328

The EB-RSM model used the same physics continua at the SST k-ω model.329

330

3.6. Mesh Generation and Boundary Conditions331

Figure 4 illustrates the computational domain used in this study. The flow direction is from332

left to right. The rotational domain refers to the area inside the outlined disc around the333

rotor, as illustrated in the magnified image in figure 4. The rotating domain includes the334

rotating blades, spinner and hub connections. The solution domain, turbine tower and na-335

celle combine to make the stationary region. The turbine nacelle was simplified in order to336

reduce the complexity of the mesh behind the rotating region of the turbine. The nacelle337

was modelled as a solid cylinder with a diameter of 0.026 m. Additionally, the computa-338

tional domain length was extended to 4 m for the CFD model. This was done to take into339

account the outlet pressure criteria set at the domain outlet. Near the domain outlet the340

flow can still be turbulent. This could cause an interaction to occur at the pressure out-341

let boundary, which could result in reversed flow occurring in cells near the exit. Reverse342

flow occurs when the pressure in the cell adjacent to the outlet boundary is lower than the343

pressure specified on the boundary itself and the adverse pressure gradient is sufficiently344

large to cause the flow at the outlet to reverse direction, ie. flow enters the domain from345

the outlet. This is commonly caused by the specification of a uniform outlet pressure when346

the flow near the boundary is highly non-uniform. In this case, the outlet boundary was347

too close to geometric features that cause flow non-uniformity. This error is specified in the348

simulation output window and is monitored by the user. To help mitigate this issue, the349

outlet boundary was positioned further from the obstruction to allow the flow to become350

more uniform prior to reaching the outlet boundary. In this case the outlet of the domain351

was extended from 3 m to 4 m, which resolved the issue. There was no data recorded in the352

current study to investigate if reversed flow errors would have resulted in decreased accu-353

racy of the simulation. The inlet was modelled as a velocity inlet with a free stream velocity354

value of 10 m/s and the freestream turbulence present was defined in the simulation physics.355

An Atmospheric Boundary Layer (ABL) was not modelled as it was deemed necessary to356

assess each models ability to predict wake characteristics with a uniform inlet velocity first.357

The introduction of an ABL would have complicated the simulation and make it difficult to358

determine if inaccuracies in the models were resulting from mesh quality, turbulence models359

and selected physics (vorticity confinement and pressure-strain relationships) or the addition360
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of turbulence in the freestream due to the ABL. In addition to this, using an ABL would361

result in further refinement of the simulation mesh in front of the rotor to ensure the ABL362

profile was resolved before entering the rotor. This would have increased the computational363

expense of the simulation.364

365

The computational domain (top, bottom and both sides of the numerical wind tunnel) and366

the numerical HAWT were modelled as wall boundaries with a no-slip condition. The rota-367

tion of the turbine was modelled using the sliding mesh approach. This method requires a368

rotational velocity to be prescribed as a boundary condition on the solid rotor. The rotating369

and stationary regions of the solution were also connected by internal interfaces. Interfaces370

allow simulation quantities (such as mass, momentum and energy etc.) to pass between sta-371

tionary and rotational regions. The RST and EB-RSM models were initially run in steady372

state using moving reference frames. This provided the solver with an initial solution which373

was then used in the unsteady case. Running the steady model beforehand reduced the risk374

of divergence of the unsteady solution.375

376

0.85m

1m1.15m

3m

Velocity

Inlet

Pressure

Outlet

Y

X

Z

Figure 4: A schematic of the computational domain used in this study

For this simulation, an unstructured polyhedral mesh was used, as it is less computationally377

demanding than a tetrahedral mesh. Polyhedral cells are orthogonal to the flow regardless378

of flow direction. This makes them suitable for modelling highly rotational flows. Finally,379

due to the large number of sides (12 for a polyhedral cell), polyhedral meshes are suitable380

to mesh models that contain curved surfaces. Therefore, the polyhedral mesh was most381

suitable to model the highly curved and twisted surfaces of the turbine blades. For the382

purpose of this study, the mesh density for both the rotating and stationary regions were383
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treated separately. This can be accomplished by using the sliding mesh approach. This was384

accomplished by subtracting a cylinder within the solution domain (stationary region). The385

size of this cylinder is the same size as the rotor swept area. Within this area the rotor is386

imprinted within the simulation. Therefore, this allows the rotor and the stationary region387

to be meshed independently. This is advantageous as the turbine blades often need to be388

meshed to a higher density than the rest of the solution domain. The mesh density of the389

rotating region depended on a mesh sensitivity study, whereby an investigation was carried390

out into the variation of average surface pressure on the blades and y+ values. The wake391

mesh was defined by investigating the maximum velocity deficit recorded behind the rotor at392

0.66D for different wake mesh densities. The results of the mesh sensitivity study highlight-393

ing surface average pressure distribution over the rotor is presented in figure 5a. The red394

circles in figures 5a and 5b highlight the point where increasing cell density resulted in no395

change to the recorded engineering parameter observed. Following this study, the rotating396

region contained 4 × 106 cells using a base size of 38 mm. Beyond this count there was397

no appreciable change in the above-mentioned surface average pressure parameter. Curve398

controls were then used on the turbine blades to refine the mesh further towards the leading399

and trailing edge. This prevented the need for additional volumetric controls around the400

turbine blades and improved the resolution of vortex shedding and rollup. A final cell count401

of 4.28× 106 was used for the rotating region.402

403
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Figure 5: Mesh sensitivity results

The wake region was defined by a volumetric cone with a refined mesh density in order to404

capture the wake structure. The volumetric cone was sized, based on the WAsP wake model405

of Barthelmie et al. [23]. The maximum velocity deficit in the wake did not change after406

4.75 × 106 cells. All mesh sensitivity simulations for the wake mesh were carried out with407

a rotor mesh density of 4.28× 106 cells. However, the mesh density of the wake region was408

increased to 5× 106 cells in order to have a volume change between the rotating and wake409

region of 1, as shown in figure 6. This reduced any inaccuracies caused by large changes in410

cell sizes between the regions. The simulation had a combined cell count of 9.29 × 106. A411

2D section of the meshed solution domain can be seen in figure 7. It can be noted that the412

wake volumetric control extends 0.5D infront of the turbine model. This allowed for the flow413

to be resolved to a high degree of accuracy before entering the rotor plane. Additionally, by414

extending the volumetric cone ahead of the turbine rotor, this created a favourable volume415

change across the mesh in the regions of interest. A large jump in volume from one cell to416

another can cause potential inaccuracies and instability in the solvers. Extending the wake417

cone made it possible to create a conformal mesh across the interface between the rotating418

and stationary regions. A conformal mesh produces a high-quality discretization for the419

analysis and eases the passage of information between regions.420
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421

Figure 6: Volume change scalar scene

3.7. Wall Treatment422

Within numerical simulations, walls are a source of vorticity and therefore, accurate pre-423

diction of flow and turbulence parameters across the wall boundary layer is essential.Star424

CCM+ uses a set of near-wall modelling assumptions known as “wall treatments”, for each425

turbulence model. Different y+ wall treatments are used within Star CCM+ for different426

mesh resolutions near a wall boundary. Wall treatments are used to mimic the dimensional-427

less velocity distribution inside the turbulent boundary layer.428

429

Wall treatments in Star CCM+ are divided into 3 categories. High y+ wall treatment is the430

classic wall-function approach, where wall shear stress, turbulent production and turbulent431

dissipation are all derived from equilibrium turbulent boundary layer theory. It is assumed432

that the near-wall cell lies within the logarithmic region of the boundary layer, therefore the433

centroid of the cell attached to the wall should have y+ > 30.434

435

The low y+ wall treatment assumes that the viscous sublayer is well resolved by the mesh,436

and thus wall laws are not needed. It should only be used if the entire mesh is fine enough437

for y+ to be approximately 1 or less. The all y+ wall treatment is an additional hybrid wall438

treatment that attempts to combine the high y+ wall treatment for coarse meshes and the439

low y+ wall treatment for fine meshes. It is designed to give results similar to the low y+440

treatment as y+ < 1 and to the high y+ treatment for y+ > 30. It is also formulated to pro-441

duce reasonable answers for meshes of intermediate resolution, when the wall-cell centroid442

falls within the buffer region of the boundary layer, i.e. when 1 < y+ < 30.443

444
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Figure 7: Meshed solution domain showing volumetric wake cone and conformal mesh across region interfaces

The use of these treatments is dependant on the y+ values over the geometry where y+ is a445

non-dimensional wall-normal distance, defined as:446

447

y+ =
yu⋆

ν
(12)

where y is the normal distance from the wall to the wall-cell centroid. The term u⋆ is a448

reference velocity and ν is the kinematic viscosity. The reference velocity is related to the449

wall shear stress as follows:450

u⋆ =
√

τw/ρ (13)

where τw is the wall shear stress and ρ is fluid density.451

452
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For this study, the y+ value over the blades was kept below a value of 1 (maximum ≈ 0.67)453

during simulation initialization in order to accurately resolve the boundary layer flow (fig-454

ure 8) [46]. However, for a rotating component (the blades in this case) the y+ values can455

change. The magnitude of this change has not been noted in previous CFD investigations456

reviewed by O’Brien et al. [5]. Changing y+ values has a direct impact on the selected wall457

treatment used. In this case, the increasing tangential velocity value of the blade towards458

the blade tip altered the y+ values. It is difficult to assess beforehand what the maximum459

y+ over the blade will be during simulation. Blade y+ values were monitored during initial460

simulations with the selected mesh density (outlined in section 3.6). Figures 9a and 9b show461

the average and maximum y+ values of a blade after several rotor rotations for a TSR value462

of 2.54. It can be seen that peak y+ values above 1 are recorded; therefore, an all y+ wall463

treatment was used in the current study. Similar trends were monitored for the TSR equals464

3.87 case. Additionally, y+ values over the tower varied in the range of 0.29 < y+ < 8.87,465

with a considerable amount of the tower structure falling into the buffer region. This again466

prompted the use of an all y+ wall treatment. Correct selection of y+ wall treatments is467

required to accurately model the boundary layer near a wall. An incorrectly selected wall468

treatment would result in an inaccurately predicted velocity gradient at the wall and there-469

fore inaccurate predictions of velocity and turbulent characteristics.470

471

Figure 8: Y + values over numerical turbine blade (TSR 2.54)
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4. Results and Discussion472

4.1. Introduction473

This section presents the results of the experimental investigation of the wake behind a474

model horizontal axis wind turbine in comparison to numerical predictions. The results are475

divided into three main sections: the mean velocity characteristics of the wake, turbulence476

characteristics of the wake and assessment of current modelling approaches. All results are477

presented from an upstream position, for a freestream velocity of 10 m/s. Two tip speed478

ratios (TSRs) were investigated (i.e. 2.54 and 3.87). TSR 2.54 represented the turbine op-479

erating at its optimum TSR. TSR 3.87 represented the turbine operating above its optimum480

TSR value. All graphs are normalized against the model turbine radius with Z/R equals 0481

representing the centre of the rotor. The axial velocity profile in the wake is presented in a482

non-dimensional format Ux/U∞, where Ux is the streamwise velocity at the plane and U∞ is483

the freestream velocity. Data is taken from a horizontal line through the middle of the rotor484

at three separate locations downstream (0.66D, 1D and 1.5D).485

486

A number of volume renders from CFD solutions will be presented. Because the flow is time487

dependant, the results discussed in this section represent a statistical average of the flow488

field for a large amount of rotor rotations.489

490

Firstly, the mean velocity deficit behind the rotor for both TSR cases is compared to nu-491

merical predictions. Accurate predictions of the wake velocity deficit would confirm that the492

numerical models were able to accurately model rotor loading and the momentum deficit493

created by the extraction of energy from the flow by the HAWT.494

495
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The ability of each model to predict turbulence characteristics of the wake is also investi-496

gated. With respect to future wind turbine structural modelling attempts, an understanding497

of the spatial distribution of stresses generated within the wake is important. Additionally,498

understanding the limitations of turbulence models to predict stresses in the flow is impor-499

tant as this would impact on the choice of modelling strategy used in future FSI simulations.500

Turbulence plays a direct role on the unsteady forces and bending moments experienced by501

turbine blades downstream. Additionally, a comprehensive understanding of the turbulent502

characteristics of a turbine wake are necessary for validating and guiding the development503

of sub-grid scale parameterizations in high fidelity numerical models such as LES [10]. The504

u′v′ Reynolds stress component is normalized by the square of the freestream velocity U2
∞

505

and is presented against the non-dimensional distance Z/R.506

507

4.2. Mean Velocity Characteristics508

From the offset, it can be seen that there is good agreement between the experimental and509

computational results. A strong correlation is observed between figures 10a, 10b and 10c in510

terms of velocity deficit for a TSR value of 2.54. Both numerical and experimental results511

show the velocity deficit takes the form of a Laplace distribution. Experimental data shows a512

severe decrease in axial velocity, particularly around the region Z/R = 0, which corresponds513

to the region directly behind the hub of the model wind turbine. All numerical models514

predict similar results with average percentage errors between numerical and experimental515

results ranging between 2–4%. The ability of each turbulence model to accurately capture516

wake velocity deficit confirms that the numerical models were able to accurately model rotor517

loading and the momentum deficit created by the extraction of kinetic energy from the flow518

by the HAWT.519

520

If the centre of the wake is defined as the point where the velocity deficit was maximum,521

then as shown in figures 10a, 10b and 10c, the point of maximum recorded velocity deficit522

in the wake is located at Z/R = 0.1. In figures 11a, 11b and 11c (which present contour523

plots of experimentally recorded axial velocity), the centre of the wake tends to drift slightly524

down to the right at Z/R= 0.1 and Y/R = -0.12 with minimum values of 0.33U∞ at 0.66D525

and 0.64U∞ at 1.5D. This could be attributed to the pressure field around the turbine. For526

explanation purposes, the root vortex system is compared to the tip vortex of a simple wing.527

In flight, a pressure differential exists at the tip of a simple wing, which results in airflow528

rotating around the wing tip from the high to low pressure region. Similarly, a low pressure529

region exists behind the turbine, below the nacelle structure, due to the presence of the530

tower structure. There is less obstruction to the wake in the upper region, which leads to531

higher pressure values in the upper wake region, relative to the lower part of the wake. The532

combination of high and low pressure regions may result in the centre of the wake drifting533

downwards towards the low pressure region. Now, considering the simple wing case, the534

movement of the airflow around the wing tip causes the tip vortex to move inboard [47].535

Again, for the current study, the HAWT is rotating in an anti-clockwise direction. This536

applies a torque to the wake, which results in a clockwise rotating wake and therefore a537
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clockwise rotating root vortex system. This, would result in the root vortex system drifting538

outboard towards the right, which results in a wake centre that is off centre and to the right539

of the nacelle/tower structure.540

541

Velocity deficit values are seen to concentrate behind the hub structure (figures 11a, 11b and542

11c). The velocity deficit extends 0.5R, which would suggest that the root vortex system543

and the turbine structure are the major contributors to the wake velocity deficit, as shown544

in figure 11. However, beyond 0.5R the velocity deficit is seen to recover rapidly, which545

contradicts previous studies. The wake is usually defined by a reduced velocity value where546

the recovery of the wake to freestream values usually occurs near the edge of the rotor as547

shown in a study carried out by Schüemann et al. [48]. This is possibly due to the aerofoil548

design used. The rotor blades featured a FFA-W3-241 aerofoil (as indicated in section 2.2).549

Originally designed at FFA (The Aeronautical Research Institute of Sweden); the aerofoil550

has a relatively high thickness at 21% and is typically used on the inboard sections of turbine551

blades [49], however, the aerofoil is not suitable for use at the outboard sections of the blade,552

which would result in low rotor loading towards the rotor edge. However, the data taken553

in this study allows us to see that the tower structure, nacelle and the central root vortex554

system supply a constant velocity deficit to the wake. Additionally, the close comparison555

of numerical and experimental data makes the current study suitable for turbulence model556

validation as the characteristics of the FFA aerofoil are known. This is supported by Ver-557

meer et al. [18], who stated that as long as the characteristics of the aerofoil are known, the558

aerofoil is suitable for turbulence model validation.559

560

The outer regions of the rotor blades do reduce the freestream velocity behind the rotor, but561

it is noticeable only when data is recorded over a large period of time, as shown in figure562

12 (where mean velocity deficits in the wake range predominantly from 66% of freestream563

values for TSR equals 2.54). Once outside the influence of the turbine structure and thicker564

blade roots, the velocity in the outer regions of the rotor is only periodically reduced as565

opposed to continuously experiencing a constant velocity deficit. The influence of the blades566

on the wake velocity deficit towards the rotor edge becomes smaller as the blade chord567

length decreases. Thus, there is a return to freestream velocity values due to reduced rotor568

solidity (and low blade loading), particularly in the other most region of the wake (as seen569

for TSR 2.54 in figure 12). In addition, the large nose cone generates a considerable velocity570

reduction (up to 0.7U∞) in front of the rotor, as shown in figure 12, which would also aid the571

wake velocity deficit in the region close to the wake centre. This aspect of model design has572

not been mentioned in previous studies outlined in a review by O’Brien et al. [5] and should573

be considered for future works on this topic. The nose cone design used has a great impact574

on the formation of the wake, particularly the centre of the wake structure as flow over the575

nose cone alters flow over the blade roots and therefore alters the structure of the central576

vortex system of the HAWT wake. In the current study the wake structure is defined by a577

velocity deficit generated by the central root vortex system and the tower/nacelle structure.578

This central system is surrounded (seen on the upper half of the wake outside the influence579

on the turbine structure in figure 12A) by a region of fluid moving at freestream velocity.580
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Outside this again, the presence of the tip vortex region can be identified as the region with581

slightly reduced velocity values of 0.95U∞.582

583

Towards the blade tip region (Z/R = ±1), as shown in figure 10, all models tend to over584

predict velocity values in this region. There are several possible reasons for this. Firstly,585

when considering the SST k − ω model, the increase in velocity at Z/R = ±1 could be a586

result of under-estimation of vortex diffusion and the prediction of a more tightly bound tip587

vortex. This could be a result of the dense wake mesh used (outlined in section 3.6), com-588

bined with the Vorticity Confinement Model. Typically the Vorticity Confinement model589

is used to reduce the mesh density of a simulation and maintain a vortex structure by the590

addition of a forcing term (outlined in section 3.2). However, the very dense mesh in the591

wake region would already have minimized the dissipation of the tip vortices. This com-592

bined with the Vorticity Confinement Model would have further reduced vortex dissipation,593

which would explain the under-estimation of the diffusion of the tip vortices (resulting in594

a stronger vortex) and the increase in axial velocity in the tip region. Noted by Anderson595

et al. [50], an increase in vortex strength can result in an increase in axial velocity in the596

core of a tip vortex. This relationship between core axial velocity and vortex strength was597

also seen by O’Regan et al. [51]. Following this, a study by O’Regan et al. [47] recorded598

that stronger vortices also have increased axial velocity values in the vicinity around them,599

which would explain the increased axial velocity values at the tip region in the current study.600

601

Regarding the RST model, the turbulent dissipation rate is obtained from a transport equa-602

tion analogous to the k− ǫ model. As described by Menter [52], in the standard k− ǫ model,603

eddy viscosity is determined from a single turbulence length scale; whereas, in reality all604

scales of motion will contribute to the turbulent diffusion. The same process is used for the605

EB-RSM model. This could have contributed to the under-estimation of the diffusion of the606

tip vortices and lead to the same result as outlined above.607

608

22



-1
.5

-1
-0
.5

0
0
.5

1
1
.5

0
.6

0
.6
5

0
.7

0
.7
5

0
.8

0
.8
5

0
.9

0
.9
5

1

1
.0
5

-1
.5

-1
-0
.5

0
0
.5

1
1
.5

0
.5
5

0
.6

0
.6
5

0
.7

0
.7
5

0
.8

0
.8
5

0
.9

0
.9
5

1

1
.0
5

-1
.5

-1
-0
.5

0
0
.5

1
1
.5

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

1
.1

Y

Z

D
at

a 
L

in
e

(D
at

a 
ta

k
en

fr
o

m
 a

 h
o

ri
zo

n
ta

l 
li

n
e

th
ro

u
g

h
 t

h
e 

ce
n

tr
e

o
f 

th
e 

w
ak

e)

Z
/R

1
.5

D

1
D

0
.6

6
D

(c
)

(b
)

(a
)

Z
/R

R
S

T
 M

o
d

el

S
S

T
 M

o
d

el

E
B

-R
S

M
 M

o
d

el

E
x
p

Z
/R

F
ig
u
re

10
:
A
x
ia
l
ve
lo
ci
ty

d
efi

ci
t
va
lu
es

fo
r
a
T
S
R

va
lu
e
of

2.
54



-1 -0.5 0 0.5 1

Z/R

-1

-0.5

0

0.5

1

Y
/R

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
x
/U

(a) Experimental 0.66D

-1 -0.5 0 0.5 1

Z/R

-1

-0.5

0

0.5

1

Y
/R

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
x
/U

(b) Experimental 1D

-1 -0.5 0 0.5 1

Z/R

-1

-0.5

0

0.5

1

Y
/R

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
x
/U

(c) Experimental 1.5D

Figure 11: Plots of axial velocity shown 0.66D, 1D and 1.5D downstream for TSR = 2.54



A

Figure 12: Mean axial velocity distribution within the HAWT wake for TSR = 2.54 predicted by RST
simulation

From a qualitative point of view, the ability of the numerical models to capture the root609

vortex system and central velocity deficit in the wake has been attributed to the dense610

measurement grid and the thick aerofoil section used with a sharp taper towards the root611

section, creating distinct root vortices as shown in figure 13 . Due to their compact propaga-612

tion downstream and the strength of the root vortices, they appear to form a vortex sheet,613

with its formation attributed to the root vortices shedding from each blade. This formation614

has previously been described by Gømez-Elvira et al. [53] and Sanderse [17], but only in615

terms of the tip vortices. A volume render of the turbine wake is shown is figure 13, with616

the scaler range adjusted to promote viewing of the described central vortex. As seen in617

the volume render of figure 13, the central vortex does not fully develop until approximately618

1.5D to 2D downstream. This was seen in all the numerical models. The individuality of619

each root vortex persisted longer downstream than experimental results. This again was620

attributed to the numerical models under-estimating vortex diffusion.621

622
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1.5D

Figure 13: Volume render from RST simulation showing central vortex sheet. TSR = 2.54

Figure 14 shows the comparison between numerically predicted and experimentally recorded623

velocity deficit in the wake for a TSR value of 3.87. Similar to results for a TSR value of624

2.54, there is good agreement between numerical and experimental results. The velocity625

deficit takes the form of a Laplace distribution, which is typical of HAWT models. Experi-626

mental data shows the largest velocity deficit occurred at Z/R = 0.1, similar to TSR equals627

2.54. Maximum (experimentally recorded) axial velocity deficit behind the rotor is 0.51U∞628

at 0.66D and recovers to 0.67U∞ at 1.5D. Average percentage errors between numerical and629

experimental results ranged between 4–7%.630

631

Similar to experimental results for TSR value of 2.54, the centre of the wake is slightly right632

of centre as shown in figures 15a, 15b and 15c. Here, minimum values of 0.4U∞ at 0.66D633

and 0.69U∞ at 1.5D are recorded.634

635

It is noted that in experimental data shown in figures 15a, 15b and 15c that the deficit636

created by the tips almost completes 360◦. This velocity deficit forms a complete circular637

pattern in experimental plots where TSR equals 3.87. This would suggest that the angle of638

the helical path of the wake, given by the flow angle at the blade tip, is inversely proportional639

to the tip speed ratio [11]. Similar to experimental results for TSR equals 2.54, the nacelle640

and tower structure had the greatest influence on the velocity deficit behind the turbine641

structure. A larger velocity deficit was noted when the turbine operated at a TSR value of642

2.54. This was the optimum operating condition for the HAWT model and therefore the643

maximum quantity of kinetic energy was extracted from the flow. The wake recovers slower644

for the TSR equals 2.54 case with a velocity deficit of 0.64U∞ recorded in the centre of the645

wake at 1.5D downstream. At the same location for TSR equals 3.87, the velocity deficit646

value was 0.69U∞. Common to both TSR cases, the velocity deficit recovers faster in the647

region behind the tower, which could be attributed to the enhanced mixing in the area due648

to a combination of both the tower and rotor wakes. There are two concentrated areas of649

26



reduced velocity in figure 15c. These are defined by the authors as spurious data points and650

should be ignored.651

652

Considering the velocity deficit profile for the TSR equals 3.54 case, it is clear that there is653

an increase in velocity at Z/R = ±0.6 (figure 14). This was attributed to the location of a654

secondary vortex structure. The secondary vortex structure formed between 55% and 65%655

of the blade span and resulted in an increase in the wake velocity to 1.07U∞. The structure656

merged with the tip vortex system and complete decay of the secondary structure occurred657

at 2D downstream. A similar secondary structure was noted by Yang et al. [11] and Whale658

et al. [6]. The structure formed between 50% and 60% of the blade span in the study carried659

out by Yang et al. [11] and merged with the tip vortex system at 1D downstream. A similar660

structure recorded by Whale et al. [6] merged with the tip vortex system at 1D downstream.661

Figure 16 shows the flow over the suction surface of one of the turbine blades for both TSR662

values. At the lowest TSR value of 2.54, it can be seen that the flow remains mostly attached663

with minor separation beginning at the trailing edge. The flow is heavily influenced by cen-664

trifugal effects with flow in the radial direction most dominant. At TSR equals 3.87, a large665

area of separation occurs around 56% blade span, which coincides with the presence of the666

secondary vortex structure. Again, all numerical models over predicted the axial velocity667

in the wake at Z/R = ±0.6, which, as outlined earlier, could be a result of each turbulence668

model over-estimating vortex strength and possibly under-estimating turbulent-diffusion.669

670
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Figure 15: Plots of axial velocity shown 0.66D, 1D and 1D downstream for TSR = 3.87
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Figure 16: Streamlines on the surface of a computational blade at TSR = 2.54(top) and 3.87(bottom)

4.3. Turbulence Characteristics – Time averaged u′ and v′ velocity components671

As outlined in section 4.2, peak velocities near the blade tip and root regions for TSR val-672

ues of 2.54 and 3.87 respectively have been attributed to turbulence models over-predicting673

vortex strength and under-estimating turbulent diffusion. Under-estimating turbulent dif-674

fusion, which would result in a more stable and stronger vortex system, arises from the675

under-prediction of fluctuating components in the flow. Under-predicting fluctuating ve-676

locity components and Reynolds stresses in the flow reduces the mixing rate within the677

wake and therefore, wake structures such as tip and root vortices can be preserved in the678

wake. Additionally, the wake itself is preserved further downstream. With respect to future679

wind turbine structural modelling attempts, an understanding of the spatial distribution of680

stresses generated within the wake is important. The fluctuating velocity components in the681

flow directly contribute to the unsteady forces acting on turbine blades.682

683

To understand the ability of each turbulence model to predict the turbulent characteristics684

of a HAWT wake, both the Reynolds stress values and the Root Mean Squared (rms) values685

of both the u′ and v′ fluctuating velocity components were investigated. This gave an appre-686

ciation of the ability of each turbulence model to predict the magnitude of the fluctuating687

velocity components in the wake.688

689

Figures 17 and 18 show the normalized rms velocity fluctuations for the u′ velocity compo-690

nent at different locations downstream for both TSR values. Considering figure 17 (which691
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shows the rms u′ values for TSR equals 2.54), it can been seen that there is good agreement692

between numerical and experiment results. All numerical models predicted the magnitude693

of the rms u′ velocity component to the correct order of magnitude. However, at all down-694

stream locations, all numerical models under-predicted the rms u′ component in the wake695

near the blade tip region Z/R = ±1 with the exception of the RST model at 0.66D. All696

models under-predicted the rms u′ component in the centre of the wake around Z/R = 0,697

with the exception of the EB-RSM model at 1D downstream and both the SST k − ω and698

EB-RSM model at 1.5D downstream. Both experimental and numerical data show the rms699

u′ velocity component take the form of an inverse Laplace distribution. For TSR value of700

2.54 (figure 17), experimentally recorded peak rms u′ velocities consistently occur at Z/R701

= 0.1, which coincides with the centre of the wake as mentioned in section 4.2. Interaction702

between the central root vortex system and the turbine structure leads to enhanced mixing703

in this region. Maximum values of 0.12, 0.1 and 0.08 were recorded at 0.66D, 1D and 1.5D,704

respectively. The decreasing values of rms u′ in the centre of the wake appear to descend705

linearly for a TSR value of 2.54 and illustrate the reduction of wake turbulence with distance706

downstream. Additional peaks are also present at Z/R = ±1 at each measurement location707

downstream, which coincides with the blade tip location. Maximum values of 0.025, 0.0225708

and 0.0212 were recorded at 0.66D, 1D and 1.5D, respectively. This again shows a near709

linear reduction of rms u′ values in the blade tip region.710

711

Each numerical model appeared to have both advantages and disadvantages associated with712

them. Across all measurement planes in figure 17, the RST model tended to most accurately713

predict rms u′ values in the blade tip region Z/R = ±1, with percentage errors ranging from714

-15% to +17% (the RST model under-predicted the rms u′ values at every measurement715

plane with the exception at Z/R = -1 at 0.66D) of experimental results over 1.5D down-716

stream. Both the SST k−ω and EB-RSM model consistently under-predicted rms u′ values717

in the blade tip region with percentage errors ranging from -3% to -34% of experimental718

results over 1.5D downstream. Regarding the blade tips at Z/R = ±1 for TSR value of 2.54,719

in this region each turbulence model consistently under-predicts the rms u′ velocity compo-720

nent. The under-prediction of rms u′ in this region would support the argument made in721

section 4.2 that all models under-predicted vortex diffusion, turbulent dissipation and overall722

turbulent instability in this region. All models were more consistent regarding the predic-723

tion of rms u′ values in the region Z/R = 0. Here the EB-RSM model tended to predict the724

highest levels of rms u′ values in the wake, with the RST model consistently predicting the725

lowest. At Z/R = 0.1, the percentage difference between numerical and experimental results726

were -8%, -43% and -7% for the SST k−ω, RST and EB-RSM models respectively at 0.66D.727

With distance downstream, the RST model tended to more closely resemble experimental728

results at Z/R = 0.1 with the percentage difference between experimental results and the729

RST model being -26% at 1.5D. However, at this point both the SST k − ω and EB-RSM730

model over-predicted experimental results by 34% and 61%. Although experimental results731

show a linear reduction of peak rms u′ values in the wake centre, none of the numerical732

models followed this trend.733

734
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Similar results are seen in figure 18, which shows the distribution of the rms u′ velocity735

component for a TSR value of 3.87. Peak rms u′ velocities are located at Z/R = 0.1 (again736

the location of the wake centre). Immediately, it can be seen in figure 18a that all numerical737

models greatly under-predicted the rms u′ velocity component. This trend continued with738

distance downstream. Maximum values of 0.107, 0.1 and 0.08 were recorded at 0.66D,739

1D and 1.5D, respectively for experimental results at Z/R =0.1. The RST model greatly740

under-predicted the magnitude of the rms u′ velocity component. The RST model tended741

to predict fluctuating rms u′ velocities around 0.03 through most of the centre of the wake,742

which suggests that the model predicted less shedding across the rotor. An increase in u′743

velocities are located at Z/R = ±0.8, which are caused by the secondary vortex mentioned744

in section 4.2. Here peak experimental rms u′ values are 0.037, 0.035 and 0.032 at 0.66D, 1D745

and 1.5D, respectively. Similar to peak rms u′ velocities in the wake centre for TSR value746

of 2.54, the rms u′ velocities for the secondary vortical structure appear to decrease linearly747

with distance downstream. Again, all turbulence models under-predicted rms u′ values in748

this region.749
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Figures 19 and 20 show the rms velocity fluctuations for the v′ velocity component at dif-750

ferent locations downstream for both TSR values. Again, the experimental rms v′ values751

in the wake take on an inverse Laplace distribution. Maximum experimentally recorded752

rms v′ values occur at Z/R = 0.1 for both TSR cases, similar to those recorded for the753

TSR equals 2.54 case. However, unlike the TSR 2.54 case, peak experimental rms v′ values754

tend to stay the same with distance downstream with values of 0.101, 0.104 and 0.101 at755

0.66D, 1D and 1.5D, respectively downstream for a TSR value of 2.54. Peak rms v′ values756

of 0.09, 0.09 and 0.075 were recorded at 0.66D, 1D and 1.5D, respectively downstream for757

a TSR value of 3.87 (figure 20). Additionally, peak rms v′ values occur at Z/R = ±0.7, the758

location of the secondary vortex for a TSR value of 3.87. Here peak experimental values of759

0.032, 0.032 and 0.029 are recorded at 0.66D, 1D and 1.5D downstream. Comparison of the760

peak experimental rms u′ and rms v′ values for both TSR cases highlight that both velocity761

components are similar in magnitude, with the rms v′ magnitude on average being 95% of762

the rms u′ values.763

764

Similar to the predicted values of rms u′, all turbulence models predicted the magnitude of765

the rms v′ components to the correct order of magnitude for both TSR cases. However, all766

models tended to over-predict rms v′ components from Z/R = ±0.5 and outward towards767

the blade tip for both TSR equals 2.54 and 3.87 (figures 19 and 20 ).768

769

The models for the most part under-predicted the rms of the fluctuating velocity components,770

in particular for TSR equals 3.87 in the region Z/R = 0. This was attributed to varying771

y+ distributions over the blades, which increased the difficulty for the models to resolve the772

boundary layer. In addition to this, increased velocities at the high TSR value would have773

altered the y+ values present over the nacelle even further. This would have further reduced774

the resolution of the boundary layer over the nacelle for the TSR = 3.87 case. The larger775

inaccuracies towards the Z/R = 0 region is attributed to the fact that the y+ values over776

the nacelle are the same as the values specified for the tower structure. Therefore, shedding777

from the nacelle structure itself would not have been resolved for to the same accuracy as778

that of the blades. As noted by Sanderse [17] the root vortices are in close proximity to each779

other. This, combined with the induced turbulence from the turbine structure, cause the780

root vortices to be destroyed much earlier than the tip vortices. Sherry et al. [28] attributed781

the interaction between the nacelle boundary layer and the root vortex as a component in782

the root vortices early destruction. This is because the vorticity created within the nacelle783

boundary layer is of the same order of magnitude and opposite in sign to the coherent root784

vortices, resulting in cross-annihilation of vorticity between the root vortex and the nacelle785

boundary layer.786
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Figures 21 and 22 present the distribution of the u′v′/U2
∞

Reynolds stress component for787

both TSR values in the z-direction. From the offset, it is clear that the tower and na-788

celle structure are the root source for the majority of the Reynolds stress within the flow.789

Reynolds stress values are seen to increase considerably when passing through Z/R=0 with790

interaction between the blade wake and shedding from the nacelle exciting the flow. For TSR791

equals 3.87 (figure 22), the experimental values of Reynolds stress begin to fluctuate around792

Z/R ≃ ±0.7. This coincided with the predicted location of the secondary vortical structure.793

Overall, the majority of the Reynolds stresses are localized behind the nacelle structure,794

suggesting that interaction between the wake and the nacelle structure contributes greatly795

to the stress levels within the flow. Stresses peak at Z/R = ±0.1 which is close to the root796

of the blade located at r/R = 0.12. It can be seen that the root vorticies for TSR equals797

3.87 (figure 22) are stronger than those at TSR equals 2.54 (figure 21). Initial Reynolds798

stress values associated with the root vorticies at 0.66D are 1.3 × 10−3 and 2.8 × 10−3 for799

TSR equals 2.54 and 3.87 respectively. However, despite having initially higher levels of800

shear stress, levels of stress reduce faster for TSR equals 3.87 in comparison to TSR 2.54.801

Again highlighting a faster degradation of the wake and return to freestream values. The802

transition from positive to negative values of stress at Z/R = 0 is due to the rotation of the803

root vortex system in the wake. Similar to both figures 21 and 22, the Reynolds stresses804

within the flow retreat towards 0 in the freestream. Reynolds stress values at TSR equals805

3.87 are larger than those for the TSR equals 2.54 case at the Z/R = 0 region. This could806

be attributed to the stronger root vortices present in this region due to the increased TSR.807

808

Numerical predictions of the Reynolds stresses within the wake in the z-direction for TSR809

equals 2.54 and 3.87 are presented in figures 21 and 22. The location of maximum per-810

centage error between the computational and experimental results tends to be located at811

−0.4 < Z/R < 0.4 where the flow tends to be the most chaotic behind the nacelle struc-812

ture and in the root vortex system. The errors in this region are expected due to the over813

and under-prediction of the rms u′ and v′ components in this region mentioned earlier. All814

models do predict a reduction of the Reynolds stresses towards zero at Z/R=±1, similar815

to experimental results. The values of Reynolds stress peak at Z/R=±0.1, which coincides816

with experimental results. This is evident from 0.66D to 1.5D. There is an overall trend of817

reduced Reynolds stress values with distance downstream, which indicates the decay of the818

vortical structures within the wake.819

820
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4.4. Assessment of Turbulence Modelling Strategies Used821

As outlined in section 4.3, all models under-predicted the magnitude of the rms u′ and v′822

velocity components in the flow, which was highlighted again when comparing between ex-823

perimentally recorded and numerically predicted u′v′/U2
∞

Reynolds stress values. However,824

by comparison of figures 17, 18, 19 and 20, all models tended to predict the inverse Laplace825

distribution of both the rms u′ and v′ components (with the exception of the RST model,826

which struggled to predict accurately the rms u′ and v′ components with accuracy for TSR827

value of 3.87), which highlights that all models were able to model the physics of a HAWT828

wake to varying degrees of accuracy.829

830

Additionally, each turbulence modelling strategy employed, accurately predicted wake ve-831

locity deficits with the largest discrepancy between the results of each turbulence modelling832

strategy occurring when evaluating their ability to predict turbulence in the HAWT wake.833

Their ability to model velocity fluctuations in the flow is where each model differs the most.834

This is further supported when considering the RST and EB-RSM models. Both models835

employed identical physics continua, mesh densities and y+ wall treatments. The only dif-836

ference between both models was the pressure strain relationship used by each. The RST837

model used the linear pressure-strain two-layer relationship of Gibson et al. [39] and the838

EB-RSM model used the elliptical-blending relationship of Manceau et al. [44]. As outlined839

in section 4.3, the velocity fluctuations and essentially the origins of turbulence is often840

developed from the interaction between the fluid flow and the wall.841

842

Discrepancies between the models may highlight where the source of inaccuracy of each843

model lies. For example, as outlined, each model had the same mesh distribution and y+844

wall treatments. The only difference between the models was the solvers themselves. How-845

ever, despite this, as shown in section 3.7, each model predicted different maximum and846

average y+ values over the turbine blades. Considering that with a higher y+ value there847

is less resolution to capture the presence of the turbulent boundary layer. This would un-848

doubtedly result in each blade predicting different velocity profiles at the boundary layer.849

Additionally, having a combination of y+ values with values greater and less than unity over850

the blade could have made resolving the boundary layer difficult for each model. When y+851

values are below unity, the boundary layer is resolved. However, the boundary layer is mod-852

elled using wall treatments when the y+ values are above unity. The over and back between853

both these methods could have increased the difficulty of solving the boundary layer for each854

turbulence model. It is unknown if altering the blade mesh such that the y+ values remain855

above or below unity during the simulation would have improved the results.856

857

The difference in modelled boundary layers can be highlighted when looking at the wall858

shear stress values over the rotor. Figure 23 shows the distribution of wall shear stress859

over the rotor, as predicted by the RST and SST k − ω models. The EB model predicted860

similar wall shear stress values in comparison to the SST k − ω model and therefore, the861

distribution of wall shear values predicted by the EB model are not shown. It can be seen862

in figure 23(a) that the SST k − ω model predicted greater variation in wall shear stress863
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towards the trailing edge of the blades (highlighted in red). This swirl pattern at the trailing864

edge is associated with increased shear values and shedding along the length of the blade865

trailing edge. This is not captured in the RST model and might also explain why the model866

greatly under-predicted the rms velocity components for a TSR value of 3.867

SST Model

RST Model

(a)

(b)

Figure 23: Wall shear stress values over the rotor predicted by SST k − ω model (a) and RST model (b).
TSR = 3.87

A final consideration is the difference in results between the RST and EB-RSM models. The868

EB-RSM model was developed to be a less intensive version of the RST model as outlined869
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in section 3.5 by adapting the elliptical blending pressure-strain relationship of Manceau et870

al. [44]. In the linear pressure-strain approach, the computation is divided into two layers.871

In the layer adjacent to the wall, the turbulent dissipation rate ǫ and the turbulent viscosity872

µt are specified as functions of wall distance. The formulation is the same as that used in873

the k− ǫ model. The two-layer model prescribes values for ǫ algebraically based on distance874

from the wall in the viscosity dominated near-wall flow regions. This might have resulted875

in the solver being more sensitive to varying y+ values in the current study. On the other876

hand, the EB-RSM model used the standard elliptical blending method of Billard et al. [54],877

which has been noted to be an improvement on the existing realizable k− ǫ model in terms878

of accuracy, especially in the near-wall region. Additionally, as noted by Manceau et al.879

[44], the elliptic blending strategy allowed for the integration of wall treatments down to the880

wall without the use of damping functions with one elliptical equation instead of six.881

882

However, the EB-RSM model itself was inaccurate. This could be attributed to the sim-883

plification of the model. In order to simplify the model to reduce computational and time884

costs the model suffered a reduction in accuracy in the prediction of anisotropies in the near885

wall. Therefore, the model may be unable to accurately model the effects of turbulence in886

the near wall region. The presence of a solid wall influences turbulent flow through two887

mechanisms. The first is through viscous effects which require that velocity components in888

all directions must equal zero at the wall. The second is the blocking effect whereby, due to889

the impermeable nature of a solid wall, primarily fluctuations in the wall-normal direction890

are suppressed. This creates highly anisotropic turbulent structures, as noted by Emory891

et al. [55]. As noted by Manceau et al. [44], the formulation in the EB-RSM resulted in892

anisotropic structures being poorly captured.893

894

Generally, the numerical simulation results at a TSR value of 2.54 have better agreement895

with experiment data than those at TSR=3.87. Reduced accuracy for predictions at TSR =896

3.87 were attributed to reduced resolution of the boundary layer due to increased rotational897

speed of the blades (which impacted y+ values). This complicated the model and made it898

more difficult for the turbulence models to resolve the turbulent boundary layer as show in899

figure 23 (illustrating wall shear stress values).900

901

Finally, a Root-Mean-Square-Error (RMSE) analysis was carried out to investigate the over-902

all prediction capabilities of each individual model. The RMSE analysis is presented in tables903

1, 2 and 3 for both TSR cases for both mean velocity deficit and rms fluctuating velocities.904

Over a range of 0–1, the lower the RSME value, the better the behaviour of the numerical905

model. The maximum RSME value for the mean velocity deficit was 0.083 (RST model906

predictions at 1D for a TSR value of 3.87) The maximum RSME value for the fluctuating u907

velocities was 0.028 (RST model predictions at 0.66D for a TSR value of 3.87). The maxi-908

mum RSME value for the fluctuating v velocities was 0.026 (SST k-ω model predictions at909

1D and 1.5D for a TSR value of 2.54).910
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Table 1: RMSE analysis for mean velocity deficit

Model X/D TSR 2.54 TSR 3.87
SST k-ω 0.66 0.062 0.059
RST 0.66 0.058 0.059

EB-RSM 0.66 0.070 0.056
SST k-ω 1 0.061 0.077
RST 1 0.065 0.083

EB-RSM 1 0.032 0.053
SST k-ω 1.5 0.035 0.081
RST 1.5 0.040 0.070

EB-RSM 1.5 0.044 0.082

Table 2: RMSE analysis for fluctuating u velocities

Model X/D TSR 2.54 TSR 3.87
SST k-ω 0.66 0.022 0.025
RST 0.66 0.022 0.028

EB-RSM 0.66 0.019 0.023
SST k-ω 1 0.023 0.022
RST 1 0.023 0.024

EB-RSM 1 0.024 0.017
SST k-ω 1.5 0.024 0.021
RST 1.5 0.023 0.021

EB-RSM 1.5 0.024 0.015

Table 3: RMSE analysis for fluctuating v velocities

Model X/D TSR 2.54 TSR 3.87
SST k-ω 0.66 0.021 0.018
RST 0.66 0.018 0.019

EB-RSM 0.66 0.021 0.014
SST k-ω 1 0.026 0.015
RST 1 0.024 0.020

EB-RSM 1 0.024 0.013
SST k-ω 1.5 0.026 0.015
RST 1.5 0.025 0.018

EB-RSM 1.5 0.024 0.012

5. Conclusions911

Experimental and numerical investigations were carried out to assess the ability of the SST912

k−ω, RST and EB-RSM turbulence models to accurately model a HAWT wake. A compari-913
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son was made between the experimentally recorded and numerically predicted wake velocity914

deficit and turbulence characteristics of the wake. It has been found that all models are915

capable of predicting the mean flow characteristics within the wake structure of a HAWT.916

All models predicted the generation and decay of root and tip vortices, and the formation917

of a central vortex sheet. The values of axial velocity predicted by all models were compa-918

rable with experimental results and coincide with previous studies, whereby increasing TSR919

values reduced the wake velocity deficit. The greatest velocity deficit is consistently located920

behind the nacelle and tower structure with the tower introducing considerable quantities of921

recirculating flow to the wake. The tower and nacelle structures, combined with the central922

vortex system supply a continuous velocity deficit to the wake with the blades only having923

a periodic effect on the wake velocity deficit, noticeable only after monitoring the wake over924

a long period of time. The study highlighted that all models could accurately predict the925

mean flow characteristics of a HAWT wake and, therefore, could accurately predicted rotor926

loading, also.927

928

Investigation of the rms u′ and v′ velocities showed that again all turbulence modelling929

strategies estimated these velocity components to the correct order of magnitude. All mod-930

els (with the exception of the RST model at a TSR value of 3.87) predicted the rms velocity931

values to have an inverse Laplace distribution in the wake, similar to experimental results.932

However, all models under-estimated the magnitude of these velocity values with predictions933

as low as -43% of experimental results. Peaks in fluctuating velocities at Z/R = 0.8 lead the934

authors to conclude that a secondary vortex structure formed. Similar to Yang et al. [11]935

and Whale et al. [6], the structure merged with the tip vortex further downstream (in this936

case between 1.5D to 2D downstream).937

938

Investigation of the u′v′ Reynolds stress component showed increased stress levels behind939

the nacelle. Again, similar to previous studies, stress levels in the wake reduced for higher940

TSR values with the exception of stress levels in the root vortex region. Overall, all models941

performed reasonably well, with the majority of errors located at the centre of the wake.942

943

Inaccuracies in the models were attributed primarily to the fluctuating y+ values over the944

blades. This is thought to have increased the difficulty for each solver to accurately predict945

the boundary layer and as shown for the TSR equals 3.87 case, despite using the same mesh946

and wall treatments, both the SST k − ω and RST computed different levels of wall shear947

stress at the trailing edge of the blades. This was concluded to be the reason why the RST948

model greatly under-predicted rms u′ and v′ velocities in the wake for a TSR value of 3.87.949

950

The current study was undertaken to investigate the ability of different turbulence models951

to accurately predict the turbulence characteristics of a HAWT wake. This is important for952

future FSI simulations as outlined in section 4.3. This study has shown that greater care953

regarding y+ values is required as y+ values tend to fluctuate due to the movement of the954

blades. The y+ values should be maintained in one region (either above or below unity in955

this case) to ensure only one method is used to resolve the boundary layer. This problem956
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could become increasingly difficult when considering deformable blades and the introduction957

of atmospheric boundary layers in FSI simulations.958
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