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Multipair Two-Way Half-Duplex DF Relaying with
Massive Arrays and Imperfect CSI

Chuili Kong, Student Member, IEEE, Caijun Zhong,Senior Member, IEEE, Michail Matthaiou,Senior Member,
IEEE, Emil Björnson,Senior Member, IEEE, and Zhaoyang Zhang,Member, IEEE

Abstract—This paper considers a two-way half-duplex decode-
and-forward relaying system where multiple pairs of single-
antenna users exchange information via a multiple-antennarelay.
Assuming that the channel knowledge is non-ideal and the relay
employs maximum ratio processing, we derive a large-scale
approximation of the sum spectral efficiency (SE) that is tight
when the number of relay antennas,M , becomes very large.
Furthermore, we study how the transmit power scales withM
to maintain a desired SE. In particular, three special power-
scaling cases are discussed and the corresponding asymptotic SE
is deduced with clear insights. Our elegant power-scaling laws
reveal a tradeoff between the transmit powers of the user/relay
and pilot symbol. Finally, we formulate a power allocation
problem in terms of maximizing the sum SE and obtain a
local optimum by solving a sequence of geometric programming
problems.

Index Terms—Decode-and-forward, geometric programming,
massive MIMO, power-scaling law, two-way relaying.

I. I NTRODUCTION

Massive multiple-input multiple-output (MIMO) is one of
the key technologies for the next-generation wireless commu-
nications due to its distinctive features and advantages over
conventional MIMO systems. Some key benefits include: 1)
very narrow beams and little inter-user interference due to
the asymptotic channel orthogonality; 2) low computational
complexity since linear signal processing is asymptotically
optimal; 3) transmit power can be made extremely low, since it
scales down inversely proportional to the number of antennas
when perfect channel state information (CSI) is available.In
addition to the use of massive MIMO in cellular networks,
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the technique has been analyzed in other applications, such
as cognitive radio, heterogeneous networks, energy harvesting
units, and relaying systems, etc. [1]–[4].

The massive MIMO technique also finds an important
application in the multipair relaying system, where multiple
pairs of users simultaneously establish communication links
with the aid of a shared relay with large antenna arrays.
The resulting multipair massive MIMO relaying system has
attracted substantial attention from both academia and industry
because of its ability to enhance the coverage and service qual-
ity for cell edge users [5]–[8]. The initial works on multipair
massive MIMO relaying mainly focus on the one-way relaying
systems. For one-way multipair massive MIMO amplify-and-
forward (AF) relaying systems, the work [9] studied the max-
min user selection problem and the power allocation issue.
Later in [10], taking into account the semi-blind gain control
and relay oscillation, the authors proposed a low-complexity
power control scheme. In contrast, for the decode-and-forward
(DF) protocol, [5] compared the achievable spectral efficiency
(SE) of two linear processing techniques, i.e., zero-forcing
(ZF) and maximum-ratio (MR) in Rayleigh fading channels.
Then, [11] extended the analysis to the Ricean fading case. The
energy efficiency was optimized in [12]. Yet, such one-way
mechanism incurs a 50% SE loss. To reduce this loss, two-
way relaying becomes a potential solution [13]–[16], wherethe
two communicating nodes execute bidirectional simultaneous
data transmission.

Recently, there has been intensive research on two-way
massive MIMO relaying. For example, the power-scaling laws
of MR and/or ZF processing methods are characterized for
half-duplex [17], [18] and full-duplex [19], [20] schemes,
respectively. The work [21] considered the maximization ofthe
energy efficiency of the system subject to maximum power and
minimum SE constraints. Nevertheless, one major limitation
of the above works is that perfect CSI is assumed. Since
obtaining perfect CSI is very challenging in the context of
massive MIMO, it is important to look into the realistic
scenario with imperfect CSI. By employing the minimum
mean-square-error (MMSE) estimation at the relay, [22], [23]
studied the impact of pilot power on the SE, [24] maximizes
the energy efficiency using the max-min approach, while [25]
adopted the composite channel estimation method to reduce
the pilot overhead by half and demonstrated that this approach
outperforms the individual channel estimation scheme in [22],
[23] when the coherence interval is smaller. However, all the
aforementioned two-way massive MIMO relaying works focus
on the AF protocol, and the DF case is largely overlooked.
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Unlike AF relaying, DF relaying does not suffer from the
problem of noise amplification. Thus, DF two-way relaying
may achieve better performance than AF two-way relay, espe-
cially at low signal-to-noise ratios (SNRs) [26]. Besides this,
DF two-way relaying has the flexibility of performing separate
power allocation/precoding for relaying the communication
on each direction. Therefore, it is of great interest to study
the performance of two-way massive MIMO relaying systems
adopting the DF protocol.

Motivated by this, in the current work, we consider a
multipair two-way DF relaying system, taking into account
channel estimation errors, and present a comprehensive anal-
ysis of the achievable SE and power-scaling law of MR
processing. Specifically, the main contributions of this paper
are summarized as follows:

• We propose a general multipair massive MIMO two-
way relaying system employing the DF protocol, and
present a large-scale approximation of the SE under
the imperfect CSI when the number of relay antennas
approaches infinity.

• We characterize new power-scaling laws, which general-
ize the results presented in [5], [17], [18]. It turns out
that there exists a trade-off between the transmit powers
of each user, pilot symbol and the relay; in other words,
the same SE can be achieved with different combination
of power-scaling parameters, which offers great flexibility
in the design of practical systems.

• To improve the sum SE, we study the power allocation
problem subject to a sum power constraint. Local op-
timum solutions are obtained by solving a sequence of
geometric programming (GP) problems. Our numerical
results suggest that the proposed power allocation strategy
significantly improves the sum SE.

The remainder of the paper is organized as follows: Section
II introduces the multipair two-way half-duplex DF relaying
system model. Section III presents a large-scale approximation
of the SE, with imperfect CSI, while Section IV studies the
power-scaling laws of different system configurations. The
power allocation problem is discussed in Section V. The
numerical results are verified in Section VI. Finally, Section
VII provides some concluding remarks.

Notation: We use bold upper case letters to denote matrices,
bold lower case letters to denote vectors and lower case letters
to denote scalars. Moreover,(·)H , (·)∗, (·)T , and(·)−1 repre-
sent the conjugate transpose operator, the conjugate operator,
the transpose operator, and the matrix inverse, respectively.
Also, || · || is the Euclidian norm,|| · ||F denotes the Frobenius
norm, and|·| is the absolute value. In addition,x ∼ CN (0,Σ)
denotes a circularly symmetric complex Gaussian random
vector x with covariance matrixΣ, while Ik is the identity
matrix of sizek. Finally, the statistical expectation operator is
represented byE{·}, the variance operator is Var{·}, and the
notation

a.s.→ means almost sure convergence.

II. SYSTEM MODEL

Consider a multipair two-way relaying system, whereN
pairs of single-antenna users, denoted as TA,i and TB,i, i =

1, . . . , N , exchange information with each other, under the
assistance of a shared relay TR equipped withM antennas,
shown in Fig. 1. We assume that the direct links between
TA,i and TB,i do not exist due to shadowing. Also, the relay
operates in the half-duplex mode, i.e., it cannot transmit and
receive simultaneously.
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Fig. 1: Illustration of the multipair two-way relaying system.

It is assumed that the system works under a time division
duplex (TDD) protocol and channel reciprocity holds. As such,
the uplink and downlink channels between TA,i and TR can be
denoted asgAR,i ∼ CN (0, βAR,iIM ) andgT

AR,i, respectively.
Similarly, the channels between TB,i and TR are denoted
as gRB,i ∼ CN (0, βRB,iIM ) and gT

RB,i, i = 1, . . . , N ,
respectively. This model is known as uncorrelated Rayleigh
fading, andβAR,i and βRB,i model the large-scale effect,
which are assumed to be constant over many coherence
intervals and known a priori. For notational convenience, the
channel vectors can be collected together in a matrix form
as GAR , [gAR,1, . . . ,gAR,N ] ∈ CM×N and GRB ,

[gRB,1, . . . ,gRB,N ] ∈ CM×N .
For the considered multipair two-way relaying system, the

information transmission process consists of two separate
phases. In the first phase, i.e., multiple-access channel (MAC)
phase, theN user pairs TA,i and TB,i simultaneously transmit
their respective signals to TR. Thus, the received signal at TR

is given by

yr =
N∑

i=1

(√
pA,igAR,ixA,i +

√
pB,igRB,ixB,i

)
+ nR, (1)

wherexA,i andxB,i are Gaussian signals with zero mean and
unit power transmitted by thei-th user pair,pA,i and pB,i

are the average transmit power of TA,i and TB,i, respectively,
andnR is a vector of additive white Gaussian noise (AWGN)
at TR, whose elements are identically and independently dis-
tributed (i.i.d.)CN (0, 1). Note that to keep the notation clean
and without loss of generality, we take the noise variance to
be1 in this paper. To reduce the complexity, single-user linear
detection is considered at the relay. As such, the transformed
signal after linear processing can be expressed as

rDF = WTyr, (2)

whereWT ∈ C2N×M is the linear receiver matrix, which will
be specified shortly.

In the second phase, i.e., broadcasting (BC) phase, the relay
first decodes the received information, and then re-encodes
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and broadcasts it to the users. A linear precoding matrix
J ∈ CM×2N is applied to the decoded signalx. As such,
the transmit signal of TR is given by

yDF
t = ρDFJx, (3)

where x =
[
xT
A,x

T
B

]T
with xA = [xA,1, . . . , xA,N ]T and

xB = [xB,1, . . . , xB,N ]T , andρDF is the normalization coeffi-
cient, which is determined by the average power constraint at
the relay, i.e.,E

{
||yDF

t ||2
}
= pr. Hence, the signals received

at TX,i (whereX ∈ {A,B}) can be expressed as

zDF
X,i = gT

XR,iy
DF
t + nX,i, (4)

wherenX,i ∼ CN (0, 1) represents the AWGN at TX,i. Please
note that, to simplify notation, we introducegBR,i which is
defined asgBR,i , gRB,i due to the channel reciprocity.

A. Channel Estimation

Since we consider a block fading system, the channelsGAR

andGRB are not known and need to be estimated at the relay
in every coherence interval. The typical way of doing this in
TDD systems is to transmit pilots [27]. To this end, during
each coherence interval of lengthτc (in symbols),τp symbols
are used for channel training. In this case, TA,i and TB,i

simultaneously transmit mutually orthogonal pilot sequences
to TR. Thus, the received pilot matrix at TR is

Yp =
√
τpppGARΦ

T
A +

√
τpppGRBΦ

T
B +Np, (5)

wherepp is the transmit power of each pilot symbol,Np is
AWGN matrix including i.i.d.CN (0, 1) elements, while the
i-th columns ofΦA ∈ Cτp×N andΦB ∈ Cτp×N are the pilot
sequences transmitted from TA,i and TB,i, respectively. Since
all pilot sequences are assumed to be mutually orthogonal,
τp ≥ 2N is required, and we have thatΦT

AΦ
∗
A = IN ,

ΦT
BΦ

∗
B = IN , andΦT

AΦ
∗
B = 0N .

As in [5], [28], we assume that TR uses the MMSE
estimator to estimateGAR andGRB. As such, we have

gAR,i = ĝAR,i + eAR,i, (6)

gRB,i = ĝRB,i + eRB,i, (7)

whereĝAR,i, ĝRB,i, eAR,i, andeRB,i are thei-th columns of
the estimated matriceŝGAR, ĜRB, and the estimation error
matricesEAR andERB, respectively, which are mutually in-
dependent. The elements ofĝAR,i, eAR,i are Gaussian random
variables with zero mean, varianceσ2

AR,i and σ̃2
AR,i, respec-

tively, whereσ2
AR,i ,

τpppβ
2
AR,i

1+τpppβAR,i
and σ̃2

AR,i ,
βAR,i

1+τpppβAR,i
.

Similarly, the elements of̂gRB,i, and eRB,i are complex
Gaussian random variables with zero mean, varianceσ2

RB,i

and σ̃2
RB,i, respectively, whereσ2

RB,i ,
τpppβ

2
RB,i

1+τpppβRB,i
and

σ̃2
RB,i ,

βRB,i

1+τpppβRB,i
.

B. Linear Processing Matrices

To keep the complexity costs at the relay to reasonable
levels, a simple linear processing scheme is used at the relay.

With the MR method1, the processing matrixWT ∈ C2N×M

andJ ∈ CM×2N are given by

WT =
[

ĜAR, ĜRB

]H

, (8)

J =
[

ĜRB , ĜAR

]∗

, (9)

respectively, whileρDF is given by

ρDF =

√
pr

E {||J||2F}
=

√
√
√
√
√

pr

M
N∑

n=1

(

σ2
AR,n + σ2

RB,n

) . (10)

III. SPECTRAL EFFICIENCY

In this section, we investigate the SE (in bit/s/Hz) of the
two-way half-duplex DF relaying system. In particular, a large-
scale approximation of the SE is deduced whenM → ∞.

In the MAC phase, a linear processing matrixWT is applied
to the received signals prior to signal detection, hence, the
post-processing signals at the relay are given by

rDF = (11)






ĜH
AR

(
N∑

i=1

(√
pA,igAR,ixA,i +

√
pB,igRB,ixB,i

)
+ nR

)

ĜH
RB

(
N∑

i=1

(√
pA,igAR,ixA,i +

√
pB,igRB,ixB,i

)
+ nR

)






,

where the topN elements ofrDF stand for the signals from
TA,i (i = 1, . . . , N ), while the bottomN elements ofrDF

represent the signals from TB,i (i = 1, . . . , N ). Without loss
of generality, we focus only on thei-th pair of users, i.e., TA,i

and TB,i, which is given by (12). Since the relay has imperfect
CSI, it treats the channel estimates as the true channels to
decode the signals. To this end, using a standard lower capacity
bound based on the worst-case uncorrelated additive noise [30]
yields the sum achievable SE of thei-th user pair in the MAC
phase:

RDF
1,i =

τc − τp
2τc

× (13)

E






log2



1 +
ADF

i +BDF
i

E

{(
CDF

i +DDF
i + EDF

i

)
|ĜAR, ĜRB

}










,

where the inner and outer expectations are taken over the

1Note that MR is a very attractive linear processing technique in the context
of massive MIMO systems due to its low complexity. Most importantly, it
can be implemented in a distributed manner [27], [29]. Leveraging on the
properties of long Gaussian vectors, the extensions to the ZF and MMSE
processing can be easily made by using the same technique as in the MR
method. In addition, to simplify the notations, we have assumed that the
MAC and BC phases take place in the same coherence interval. However,
this is not necessary.
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r̃DF
i = rDF

i + rDF
N+i =

√
pA,i

(
ĝH
AR,iĝAR,i + ĝH

RB,iĝAR,i

)
xA,i +

√
pB,i

(
ĝH
AR,iĝRB,i + ĝH

RB,iĝRB,i

)
xB,i

︸ ︷︷ ︸

desired signal

(12)

+
√
pA,i

(
ĝH
AR,ieAR,i + ĝH

RB,ieAR,i

)
xA,i +

√
pB,i

(
ĝH
AR,ieRB,i + ĝH

RB,ieRB,i

)
xB,i

︸ ︷︷ ︸

estimation error

+
∑

j 6=i

(√
pA,j

(
ĝH
AR,igAR,j + ĝH

RB,igAR,j

)
xA,j +

√
pB,j

(
ĝH
AR,igRB,j + ĝH

RB,igRB,j

)
xB,j

)

︸ ︷︷ ︸

inter-user interference

+
(
ĝH
AR,i + ĝH

RB,i

)
nR

︸ ︷︷ ︸

compound noise

.

estimation errors and channel estimates, respectively, and

ADF
i = pA,i

(
|ĝH

AR,iĝAR,i|2 + |ĝH
RB,iĝAR,i|2

)
, (14)

BDF
i = pB,i

(
|ĝH

AR,iĝRB,i|2 + |ĝH
RB,iĝRB,i|2

)
, (15)

CDF
i = pA,i

(
|ĝH

AR,ieAR,i|2 + |ĝH
RB,ieAR,i|2

)
(16)

+ pB,i

(
|ĝH

AR,ieRB,i|2 + |ĝH
RB,ieRB,i|2

)
,

DDF
i =

∑

j 6=i

pA,j

(
|ĝH

AR,igAR,j|2 + |ĝH
RB,igAR,j|2

)
(17)

+
∑

j 6=i

pB,j

(
|ĝH

AR,igRB,j|2 + |ĝH
RB,igRB,j|2

)
,

EDF
i = ||ĝAR,i||2 + ||ĝRB,i||2. (18)

In addition, the SE of the TX,i → TR (X ∈ {A,B}) link
can be obtained as

RDF
XR,i =

τc − τp
2τc

× (19)

E






log2



1 +
XDF

i

E

{(
CDF

i +DDF
i + EDF

i

)
|ĜAR, ĜRB

}










.

In the BC phase, the relay broadcasts to all users using the
MR principle; hence the received signal at TX,i is given by

zDF
X,i = ρDF

N∑

j=1

(
gT
XR,iĝ

∗
RB,jxA,j + gT

XR,iĝ
∗
AR,jxB,j

)
+ nX,i.

(20)

As in [5], [25], [30], we consider the realistic case where the
users do not have any instantaneous CSI and instead only have
statistical CSI since the acquisition of instantaneous CSIat the
user is extremely costly. Note that this type of lower bounds
has already been proved to be very good due to the channel
hardening [31]2. Therefore, after performing the partial self-
interference cancellation according to the statistical knowledge
of the channel gains, the post-processing signals at TA,i can

2Note that there are two typical ways to obtain the instantaneous CSI, i.e.,
downlink training and feedback. However, both methods incur huge overheads,
hence they are not scalable in the massive MIMO ecosystem.

be re-expressed as

ẑDF
A,i = zDF

A,i − ρDFE
{
gT
AR,iĝ

∗
RB,i

}
xA,i (21)

= ρDFE
{
gT
AR,iĝ

∗
AR,i

}
xB,i

︸ ︷︷ ︸

desired signal

+ ρDF
(
gT
AR,iĝ

∗
AR,i − E

{
gT
AR,iĝ

∗
AR,i

})
xB,i

︸ ︷︷ ︸

gain uncertainty

+ ρDF
(
gT
AR,iĝ

∗
RB,i − E

{
gT
AR,iĝ

∗
RB,i

})
xA,i

︸ ︷︷ ︸

residual self-interference

+ ρDF

∑

j 6=i

(
gT
AR,iĝ

∗
RB,jxA,j + gT

AR,iĝ
∗
AR,jxB,j

)

︸ ︷︷ ︸

inter-user interference

+ nA,i
︸︷︷︸

noise

,

and the post-processing signals at TB,i is obtained by replacing
A andB in (21) with B andA.

Therefore, the SE of the TR → TX,i link is expressed as

RDF
RX,i =

τc − τp
2τc

log2
(
1 + SINRDF

RX,i

)
, (22)

where SINRDF
RX,i is given by (23) (on the top of the next page).

Now, according to [32]–[36], the sum SE of thei-th user
pair over both MAC and BC phases for the considered two-
way DF relaying can be expressed as

RDF
i = min

(
RDF

1,i, R
DF
2,i

)
, (24)

whereRDF
2,i is the sum SE of thei-th user pair in the BC phase,

which is given by the sum of the end-to-end SE from TA,i to
TB,i (i.e., min

(
RDF

AR,i, R
DF
RB,i

)
) and the end-to-end SE from

TB,i to TA,i (i.e., min
(
RDF

BR,i, R
DF
RA,i

)
),

RDF
2,i = min

(
RDF

AR,i, R
DF
RB,i

)
+ min

(
RDF

BR,i, R
DF
RA,i

)
. (25)

Thus, the sum SE of the multipair two-way DF relaying
system is

RDF =

N∑

i=1

RDF
i . (26)

When TR employs a very large antenna array, i.e.,M → ∞,
a large-scale approximation of the SE of thei-th user pair is
presented in the following theorem.

Theorem 1:With the DF protocol, as the number of relay
antennas grows to infinity, then we haveRDF

i − R̃DF
i

M→∞−→ 0,
whereR̃DF

i is given by

R̃DF
i , min

(

R̃DF
1,i, R̃

DF
2,i

)

, (27)
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SINRDF
RX,i =

|E
{
gT
XR,iĝ

∗
XR,i

}
|2

Var
{

gT
XR,iĝ

∗
XR,i

}

+ Var
{

gT
AR,iĝ

∗
RB,i

}

+
∑

j 6=i

(

E

{

|gT
XR,iĝ

∗
RB,j|2

}

+ E

{

|gT
XR,iĝ

∗
AR,j|2

})

+ 1
ρ2

DF

. (23)

where

R̃DF
1,i ,

τc − τp
2τc

log2



1 +
tA,i + tB,i

(

σ2
AR,i + σ2

RB,i

)

qi



 , (28)

R̃DF
2,i , min

(

R̃DF
AR,i, R̃

DF
RB,i

)

+ min
(

R̃DF
BR,i, R̃

DF
RA,i

)

, (29)

with

R̃DF
AR,i ,

τc − τp
2τc

log2



1 +
tA,i

(

σ2
AR,i + σ2

RB,i

)

qi



 , (30)

R̃DF
RA,i ,

τc − τp
2τc

log2







1 +

prMσ4
AR,i

(prβAR,i + 1)
N∑

j=1

(

σ2
AR,j + σ2

RB,j

)








,

(31)

tA,i , pA,i

(
Mσ4

AR,i + σ2
AR,iσ

2
RB,i

)
, (32)

tB,i , pB,i

(
Mσ4

RB,i + σ2
AR,iσ

2
RB,i

)
, (33)

qi , pA,iσ̃
2
AR,i + pB,iσ̃

2
RB,i (34)

+
∑

j 6=i

(pA,jβAR,j + pB,jβRB,j) + 1,

and R̃DF
BR,i and R̃DF

RB,i are obtained by replacing the transmit
powerspA,i, pB,i, and the subscripts “AR”, “RB” with the
transmit powerspB,i, pA,i, and the subscripts “RB”, “AR” in
R̃DF

AR,i and R̃DF
RA,i, respectively.

Proof: See Appendix A.
Theorem 1 provides a large-scale approximation of thei-

th user pair’s SE. More specifically,̃RDF
1,i, R̃

DF
AR,i, and R̃DF

BR,i

are computed by utilizing Lemma 1 in Appendix A, while
R̃DF

RA,i and R̃DF
RB,i are the exact expressions forRDF

RA,i and
RDF

RB,i. We can see that all the signal-to-interference-plus-noise
ratio (SINR) of R̃DF

1,i, R̃
DF
AR,i, R̃

DF
BR,i, R̃

DF
RA,i, and R̃DF

RB,i can
be expressed in the form ofax+b

cx+d
, wherea > 0, b ≥ 0, c > 0,

d > 0, and x denotes the transmit power, i.e.,pA,i, pB,i,
or pr. Since ax+b

cx+d
increases withx and converges toa

c
as

x → ∞, we conclude that 1)̃RDF
i is an increasing function

of pA,i, pB,i, and pr; and 2) whenpA,i → ∞, pB,i → ∞,
and/orpr → ∞, R̃DF

i converges to a non-zero limit, due to
strong inter-user interference. Moreover, we observe thatR̃DF

i

increases with the number of relay antennasM , indicating the
strong advantage of employing massive antenna arrays at the
relay, while decreases with the number of user pairsN , which
is expected since larger number of users increases the amount
of inter-user interference.

IV. POWER-SCALING LAWS

In this section, we pursue a detailed investigation of the
power-scaling laws; that is, how the powers can be reduced

with M while retaining a desired SE. In the case where
the users have different power levels from the beginning, the
differences can be absorbed into theσ2

AR,i and σ2
RB,i terms

without loss of generality. Thus, we assume that all the users
have the same transmit power, i.e.,pA,i = pB,i = pu. Then,
we can characterize the interplay between the relay’s transmit
power pr, the user’s transmit powerpu, and the transmit
power of each pilot symbolpp, asM grows to infinity. More
precisely, we consider three different scenarios:

• Scenario A: Fixedpu andpr, while pp =
Ep

Mγ with γ > 0,
andEp being a constant. Such a scenario represents the
potential of power saving in the channel training stage.

• Scenario B: Fixedpp, while pu = Eu

Mα , pr = Er

Mβ , with
α ≥ 0 andβ ≥ 0, andEu, Er are constants. Hence, the
channel estimation accuracy remains unchanged, and the
objective is to study the potential power savings in the
data transmission stage.

• Scenario C: This is the most general case wherepu =
Eu

Mα , pr = Er

Mβ , andpp =
Ep

Mγ , with α ≥ 0, β ≥ 0, and
γ > 0, Eu, Er, andEp are constants.

1) Scenario A:We present the following power-scaling law
for Scenario A.

Theorem 2:With the DF protocol, for fixedpu, pr andEp,
whenpp =

Ep

Mγ with γ > 0, asM → ∞, we have

RDF
i − min

(
R̄DF

1,i, R̄
DF
2,i

) M→∞−→ 0, (35)

where

R̄DF
1,i ,

τc − τp
2τc

× (36)

log2









1 +
pu

τpEp

Mγ−1

(
β4
AR,i + β4

RB,i

)

(

β2
AR,i + β2

RB,i

)
(

pu
N∑

j=1

(βAR,j + βRB,j) + 1

)









,

R̄DF
2,i , min

(
R̄DF

AR,i, R̄
DF
RB,i

)
+ min

(
R̄DF

BR,i, R̄
DF
RA,i

)
, (37)
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with

R̄DF
AR,i ,

τc − τp
2τc

× (38)

log2









1 +
pu

τpEp

Mγ−1β
4
AR,i

(

β2
AR,i + β2

RB,i

)
(

pu
N∑

j=1

(βAR,j + βRB,j) + 1

)









,

R̄DF
RA,i ,

τc − τp
2τc

× (39)

log2







1 +

pr
τpEp

Mγ−1β
4
AR,i

(prβAR,i + 1)
N∑

j=1

(

β2
AR,j + β2

RB,j

)








,

andR̄DF
BR,i andR̄DF

RB,i are obtained by replacing the subscripts
“AR”, “RB” in R̄DF

AR,i and R̄DF
RA,i with the subscripts “RB”,

“AR”, respectively.
As can be seen, the large-scale approximation of the SE

RDF
i in Scenario A depends on the choice ofγ. When we cut

down pp too much, i.e.,γ > 1, RDF
i converges to zero. On

the other hand, when0 < γ < 1, RDF
i grows unboundedly.

Finally, whenγ = 1, RDF
i converges to a non-zero limit.

2) Scenario B:Next, we turn our attention to Scenario B
and present the following result.

Theorem 3:With the DF protocol, for fixedpp, Eu, andEr,
whenpu = Eu

Mα , pr = Er

Mβ , with α ≥ 0, β ≥ 0, asM → ∞,
we have

RDF
i − min

(
R̄DF

1,i, R̄
DF
2,i

) M→∞−→ 0, (40)

where

R̄DF
1,i =

τc − τp
2τc

log2

(

1 +
Eu

Mα−1

σ4
AR,i + σ4

RB,i

σ2
AR,i + σ2

RB,i

)

, (41)

R̄DF
2,i = min

(
R̄DF

AR,i, R̄
DF
RB,i

)
+ min

(
R̄DF

BR,i, R̄
DF
RA,i

)
, (42)

with

R̄DF
AR,i =

τc − τp
2τc

log2

(

1 +
Eu

Mα−1

σ4
AR,i

σ2
AR,i + σ2

RB,i

)

, (43)

R̄DF
RA,i =

τc − τp
2τc

log2







1 +

Er

Mβ−1

σ4
AR,i

N∑

j=1

(

σ2
AR,j + σ2

RB,j

)








,

(44)

andR̄DF
BR,i andR̄DF

RB,i are obtained by replacing the subscripts
“AR”, “RB” in R̄DF

AR,i and R̄DF
RA,i with the subscripts “RB”,

“AR”, respectively.
Theorem 3 indicates that when both the transmit power of

each userpu and the transmit power of the relaypr are scaled
down inversely proportional toM (asM → ∞), the effects
of estimation error, residual self-interference, and inter-user
interference vanish, and the only remaining impairment comes
from the noise at users and the relay. Moreover, when each
user’s transmit power is sufficiently large, i.e.,Eu → ∞, the
large-scale approximation ofRDF

i is determined only bȳRDF
RA,i

and R̄DF
RB,i, suggesting that the bottleneck of SE appears in

the BC phase. In contrast, when the relay’s transmit power
becomes large, i.e.,Er → ∞, the large-scale approximation
of RDF

i is determined only bȳRDF
1,i, R̄

DF
AR,i, R̄

DF
BR,i, indicating

that the bottleneck of SE occurs in the MAC phase.
Also, when we cut down the transmit powers of the relay

and/or of each user too much, namely, 1)α > 1, andβ ≥ 0,
2) α ≥ 0, andβ > 1, 3) α > 1, andβ > 1, RDF

i converges
to zero. On the contrary, when we cut down both the transmit
powers of the relay and of each user moderately, i.e.,0 ≤
α < 1 and0 ≤ β < 1, RDF

i grows unboundedly. So the most
important task is how to select the parametersα and β to
makeRDF

i converge to a non-zero finite limit. We discuss this
in the following corollaries.

Corollary 1: With the DF protocol, for fixedpp, Eu, and
Er, whenα = β = 1, namely,pu = Eu

M
, pr = Er

M
, asM →

∞, the SE of thei-th user pair has the limit

RDF
i → min

(
R̄DF

1,i, R̄
DF
2,i

)
, (45)

where

R̄DF
1,i =

τc − τp
2τc

log2

(

1 +
Eu

(
σ4
AR,i + σ4

RB,i

)

σ2
AR,i + σ2

RB,i

)

, (46)

R̄DF
2,i = min

(
R̄DF

AR,i, R̄
DF
RB,i

)
+ min

(
R̄DF

BR,i, R̄
DF
RA,i

)
, (47)

with

R̄DF
AR,i =

τc − τp
2τc

log2

(

1 +
Euσ

4
AR,i

σ2
AR,i + σ2

RB,i

)

, (48)

R̄DF
RA,i =

τc − τp
2τc

log2







1 +

Erσ
4
AR,i

N∑

j=1

(

σ2
AR,j + σ2

RB,j

)








, (49)

andR̄DF
BR,i andR̄DF

RB,i are obtained by replacing the subscripts
“AR”, “RB” in R̄DF

AR,i and R̄DF
RA,i with the subscripts “RB”,

“AR”, respectively.
Corollary 1 reveals that when both the transmit powers of

the relay and of each user are scaled down with the same
speed, i.e.,1/M , RDF

i converges to a non-zero limit. Moreover,
this non-zero limit is an increasing function with respect to Eu

andEr , while a decreasing function with respect to the number
of user pairsN .

Corollary 2: With the DF protocol, for fixedpp, Eu, and
Er, whenα = 1 and0 ≤ β < 1, namely,pu = Eu

M
, pr = Er

Mβ ,
asM → ∞, the SE of thei-th user pair has the limit

RDF
i → τc − τp

2τc
log2

(

1 +
Eu

(
σ4
AR,i + σ4

RB,i

)

σ2
AR,i + σ2

RB,i

)

. (50)

Corollary 2 suggests that when we cut down the transmit
power of each user too much, i.e.,0 ≤ β < α = 1, the
large-scale approximation of the SE is determined by the
performance in the MAC phase, i.e.,R̄DF

1,i, which depends only
onEu, and is independent ofEr. This result is expected since
when the transmit power of each user is much less than the
transmit power of the relay, the bottleneck of SE occurs in the
MAC phase. On the other hand, when the transmit power of
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the relay is cut down more compared with that of each user,
i.e., 0 ≤ α < β = 1, the bottleneck of SE appears in the BC
phase, thusRDF

i is determined bȳRDF
RA,i andR̄DF

RB,i as shown
in the following corollary.

Corollary 3: With the DF protocol, for fixedpp, Eu, and
Er, when0 ≤ α < 1 andβ = 1, namely,pu = Eu

Mα , pr = Er

M
,

asM → ∞, the SE of thei-th user pair has the limit

RDF
i → τc − τp

2τc
log2







1 +

Erσ
4
AR,i

N∑

j=1

(

σ2
AR,j + σ2

RB,j

)








(51)

+
τc − τp
2τc

log2







1 +

Erσ
4
RB,i

N∑

j=1

(

σ2
AR,j + σ2

RB,j

)








.

3) Scenario C:Finally, a corresponding power-scaling law
for Scenario C is obtained as follows.

Theorem 4:With the DF protocol, for fixedEu, Er, and
Ep, whenpu = Eu

Mα , pr = Er

Mβ , andpp =
Ep

Mγ , with α ≥ 0,
β ≥ 0, andγ > 0, asM → ∞, we have

RDF
i − min

(
R̄DF

1,i, R̄
DF
2,i

) M→∞−→ 0, (52)

where

R̄DF
1,i =

τc − τp
2τc

log2

(

1 +
τpEuEp

Mα+γ−1

β4
AR,i + β4

RB,i

β2
AR,i + β2

RB,i

)

, (53)

R̄DF
2,i = min

(
R̄DF

AR,i, R̄
DF
RB,i

)
+ min

(
R̄DF

BR,i, R̄
DF
RA,i

)
, (54)

with

R̄DF
AR,i =

τc − τp
2τc

log2

(

1 +

τpEuEp

Mα+γ−1β
4
AR,i

β2
AR,i + β2

RB,i

)

, (55)

R̄DF
RA,i =

τc − τp
2τc

log2







1 +

τpErEp

Mβ+γ−1 β
4
AR,i

N∑

j=1

(

β2
AR,j + β2

RB,j

)








, (56)

andR̄DF
BR,i andR̄DF

RB,i are obtained by replacing the subscripts
“AR”, “RB” in R̄DF

AR,i and R̄DF
RA,i with the subscripts “RB”,

“AR”, respectively.

As expected, the large-scale approximation of the SERDF
i

depends on the relationship betweenα, β, andγ. Moreover,
the termα + γ determines the SE in the MAC phase, while
β+γ determines the SE in the BC phase, as elaborated in the
following corollaries.

Corollary 4: With the DF protocol, for fixedEu, Er, and
Ep, whenα = β > 0 andα + γ = 1, namely,pu = Eu

Mα ,
pr = Er

Mβ , andpp =
Ep

Mγ , with γ > 0, asM → ∞, the SE of
the i-th user pair has the limit

RDF
i → min

(
R̄DF

1,i, R̄
DF
2,i

)
, (57)

where

R̄DF
1,i =

τc − τp
2τc

log2

(

1 +
τpEuEp

(
β4
AR,i + β4

RB,i

)

β2
AR,i + β2

RB,i

)

,

(58)

R̄DF
2,i = min

(
R̄DF

AR,i, R̄
DF
RB,i

)
+ min

(
R̄DF

BR,i, R̄
DF
RA,i

)
, (59)

with

R̄DF
AR,i =

τc − τp
2τc

log2

(

1 +
τpEuEpβ

4
AR,i

β2
AR,i + β2

RB,i

)

, (60)

R̄DF
RA,i =

τc − τp
2τc

log2







1 +

τpErEpβ
4
AR,i

N∑

j=1

(

β2
AR,j + β2

RB,j

)








, (61)

andR̄DF
BR,i andR̄DF

RB,i are obtained by replacing the subscripts
“AR”, “RB” in R̄DF

AR,i and R̄DF
RA,i with the subscripts “RB”,

“AR”, respectively.

Corollary 4 presents a trade-off between the transmit powers
of each pilot symbol and of each user/the relay. In other
words, if we cut down the transmit power of each pilot
symbol too much, which causes poor channel estimation
accuracy, the transmit power of each user/the relay should be
increased to compensate this imperfection and maintain the
same asymptotic SE.

Corollary 5: With the DF protocol, for fixedEu, Er, and
Ep, whenα > β ≥ 0 and α + γ = 1, namely,pu = Eu

Mα ,
pr = Er

Mβ , andpp =
Ep

Mγ , with γ > 0, asM → ∞, the SE of
the i-th user pair has the limit

RDF
i → τc − τp

2τc
log2

(

1 +
τpEuEp

(
β4
AR,i + β4

RB,i

)

β2
AR,i + β2

RB,i

)

.

(62)

From Corollary 5, we can see that the limit ofRDF
i is an

increasing function with respect toEu andEp, indicating that
we can boost the SE by increasing the transmit power of each
user and of each pilot symbol. In addition, the limit ofRDF

i is
independent ofN , indicating that the sum SE of the system
is an increasing function with respect toN .

Corollary 6: With the DF protocol, for fixedEu, Er, and
Ep, when 0 ≤ α < β and β + γ = 1, namely,pu = Eu

Mα ,
pr = Er

Mβ , andpp =
Ep

Mγ , with γ > 0, asM → ∞, the SE of
the i-th user pair has the limit

RDF
i → τc − τp

2τc
log2







1 +

τpErEpβ
4
AR,i

N∑

j=1

(

β2
AR,j + β2

RB,j

)








(63)

+
τc − τp
2τc

log2







1 +

τpErEpβ
4
RB,i

N∑

j=1

(

β2
AR,j + β2

RB,j

)








.

Corollary 6 provides the trade-off between the transmit
powers of the relay and of each pilot symbol.
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V. POWER ALLOCATION

Power allocation is an effective means to enhance the sum
SE of the system. In this section, we assume that the design
for channel training stage is done in advance, i.e., the pilot
power pp is determined. We are interested in designing a
power allocation algorithm in the data transmission stage
maximizing the sum SE subject to a total power constraint,

i.e.,
N∑

i=1

(pA,i + pB,i) + pr ≤ P . For notational simplicity,

we defineN , {1, . . . , N}, pA , [pA,1, . . . , pA,N ]
T , and

pB , [pB,1, . . . , pB,N ]
T .

For analytical tractability, we use the large-scale approx-
imation (27) in Theorem 1 instead of the exact expression
(24). Hence, the power allocation optimization problem is
formulated as

maximize
pA,pB,pr

N∑

i=1

R̃DF
i (64)

subject to
N∑

i=1

(pA,i + pB,i) + pr ≤ P

pA ≥ 0,pB ≥ 0, pr ≥ 0

R̃DF
i ≥ Rmin, i ∈ N

where Rmin is the minimum SE requirement of thei-th
user pair. Sincelog(·) is an increasing function, (64) can be
equivalently reformulated asPDF

1 :

minimize
pA,pB,pr

γDF
i

,γDF
A,i

,γDF
B,i

N∏

i=1

(
1 + γDF

i

)−1

subject to γDF
i ≤ aDF

i pA,i + bDF
i pB,i

N∑

j=1

(
cDF
i,jpA,i + dDF

i,jpB,i

)
+ 1

, i ∈ N

γDF
i ≤ γDF

A,i + γDF
B,i + γDF

A,iγ
DF
B,i, i ∈ N

γDF
A,i ≤ min

{
aDF
i pA,i

gi
,

pr
eDF
i pr + fDF

i

}

, i ∈ N

γDF
B,i ≤ min

{

bDF
i pB,i

gi
,

pr

ẽDF
i pr + f̃DF

i

}

, i ∈ N

N∑

i=1

(pA,i + pB,i) + pr ≤ P

pA ≥ 0,pB ≥ 0, pr ≥ 0

(
γDF
i

)−1
(

2
2τcRmin
τc−τp − 1

)

≤ 1, i ∈ N

where γDF ,
[
γDF
1 , . . . , γDF

N

]T
, γDF

A ,
[
γDF
A,1, . . . , γ

DF
A,N

]T
,

γDF
B ,

[
γDF
B,1, . . . , γ

DF
B,N

]T
, gi =

N∑

j=1

(
cDF
i,jpA,i + dDF

i,jpB,i

)
+ 1,

aDF
i =

Mσ4
AR,i+σ2

AR,iσ
2
RB,i

σ2
AR,i

+σ2
RB,i

, bDF
i =

Mσ4
RB,i+σ2

AR,iσ
2
RB,i

σ2
AR,i

+σ2
RB,i

,

cDF
i,j =

{

σ̃2
AR,i, j = i,

βAR,j , j 6= i,
,

eDF
i =

βRB,i

Mσ4
RB,i

N∑

j=1

(
σ2
AR,j + σ2

RB,j

)
, fDF

i =

1
Mσ4

RB,i

N∑

j=1

(
σ2
AR,j + σ2

RB,j

)
, anddDF

i,j , ẽ
DF
i , f̃DF

i are obtained

by replacing the subscripts “AR”, “RB” with “RB”, “AR” in
cDF
i,j , e

DF
i , fDF

i , respectively.
The above problemPDF

1 is identified as a comple-
mentary geometric programming (CGP) problem, which
is nonconvex. Also,γDF

i , γDF
A,i, and γDF

B,i are considered
as the SINR of min

(
RDF

1,i, R
DF
2,i

)
, min

(
RDF

AR,i, R
DF
RB,i

)
, and

min
(
RDF

BR,i, R
DF
RA,i

)
, respectively. In addition, we have re-

placed the equality “=” with “ ≤” in the first four constraints
of problem PDF

1 ; however, this does not change or relax
the original problem (64), since the objective function is
decreasing withγDF

i . Therefore, we can guarantee that these
four constraints must be active at any optimal solution ofPDF

1 .
Although the CGP problem is nonconvex, we can obtain

its local optimum solution by jointly solving a sequence
of convex GP problems; this is a technique that has been
widely used in the resource allocation literature, such as [5],
[22], [37]–[40]. Next, we are dedicated to transformingPDF

1

into a standard GP problem that can be solved efficiently
with standard optimization tools such as CVX or ggplab.
Since the objective function1 + γDF

i can be approximated

by a monomial functionωDF
i

(
γDF
i

)µDF
i , whereµDF

i =
γ̂DF
i

1+γ̂DF
i

and ωDF
i =

(
γ̂DF
i

)−µDF
i
(
1 + γ̂DF

i

)
(which are obtained by

guaranteeing that both the values and the first gradients of
the approximations and of the original functions are equal
at the same specific points, i.e., by solving the equations

ωDF
i

(
γ̂DF
i

)µDF
i = 1 + γ̂DF

i and ωDF
i µDF

i

(
γ̂DF
i

)µDF
i −1

= 1), the
main challenge to convertPDF

1 into a GP problem is to
transform the first two inequality constraints into the form
of posynomials. According to [40], [41], the geometric mean
is no larger than the arithmetic mean for any set of positive
numbers; thus we have

aDF
i pA,i + bDF

i pB,i ≥
(

aDF
i pA,i

νDF
A,i

)νDF
A,i
(

bDF
i pB,i

νDF
B,i

)νDF
B,i

, (65)

where νDF
A,i =

aDF
i p̂A,i

aDF
i p̂A,i+bDF

i p̂B,i
, νDF

B,i =
bDF
i p̂B,i

aDF
i p̂A,i+bDF

i p̂B,i
, and

p̂A,i, p̂B,i are the initialization values.
As a result, the first inequality constraint inPDF

1 can be
approximated by [40]

γDF
i ≤

(
aDF
i pA,i

νDF
A,i

)νDF
A,i
(

bDF
i pB,i

νDF
B,i

)νDF
B,i

N∑

j=1

(
cDF
i,jpA,i + dDF

i,jpB,i

)
+ 1

, i ∈ N . (66)

Now, we focus on the approximation of the second inequal-
ity constraint. Following the idea proposed in [37, Lemma
1], we use a monomial functiong(x, y) = ηxλ1yλ2 to
approximatef(x, y) = x + y + xy near an arbitrary point
x̂, ŷ > 0. To make the approximation accurate, we need to
ensure that the following equations hold and then obtain its
solution:






x̂+ ŷ + x̂ŷ = ηx̂λ1 ŷλ2

1 + ŷ = ηλ1x̂
λ1−1ŷλ2

1 + x̂ = ηλ2x̂
λ1 ŷλ2−1

⇒







λ1 = x̂(1+ŷ)
x̂+ŷ+x̂ŷ

,

λ2 = ŷ(1+x̂)
x̂+ŷ+x̂ŷ

,

η = (x̂+ ŷ + x̂ŷ) x̂−λ1 ŷ−λ2 .
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To this end, the second inequality constraint inPDF
1 can be

approximated by

γDF
i ≤ ηDF

i

(
γDF
A,i

)λDF
A,i
(
γDF
B,i

)λDF
B,i , i ∈ N , (67)

whereηDF
i =

(
γ̂DF
A,i + γ̂DF

B,i + γ̂DF
A,iγ̂

DF
B,i

) (
γ̂DF
A,i

)−λDF
A,i
(
γ̂DF
B,i

)−λDF
B,i ,

λDF
A,i =

γ̂DF
A,i(1+γ̂DF

B,i)
γ̂DF
A,i

+γ̂DF
B,i

+γ̂DF
A,i

γ̂DF
B,i

,

λDF
B,i =

γ̂DF
B,i(1+γ̂DF

A,i)
γ̂DF
A,i

+γ̂DF
B,i

+γ̂DF
A,i

γ̂DF
B,i

, andγ̂DF
A,i, γ̂

DF
B,i are the initialization

values.
We now outline the steps to solve the original problemPDF

1

in Algorithm 1.
Note that we have removedωDF

i in the objective function,
since they do not affect the optimization problem. Also, five
extra inequalities as trust region constraints are included,
which limit how much the variables are allowed to differ
from the current guesŝγDF

i , γ̂DF
A,i, and γ̂DF

B,i. The limit of any
convergent sequence generated by Algorithm 1 is a Karush-
Kuhn-Tucker point, and the detailed proof can be found in
[42]. The result holds provided Slater’s constraint qualification
condition holds. The parameterθ > 1 controls the desired
accuracy. More precisely, whenθ is close to 1 it provides good
accuracy for the monomial approximation but with slower
convergence speed, and vice versa ifθ is large. As discussed
in [41], θ = 1.1 offers a good tradeoff between the accuracy
and convergence speed.

Algorithm 1 focuses on the case where each user transmits
with a different power, and yields a local optimum of the
original problemPDF

1 by solving a sequence of GPs. Now, we
turn our attention to the scenario where all the users transmit
with the same power, i.e.,pA,i = pB,i = pu and Rmin is
very low such that the constraint̃RDF

i ≥ Rmin, i ∈ N can be
neglected; hence, the problem (64) reduces to the following
special case:

PDF
3 : maximize

pu,pr

N∑

i=1

R̃DF
i

subject to 2Npu + pr ≤ P, pu ≥ 0, pr ≥ 0.

Theorem 5:PDF
3 is a convex optimization problem.

Proof: See Appendix B.
Since the optimization problemPDF

3 is convex, the optimal
solutionspDF,opt

u ∈
(
0, P

2N

]
andpDF,opt

r ∈ (0, P ] maximizing the
sum SE can be obtained efficiently by adopting some standard
techniques, such as the bisection method with respect toP ,
due to the convexity of the optimization problemPDF

3 .

VI. N UMERICAL RESULTS

We now present numerical results to validate the above
analytical results. Unless otherwise specified, the following
set of parameters are used in simulation. The length of the
coherence interval isτc = 196 (symbols), chosen by the
LTE standard. The different large-scale fading parameters
are arbitrarily generated byβAR,i = zi (rAR,i/r0)

α and
βRB,i = zi (rRB,i/r0)

α, where zi is a log-normal random
variable with standard deviation8 dB, rAR,i and rRB,i are
the locations of TAR,i and TRB,i from the relay,α = 3.8
is the path loss exponent, andr0 denotes the guard interval

Algorithm 1 Successive approximation algorithm forPDF
1

1) Initialization. Define a toleranceǫ and parameterθ. Setk =
1, the initial values of̂γDF

i , γ̂DF
A,i andγ̂DF

B,i are chosen according
to the SINR in Theorem 1. Also, we setp̂A,i = p̂B,i =

P
4N ,

2) Iteration k. Compute µDF
i =

γ̂DF
i

1+γ̂DF
i

,

νDF
A,i =

aDF
i p̂A,i

aDF
i p̂A,i+bDF

i p̂B,i
, νDF

B,i =
bDF
i p̂B,i

aDF
i p̂A,i+bDF

i p̂B,i
,

ηDF
i =

(
γ̂DF
A,i + γ̂DF

B,i + γ̂DF
A,iγ̂

DF
B,i

) (
γ̂DF
A,i

)−λDF
A,i
(
γ̂DF
B,i

)−λDF
B,i ,

λDF
A,i =

γ̂DF
A,i(1+γ̂DF

B,i)
γ̂DF
A,i

+γ̂DF
B,i

+γ̂DF
A,i

γ̂DF
B,i

, λDF
B,i =

γ̂DF
B,i(1+γ̂DF

A,i)
γ̂DF
A,i

+γ̂DF
B,i

+γ̂DF
A,i

γ̂DF
B,i

. Then,

solve the following GP problemPDF
2 :

minimize
pA,pB,pr

γDF
i

,γDF
A,i

,γDF
B,i

N∏

i=1

(
γDF
i

)−µDF
i

subject to θ−1p̂DF
A,i ≤ pDF

A,i ≤ θp̂DF
A,i, i ∈ N

θ−1p̂DF
B,i ≤ pDF

B,i ≤ θp̂DF
B,i, i ∈ N

θ−1γ̂DF
i ≤ γDF

i ≤ θγ̂DF
i , i ∈ N

θ−1γ̂DF
A,i ≤ γDF

A,i ≤ θγ̂DF
A,i, i ∈ N

θ−1γ̂DF
B,i ≤ γDF

B,i ≤ θγ̂DF
B,i, i ∈ N

γDF
i (uA,i)

−νDF
A,i

(

bDF
i pB,i

νDF
B,i

)−νDF
B,i

gi ≤ 1, i ∈ N

γDF
i

(
ηDF
i

)−1 (
γDF
A,i

)−λDF
A,i
(
γDF
B,i

)−λDF
B,i ≤ 1, i ∈ N

γDF
A,i

(
aDF
i

)−1
p−1
A,igi ≤ 1, i ∈ N

γDF
B,i

(
bDF
i

)−1
p−1
B,igi ≤ 1, i ∈ N

γDF
A,ip

−1
r

(
eDF
i pr + fDF

i

)
≤ 1, i ∈ N

γDF
B,ip

−1
r

(

ẽDF
i pr + f̃DF

i

)

≤ 1, i ∈ N
N∑

i=1

(pA,i + pB,i) + pr ≤ P

pA ≥ 0,pB ≥ 0, pr ≥ 0

(
γDF
i

)−1
(

2
2τcRmin
τc−τp − 1

)

≤ 1, i ∈ N

whereuA,i =
aDF
i pA,i

νDF
A,i

.

Denote the optimal solutions byp(k),DF
A,i , p

(k),DF
B,i , γ

(k),DF
i ,

γ
(k),DF
A,i , γ(k),DF

B,i , i ∈ N .

3) Stopping criterion. If maxi |p(k),DF
A,i − p̂DF

A,i| < ǫ and/or

maxi |p(k),DF
B,i − p̂DF

B,i| < ǫ and/ormaxi |γ(k),DF
i − γ̂DF

i | < ǫ

and/ormaxi |γ(k),DF
A,i −γ̂DF

A,i| < ǫ and/ormaxi |γ(k),DF
B,i −γ̂DF

B,i| <
ǫ, stop; otherwise, go to step 4).
4) Update initial values. Set p̂DF

A,i = p
(k),DF
A,i , p̂DF

B,i = p
(k),DF
B,i ,

γ̂DF
i = γ

(k),DF
i , γ̂DF

A,i = γ
(k),DF
A,i , γ̂DF

B,i = γ
(k),DF
B,i , andk = k+1.

Go to step 2).

which specifies the nearest distance between the users and
the relay. The relay is located at the center of a cell with
a radius of1000 meters andr0 = 100 meters. We choose
N = 5, βAR = [0.2688, 0.0368, 0.00025, 0.1398, 0.0047], and
βRB = [0.0003, 0.00025, 0.0050, 0.0794, 0.0001]. The length
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of the pilot sequences isτp = 2N which is the minimum
requirement. We assume that each user has the same transmit
power, i.e.,pA,i = pB,i = pu.

A. Validation of analytical expressions and evaluating the
impact ofτp

We assume thatpp = pu, and that the total transmit power
of theN user pairs is equal to the transmit power of the relay,
i.e., pr = 2Npu.

Fig. 2(a) shows the sum SE versus the transmit power of
each userpu for different number of relay antennas. Note that
the “Approximations” curves are obtained by using (27), and
the “Numerical results” curves are generated according to (24)
by averaging over104 independent channel realizations. As
can be readily observed, the large-scale approximations are
very accurate, especially for large antenna arrays. Moreover,
we can see that increasing the number of relay antennas
significantly yields higher SE, as expected.

Fig. 2(b) studies the impact ofτp on the sum SE. We
can see that at moderate and lowpp, there is an optimal
τp maximizing the sum SE. Also, the optimal length of pilot
sequence decreases with the transmit power of pilot sequence
pp. In contrast, at highpp, i.e., pp = 10 dB, the sum SE is a
decreasing function with respect toτp, which means that the
optimal τp is equal to2N .

B. Power-scaling laws

In this subsection, we provide numerical simulation results
to verify the power-scaling laws presented in the previous
subsections, and investigate the potential for power saving
when employing large number of antennas at the relay. Since
our goal is to show the general power saving behavior and it
is unnecessary to pay much attention to one particular user’s
location, here we setβAR,i = βRB,i = 1. Note that the
curves labeled as “Approximations” are obtained according
to Theorems 1.

1) Scenario A: Fig. 3 verifies the analytical results for
Scenario A. The curves labelled as “Scenario A”, are plotted
according to Theorem 2. It can be readily observed that in
the largeM regime, the asymptotic curves converge to the
exact curves, demonstrating the accuracy of the asymptotic
analysis. In addition, whenγ > 1, i.e., γ = 2, the SE
gradually approaches zero. In contrast, when0 < γ < 1, i.e.,
γ = 0.8, the SE of both schemes grows unbounded. Finally,
when γ = 1, the SE converges to a non-zero limit for both
schemes.

2) Scenario B:Fig. 4 investigates how the scaling of the
transmit power of each userpu = Eu

Mα and the transmit power
of the relaypr = Er

Mβ affects the achievable SE. Note that
the curves labelled as “Scenario B” are generated by using
Theorem 3, while the curves labelled as “Scenario B-Case X”
with X ∈ {I, II , III } are plotted according to Corollaries 1–3,
respectively.

Fig. 4(a) studies three different cases according to the values
of α andβ. In agreement with Corollaries 1–3, the sum SE
saturates in the asymptotical largeM regime for all the three
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Fig. 2: Validation of analytical expressions and impact ofτp
for N = 5, pp = pu andpr = 2Npu.
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Fig. 3: Sum SE versus the number of relay antennasM for
N = 5, pu = 10 dB, pr = 20 dB, andpp = Ep/M

γ with
Ep = 10 dB.

cases. As readily observed, Case I and Case II achieve the
same performance due to the setting ofEr = 2NEu.

Fig. 4(b) illustrates the other two extreme scenarios where
the transmit power down-scaling is either too aggressive ortoo
moderate. For the former scenario, three different cases are
studied, i.e.,α > 1, β ≥ 0, α ≥ 0, β > 1, andα > 1, β > 1.
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Fig. 4: Sum SE versus the number of relay antennasM for
N = 5, pp = 10 dB, pu = Eu/M

α with Eu = 10 dB, and
pr = Er/M

β with Eu = 20 dB.

As expected, when the number of relay antennas increases,
the sum SE gradually reduces to zero. However, the speed
of reduction varies significantly depending on the scaling
parameters. The larger the scaling parameters, the faster the
decay SE. On the other hand, when we cut down the transmit
powers of each user and of the relay moderately, the sum SE
grows unboundedly.

3) Scenario C:Fig. 5 demonstrates the tradeoff between the
user/relay power and the pilot symbol power. For illustration
purposes, two extreme scenarios where the transmit power
down-scaling is either too aggressive or too moderate are
considered. For the former scenario, two sets of curves are
drawn according toα = 1.3, β = 1.1, γ = 0.5 andα = 0.8,
β = 0.6, γ = 1, which satisfyα+ γ = 1.8 andβ + γ = 1.6.
When the number of relay antennas grows large, the sum SE
of all system configurations smoothly converges to zero, as
predicted. Moreover, the gaps between the two sets of curves
reduce withM and eventually vanish. This indicates that as
long asα + γ and β + γ are the same, the asymptotic sum
SE remains unchanged. Now, let us focus on the two curves
associated withN = 5. Interestingly, we see that the curve
associated withγ = 0.5 yields better sum SE in the finite
antenna regime, despite the fact that the user or relay poweris

over-reduced compared to theγ = 1 case, which suggests that
it is of crucial importance to improve the channel estimation
accuracy. The same behavior appears for the unbounded SE
scenario whereα+ γ = 0.6 andβ + γ = 0.7.
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Fig. 5: Sum SE versus the number of relay antennasM for
pu = Eu/M

α with Eu = 10 dB, pr = Er/M
β with

Er = 15 dB, andpp = Ep/M
γ with Ep = 0 dB.

C. Power allocation

Fig. 6(a) illustrates the impact of the optimal power al-
location scheme on the sum SE when all users’ large-scale
fading are different. The optimal power allocation curves
are generated by Algorithm 1. As a benchmark scheme for
comparison, we also plot the sum SE with uniform power
allocation, i.e., the relay transmit power equals to the sum
user transmit power. As can be observed, the optimal power
allocation policy respectively provides79.11% and 82.67%
SE enhancement forpp = 10 dB and pp = 20 dB when
M = 300, indicating that high channel estimation accuracy
slightly boosts the power allocation efficiency. Moreover,by
focusing on the case where every user has the same transmit
power, i.e,pA,i = pB,i = pu, we can see that the optimal
user transmit power is a decreasing function with respect to
the number of user pairsN , for a given power budgetP = 10
dB.

Fig. 6(b) further examines the impact of key system pa-
rameters such asM , andpp on the optimal power allocation
scheme. As can be seen, with fixed number of user pairs
N = 5, the optimal user transmit powerpDF,opt

u with M = 100
is larger than that withM = 50, suggesting that we should
increase the transmit power of each user when the number of
relay antennas is large. In addition, when the pilot training
power increases, i.e., frompp = −20 dB to pp = 0 dB, the
optimal user transmit powerpDF,opt

u also increases, indicating
that when the channel estimation accuracy is improved, we
need to use a higher transmit power for each user.

VII. C ONCLUSION

The paper studied the sum SE of a multipair two-way DF
relaying system with the MR processing by taking realistic
CSI assumption into account. In particular, a closed-form
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Fig. 6: Sum SE for a given power budgetP = 10 dB.

large-scale approximation of the SE was obtained that is
tight when the number of relay antennas is large. Based
on the approximation, the system’s power-scaling laws were
characterized, which demonstrated that the transmit powers
of the users, relay, and pilot symbol can be substantially
reduced to maintain the desired SE. In addition, it was revealed
that there exists a tradeoff between the user/relay transmit
power and pilot symbol power, which provides great flexibility
for the design of practical systems. Finally, the transmit
powers of each user and the relay were jointly optimized in
terms of maximizing the sum SE, which substantially enhance
the performance compared to the uniform power allocation
scheme. For the special case where all users have the same
transmit power, it turns out that the users should decrease their
transmit power when the number of user pairs becomes large.
On the other hand, the users should increase their transmit
power when the number of relay antennas increases or when
the channel estimation accuracy improves.

APPENDIX A
PROOF OFTHEOREM 1

Here we only present the detailed derivation forR̃DF
1,i and

R̃DF
RA,i, sinceR̃DF

AR,i and R̃DF
BR,i can be obtained in a straight-

forward way, whileR̃DF
RB,i can be derived in the same fashion

as R̃DF
RA,i.

First, we focus on (13), which consists of five terms: 1)
desired signal power of TB,i A

DF
i ; 2) desired signal power of

TA,i B
DF
i ; 3) estimation errorCDF

i ; 4) inter-user interference
DDF

i ; 5) compound noiseEDF
i . For each of these five terms, we

will subsequently derive a deterministic equivalent expression.
Before proceeding, we first review some useful results,

which are given in the following lemma.
Lemma 1:Let x ∼ CN (0, σ2

xIM ) andy ∼ CN (0, σ2
yIM ).

Assume thatx andy are mutually independent. Then, we have

1

M
x†x

a.s.→ σ2
x, M → ∞, (68)

1

M
x†y

a.s.→ 0, M → ∞, (69)

1

M2
|x†y|2 − 1

M
σ2
xσ

2
y

a.s.→ 0, M → ∞. (70)

Now, we compute the five terms one by one.
1) Deterministic equivalent forADF

i : we have 1
M2A

DF
i =

pA,i

M2

(
|ĝH

AR,iĝAR,i|2 + |ĝH
RB,iĝAR,i|2

)
.

Then, by invoking Lemma 1, we have

1

M2
ADF

i − pA,i

(

σ4
AR,i +

1

M
σ2
AR,iσ

2
RB,i

)

a.s.→ 0. (71)

2) Deterministic equivalents forBDF
i , CDF

i , DDF
i , andEDF

i :
Similarly, we obtain

1

M2
BDF

i − pB,i

(

σ4
RB,i +

1

M
σ2
AR,iσ

2
RB,i

)

a.s.→ 0, (72)

1

M2
CDF

i − (73)

1

M

(
σ2
AR,i + σ2

RB,i

) (
pA,iσ̃

2
AR,i + pB,iσ̃

2
RB,i

) a.s.→ 0,

1

M2
DDF

i − (74)

1

M

∑

j 6=i

(pA,jβAR,j + pB,jβRB,j)
(
σ2
AR,i + σ2

RB,i

) a.s.→ 0,

1

M2
EDF

i − 1

M

(
σ2
AR,i + σ2

RB,i

) a.s.→ 0. (75)

Substituting (71), (72), (73), (74), and (75) into (13) and
(19), and after some algebraic manipulations, we obtainR̃DF

1,i,
R̃DF

AR,i, R̃
DF
BR,i.

Now, we turn our attention to derivẽRDF
RA,i.

1) ComputeE
{
gT
AR,iĝ

∗
AR,i

}
:

E

{
gT
AR,iĝ

∗
AR,i

}
= E

{
||ĝAR,i||2

}
+ E

{
eTAR,iĝ

∗
AR,i

}
(76)

= Mσ2
AR,i.

2) Compute Var
{
gT
AR,iĝ

∗
AR,i

}
:

Var
{
gT
AR,iĝ

∗
AR,i

}
(77)

= E

{
||ĝAR,i||4

}
+ E

{
|eTAR,iĝ

∗
AR,i|2

}
−M2σ4

AR,i

= Mσ2
AR,iβAR,i.

3) Compute Var
{
gT
AR,iĝ

∗
RB,i

}
:

Var
{
gT
AR,iĝ

∗
RB,i

}
(78)

= E

{
|gT

AR,iĝ
∗
RB,i|2

}
− |E

{
gT
AR,iĝ

∗
RB,i

}
|2 = Mσ2

RB,iβAR,i.

4) Compute
∑

j 6=i

(
E

{
|gT

AR,iĝ
∗
RB,j |2

}
+ E

{
|gT

AR,iĝ
∗
AR,j |2

})
:
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For j 6= i, we obtain

E

{
|gT

AR,iĝ
∗
RB,j |2

}
= Mσ2

RB,jβAR,i, (79)

E

{
|gT

AR,iĝ
∗
AR,j |2

}
= Mσ2

AR,jβAR,i. (80)

Thus, we have
∑

j 6=i

(
E

{
|gT

AR,iĝ
∗
RB,j |2

}
+ E

{
|gT

AR,iĝ
∗
AR,j |2

})
(81)

= MβAR,i

∑

j 6=i

(
σ2
AR,j + σ2

RB,j

)
.

Combining (76), (77), (78), and (81) completes the proof.

APPENDIX B
PROOF OFTHEOREM 5

Using the same argument as in the proof of Theorem 5, it
can be proved that the objective function inPDF

3 is maximized
when2Npu + pr = P .

Before studying the properties of̃RDF
i , we first present the

following useful lemma.

Lemma 2:The functionsg1(x) = log2

(

1 + a1x
b1x+c1

)

and

g2(x) = log2

(

1 + a2(d2−x)
b2(d2−x)+c2

)

are all strictly concave with
respect tox whena1, b1, c1, a2, b2, c2, d2 > 0.

Now, focusing onR̃DF
i and substituting2Npu + pr = P

into R̃DF
i , it is easy to show that̃RDF

1,i, R̃
DF
AR,i, andR̃DF

BR,i can
be reformulated asg1(pu), while R̃DF

RA,i, and R̃DF
RB,i can be

reformulated asg2(pu), hence,R̃DF
1,i, R̃DF

AR,i, R̃DF
BR,i, R̃DF

RA,i,
and R̃DF

RB,i are all concave functions with respect topu.
Due to the convexity preservation property of point-

wise maximum and nonnegative weighted sums operations
[43], R̃DF

2,i = min
(

R̃DF
AR,i, R̃

DF
RB,i

)

+ min
(

R̃DF
BR,i, R̃

DF
RA,i

)

is also a concave function with respect topu. Therefore,
min

(

R̃DF
1,i, R̃

DF
2,i

)

is a concave function, which completes the
proof.
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