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1 Abstract 

Determination of the dispersion characteristics/or morphology of additives in polymer melts 

by fast, reliable and accurate on-line methods is highly desired in the polymer industry. An 

ultraviolet-visible (UV-Vis) spectroscopic methodology is described which meets these demands. 

It is demonstrated that the applied methodology may be developed on a cheap, packaging grade 

of Polylactic Acid (PLLA), an important bioresorbable polymer for the medical device industry, 

and still be accurate when implemented on a production line using a more expensive (medical) 

grade of the polymer compound. Simple chemometric algorithms are applied allowing the data 

processing step to be carried out in near real time, thus providing vital information to process 

operators which allows any out of control process to be identified and rectified without product 

loss. 

Keywords: Biomaterials, Chemometrics, UV-Vis, Polymer, Polylactide, Compounding, 

Extrusion 

 

2 Introduction 

The addition of a particulate material to a polymer matrix is useful for many reasons. 

Additives can be incorporated to improve mechanical properties, barrier properties, aesthetics or 

just to reduce costs where the polymer is relatively expensive. For particulate additives within a 

polymer melt there are two main states; aggregated (or agglomerated) and suspended dispersion 

(Daming et al. 2003). Effective mixing is essential to ensure that the additive is well dispersed, 

ideally in a homogeneous fashion, to obtain improved performance of the polymer composite. 

Non-homogeneous dispersion may be encountered due to agglomeration and also when the forces 

acting on the melt cause breakdown of larger particles or when an inconsistent feed rate is seen. 

Ensuring effective dispersion of additives often means laboratory testing of samples after 

compounding which can be time consuming, in the meantime a batch of product may have been 

produced to unacceptable quality or long lead-times can ensue. In some cases re-compounding is 

necessary, resulting in extra time, energy and expense for the manufacturer. This becomes 

particularly problematic in the case of polymer compounds for the medical industry where quality 

demands are extremely high. 

Medical devices, specifically implantable devices, made from bioresorbable polymeric 

materials offer a number of advantages over their traditional counterparts made from metallic 

materials including an ability to release drugs/bio-active agents at controlled rates(Tsuji et al. 

2003). Additive materials in this case are commonly used to aid healing of the area where the 
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device is implanted(Agrawal and Athanasiou 1997) or tune degradation rates(Ara et al. 2002). 

The medical device industry demands that stringent quality control mechanisms are in place 

where high development costs can effect financial viability. This is especially the case where 

medical grades of polymers have material costs reaching into thousands of euros per kilogram, as 

such high development and waste costs can lead to production of a device being deemed 

unviable. On-line monitoring techniques have the capacity to overhaul the current, wasteful and 

expensive trial and error approach taken to the processing of bioresorbable polymers. Using these 

techniques, quality parameters may be fed back to the user at the earliest stage of development 

allowing processes to be optimised before material is wasted. This reduction in wastage leads to a 

reduction in energy, man hours and subsequently development costs. 

2.1 Monitoring of Particle Size in Compounding of Filled Polymer 

Systems 

On-line monitoring of the composition of polymer blends during extrusion has been 

investigated by both ultrasound measurements of polyethylene (PE) / polypropylene (PP) / 

polystyrene (PS) blends (Gendron et al. 1995) and Small angle light scattering of PE/PS blends 

(Li et al. 1997) and PP / polyolefin elastomer (POE) blends (Alig et al. 2010). While the 

ultrasound measurements provided information on the % loading only, small angle light 

scattering has shown potential for monitoring the morphology of the blend (size and shape of 

different domains in the melt). Monitoring of particulate additives in a polymer compound has 

also been carried out during extrusion. The volume fraction of calcium carbonate (CaCO3) in PS 

was monitored on-line using dielectric measurements (Bur et al. 2002). Volume fraction of CaCO3 

in PP and also volume fraction of PA6-glass fiber filled compounds have been studied by 

terahertz (THz) spectroscopy (Krumbholz et al. 2009). Content (w/w %) of Magnesium 

Hydroxide in  low density polyethylene (LDPE) was monitored during an extrusion process by 

near infrared (NIR) spectroscopy (Barnes and Sibley 2007). For the most part these studies used 

some form of multivariate data (MVDA) analysis in order to extract the relevant data from the 

measurements, the use of MVDA and chemometrics for extrusion monitoring is relatively 

widespread in the modern literature (Rohe et al. 1999; Alig et al. 2005; Becker and Eisenreich 

2005; Vigh et al. 2014; Watari 2014). 

A number of workers have also addressed the problem of determining the particle size of 

additives in a polymer compounding process, as a key measure of the degree of dispersion. 

Several studies have focussed particularly on the exfoliation of nanoclay (breakdown of micro-

sized agglomerates of the clay into nano-thick platelets) during extrusion in a polymer matrix. 

Bur et al. (2005) and Bertolino and Canevarolo (2010) studied this via light intensity 

measurements, whereby, following Mie theory, exfoliated nano-particles scatter less light than 

agglomerated micro-particles and result in a higher intensity light signal being transmitted 

through the melt. UV-vis (Alig et al. 2010), fluorescence (Bur et al. 2007) and NIR-transmission 

spectroscopy (Witschnigg et al. 2010) have also been used to monitor dispersion of polymer/clay 

nanocomposites. 

Monitoring of the morphology of micro-additives in a polymer compound during extrusion has 

been achieved by in-process ultrasound measurements. (Sun et al. 2005) reported the use of a 

neural network to relate degree of dispersion to ultrasonic velocity, attenuation, melt temperature 

and pressure measurements. Ultrasonic attenuation spectroscopy was applied to monitoring of 

particle size in compounding of CaCO3 with PP (Alig et al. 2010). This work differed from the 

previous study in that here use was made of the fact that the ultrasonic attenuation at different 

frequencies is dependent on particle size. Alig et al. (2010) argue this is more directly related to 

particle size than integral attenuation or velocity measurements and hence required less data and 

less complex chemometric modelling for calibration of the measurements to particle size. 



2.2 Model System 

The chosen polymer material for this study, Polylactic acid, is a type of polyester which 

belongs to a group of materials known as bioresorbable polymers which are slowly becoming more 

prevalent in the medical device industry.  

The additive material chosen for the present study represents a type which has been used 

extensively with PLA. This was chosen to ensure that the composites represented a relevant 

material within the medical field. Beta-Tricalcium phosphate (Ca3(PO4)2) or β-TCP, a 

biodegradable, bioactive ceramic material commonly used in orthopaedic devices, has been 

investigated in composites of: PLGA (Ehrenfried et al. 2008), PLLA (Ignatius et al. 2001) and 

PDLLA (Lin et al. 1999). Particle dispersion has been identified in the mentioned studies as a 

parameter which effects final properties of a product, therefore a robust tool to measure this 

during processing would be greatly advantageous. Additionally dimensions of medical devices can 

be in the micro-scale (tubes, membranes, tissue scaffolds etc.), as such it is important that 

agglomerations of filler particles are kept small relative to the product dimensions.  In this work 

we are focussing on monitoring of the size of particulate agglomerates (represented by fixed 

particle size additives), and ensuring that they do not exceed a specific size where they become 

significant relative to the product dimensions and hence could potentially result in aesthetic or 

mechanical defects. Traditional monitoring regimes focus on monitoring fluctuations in 

percentage loading, however with controlled pre-mixing or if using modern controlled feeding 

technology, controlling percentage loading is much less of an issue. Monitoring of PLA based 

polymers by spectroscopic methods reported in the literature focusses on material degradation 

(Wang et al. 2008), this demonstrates the adaptability of the UV-Vis measurement system and 

suggests that future work may be able to combine filler and degradation monitoring using a 

single technique.  

In this manuscript we aim to demonstrate an on-line measurement technique which is capable 

of determining in real time if particle (and by extension agglomerate) sizes are within a specified 

range and are not forming large agglomerates or are breaking down into smaller particulates. The 

technique has the further advantage of 100 % sampling and validating of the filler dispersion in a 

non-invasive manner.  

As defined agglomeration is difficult to control, the methodology was tested using a model 

system of defined particle sizes of β -TCP. The additive with a small mean particle size represents 

well dispersed, and large mean particle size represents fully agglomerated additives. These were 

tested individually, and then in a mixture of sizes to closer represent a real compounding process 

whereby small numbers of large agglomerates may be present among a majority of well-dispersed 

particles. Additionally we report the successful use of multivariate calibration models (using 

linear discriminate analysis (LDA) and partial least squares (PLS) regression), developed on a 

cheap packaging grade material for prediction of the same properties in a more expensive medical 

grade material without the need for a corrective transfer methodology. These two materials 

exhibit different optical properties (i.e. colour) which can be problematic for spectroscopies which 

rely on light transmission. This difference means that a calibration model built for one material 

may not be directly applicable to the other. 

2.3 Multivariate Analysis 

A single spectrum usually contains a large number of variables; two approaches are possible 

to utilise spectral information for calibration of quantitative models, univariate or multivariate 

methodologies. In univariate analysis, covariation with other variables is explicitly neglected and 

this may lead to important features being ignored (Bro and Smilde 2014). For this reason within 

the analytical chemistry field it is standard practice to carry out multivariate analysis on 

spectroscopy data (Bro 2003). In general multivariate models are more adequate than univariate 



models –  however, it is always possible to discard variables, with a mathematical justification, 

such that a univariate approach is re-obtained.  

Multivariate data analysis (MVDA) describes the practice of using mathematical and 

statistical tools to extract information from data tables where each observation contains a large 

number of variables. In such cases, the desired information lies in the correlation structure 

between variables, this often leads to erroneous results when tested independently. MVDA by 

means of projection methods is able to analyse data where challenges such as multidimensionality 

of the data set, multicollinearity, missing data and variation introduced by deviating factors such 

as experimental error and noise occur. Principal Component Analysis (PCA) is a commonly used 

projection method in MVDA, this projects data onto a lower dimensional space where is can be 

easily inspected. Linear Discriminant Analysis (LDA) is a commonly used technique to classify 

data into discrete sets i.e. yes/no, working/broken or running/faulty. Regression modelling such 

as partial least squares (PLS) regression is another type of MVDA where the aim is prediction of 

a response (quantity) rather than classification (Eriksson et al. 2013) 

2.3.1 Transferability of Multivariate Models 

Multivariate calibration models are utilised in combination with these spectroscopic 

techniques, allowing only relevant data to be used to inform the predictive models. This causes 

problems when transferring a model between instruments, material grades or even when using the 

same instrument under different environmental conditions (temperature, relative humidity etc.). 

Various methods of calibration transfer exist and are summarised in a review by (Feudale et al. 

2002). 

 

3 Experimental 

3.1 Materials 

Two grades of PLLA were used: Ingeo 4043D (Natureworks LLC , NE, USA) which is a 

general purpose extrusion packaging grade with D isomer content of 4.2 %; secondly Purasorb 

9620 (Corbion Purac, Gorinchem, Netherlands), a medical grade grade material with 4 % D 

isomer content and a maximum of 0.1 wt % residual monomer. 

Whitlockite β -TCP powders (Plasma Biotal, Derbyshire, UK) with the following 

specifications were used as additives; P228S (mean particle size (D50) - 4.99 µm) and P322S SD 

(mean particle size (D50) - 31.4 µm), referred to from herein nominally as 5, and 30 µm for 

simplicity. 

 

3.2 Extrusion 

The β -TCP powder was dried at 80 ºC before being accurately weighed then tumble mixed 

with the PLLA. All PLLA/ β -TCP powder mixes were then dried in a desiccant drier at 70 ºC 

overnight prior to extrusion. Dispersion trials were carried out using a Haake 16mm twin-screw 

extruder with a 1 mm slit die attached. The extrudate was then fed through a Dr Collins 3-roll 

stack to produce a strip of fixed width and thickness approximately 25mm x 0.5mm. Pre-mixed 

dry blends of PLLA 4043D with 20 % w/w of β -TCP powder or PLLA Purasorb 9620 and 20 % 

w/w β -TCP powder were used direct from the desiccant drier at 70 °C. The extruder was set at 

barrel temperatures of 190 ºC:195 ºC:200 ºC:200 ºC:200 ºC and adapter and die temperatures 

of 200 ºC. 



To ensure residence times and mixing remained constant the extruder was run at 300 rpm 

and feed rate of 15 % of maximum, the extruder was started up with the virgin PLLA material 

followed by the pre-mixed compounds. During extrusion, barrel temperature, pressure, torque, 

screw speed and feed rate were monitored and recorded by the Haake Polysoft operating system. 

On exiting the die the material was chilled on a 3-roll stack initially set to 60 °C and at a line 

speed of 1.6 m/min, the temperature, speed and roll gap were adjusted to achieve a consistent 

thickness of product, (the regularity of this was influenced by the consistency of the powder feed 

from the metering screws). 

In addition to single particle size composites, samples were prepared containing a mixture of 

5 and 30 µm particle sizes, here the total additive concentration was kept at 20 % w/w and the 

ratio of 5:30 µm was varied. This approach was used to create a bimodal size distribution to 

more closely mimic what would likely be seen in a particle agglomeration scenario. Ratios of 19:1, 

18:2 and 15:5 % w/w were used. The β -TCP powder was dried at 80 °C before being accurately 

weighed then tumble mixed with the Natureworks 4034D PLLA. Extrusion was carried out as 

above.  

3.3 Microscopy 

To confirm the loading and particle size post extrusion films of the extrudate were prepared 

and evaluated using a Nikon Eclipse ME600 compound microscope running the NIS-Elements AR 

3.2 software package. 

3.4 UV-Vis Spectroscopy 

UV-Vis spectra were recorded at 10 s intervals through the melt using a FOSAS (FOS-

Messtechnik, Germany) fibre optic spectral acquisition system consisting of a broadband halogen 

light source and a usb spectrometer unit. The fibre optic probes were mounted into the slit die 

channel located directly after the extruder barrel (figure 1). UV-Vis spectra in the wavelength 

range 290 - 980 nm were recorded through the melt with an optical path length of 1 mm. 

 
Figure 1:  Schematic of extruder with  UV-monitoring 

 

3.5 Data Analysis 

Multivariate analyses were carried out using the R statistical language 

(RDevelopmentCoreTeam 2013) and RStudio as a graphical front-end (RStudioTeam 2015). 

Principal component analysis (PCA) was carried out using the prcomp routine in the base R 

package. Linear discriminant analysis (LDA) was carried out using the lda routine in the MASS 

package for R (Venables and Ripley 2002). Partial Least Square (PLS) analysis was carried out 

using the plsr routine in the PLS package (Mevik et al. 2015). Data files were batch imported 

using custom written import routines for the hyperspec package for R(Beleites and Sergo 2015). 



As the filler size is a physical effect it can be observed on the full wavelength range of the 

recorded spectra, therefore no trimming of spectra is carried out. Additionally, standard spectral 

pre-processing methodologies aim to remove the scattering effects which can interfere with 

chemical information in the spectrum (Rinnan et al. 2009) and as such they are not appropriate 

therefore the raw absorbance data is used to train the calibration models.   

To ensure the robustness of the model, extrusion runs were carried out on separate days using 

the Natureworks grade of PLA. Data from the first run was used to calibrate an LDA model 

where groupings of “ good”  and “ bad”  were given to the 5 and 30 µm particle sizes respectively, 

and also to calibrate a PLS model where 5 and 30 µm were used as absolute predictor values. 

Data from a second and third run was used as a validation set, this is presented as a time series. 

Additionally the predictive model was applied to a new set of data containing spectra from 

the Purasorb grade of PLA, again with the aim of correctly classifying and/or quantifying the 

particle size present.  

4 Results and Discussion 

4.1 Monitoring of Different Particle Size Additives during Extrusion 

 

The β -TCP particle size had a noticeable influence on the UV-Vis spectra (Figure 2). Larger 

particle sizes result in a greater amount of light reaching the detector and thus a larger peak. 

While, within this particle size range, larger particles scatter more light; they also have greater 

particle to particle spacing and have a smaller population at the same weight percent as the 

small particles (Wriedt 2012). This results in a greater transparency of the material and thus 

greater signal intensity with increasing particle size.  The particle size and loading post extrusion 

was confirmed, using microscopy, to be that expected from the experimental inputs. 

 

Figure 2 - UV-Vis  spectra of 20 % w/w loading of 5 (green), 30 (black) µm particle size –

TCP in PLLA matrix 

 



While the separation in the spectra for the two particle sizes is obvious when viewing the 

data as a whole, detecting a sudden change in particle size in real time is not quite so obvious 

from the raw spectral data. This means that in time series' data changes become difficult to 

monitor and as such reduction and presentation of useful variables is advantageous. PCA allows 

the variation in the multivariate spectrum to be displayed in a more useful manner (Figure 3). It 

can be seen that when the extruder feed is switched from one particle size to another the change 

is seen quite obviously on the 1st Principal Component (PC1) time series graph. Additionally, on 

in the left hand panel the feed was stopped and the extruder allowed to empty prior to the 

second feed starting whereas in the right hand panel the feeds were swapped without allowing the 

extruder to empty, creating an overlap of feed material. 

 

 
Figure 3 –  PC1 score of each UV-Vis spectrum during the extrusion run 

 

PCA allows the trend to be observed, however there is no qualitative information present. To 

enable the display of such information an LDA model was trained on the initial data and applied 

to the same runs as the PCA model above. It can now be deduced (Figure 4) when the particle 

size is classified as “ good”  or “ bad.”  This output is much more useful for an operator to be 

faced with. 



 
Figure 4 –  LDA showing class membership of spectra recorded as a function of time 

 

Finally a PLS model is trained upon the same datasets. This allows a quantitative prediction 

on the D50 to be displayed (Figure 5). The predictive accuracy is reasonable with steady state 

means being: 31.4±0.64 µm and 30.40±0.20 µm for the 30 µm particles and 13.09±0.16 µm and 

7.62±0.51 µm for the 5 µm particles.  
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Figure 5 - PLS predictions of D50. Data shows a continuous time series where the feed was 

changed at ca. 500 seconds from 30 µm β -TCP pre-mixed with PLLA to 5 µm β -TCP premixed 

with PLLA 



4.1.1 Testing model with Purac Purasorb 9620 (Medical Grade Polymer) 

Transferability of multivariate modelling techniques is a complicated matter and multiple 

corrective methods exist (Feudale et al. 2002). The best scenario however is when a corrective 

method need not be applied. In the case of the two PLLA grades used in this work the former is 

true. The predictive models developed using the Natureworks PLLA were tested using a set of 

melt data recorded during processing of Purac Purasorb 9620 PLLA under the same temperature 

conditions using a 20 % w/w additive content. 

The medical grade PLLA was compounded with the 30 µm β -TCP which was then switched 

to the 5 µm feed mid processing. The previously trained PCA, LDA and PLS models were 

applied to the spectral data, this allows the trend in a continuous time series to be evaluated. 

Additionally qualitative (LDA) and quantitative information (PLS) can be gained (Figure 6). 

Model performance was varied, the LDA was able to correctly classify all the spectra into 

“ good”  or “ bad”  and the PLS was able to predict the size of the 30 µm particles as 29.13±0.64 

µm. However, the 5 µm particles however showed had larger variation of prediction (3.14±2.04 

µm). The process, however, did not reach steady state in the allotted time interval and so the 

variation is to be expected. Pressure fluctuations due to unsteady throughput was observed upon 

switchover. This would be expected to cause some uncertainty in the determination of the 

particle size, however the predictions are still reasonably accurate even with processing issues 

indicating that the model is robust. 

 This result is of relevant interest to industries who do not wish to use the more expensive 

grades of material to calibrate measurement systems, this is an advantage of the UV-Vis system. 

 
Figure 6 –  Evaluation of Purasorb Melt Spectra using PCA, LDA and PLS Models. Data 

shows a continuous time series where the feed was changed at ca. 100 seconds from 30 µm β -

TCP pre-mixed with PLLA to 5 µm β -TCP premixed with PLLA 

 

4.2 Monitoring of Mixed Particle Size Additives during Extrusion 

In order to more closely represent a process where agglomeration of filler particles is taking 

place, different particle sizes of β -TCP were mixed in different ratios. The aim of the monitoring 

in this case was to detect when the w/w of large particle in the extrudate goes above an upper 



limit. A set of 10 spectra were recorded for each variant of loading during extrusion, this was 

used to train the models. The models were then tested on a time series set of data where the feed 

was changed during extrusion. There is not a large observable difference in the spectra of the 

different loadings, and in fact some overlap can be seen (Figure 7), this is owing to the similarity 

of the mixtures.  

 

Figure 7 –  UV-Vis spectra through the melt of PLLA containing different ratios of 5 µm:15 

µm β -TCP premixed with PLLA 

 

As in the previous section three separate models were built on the calibration data set and 

these were used to interrogate the validation data (Figure 8). PCA being the simplest model 

allows visualisation of the variance but offers little more information, LDA and PLS were again 

employed to glean additional information. LDA model accuracy was very high where all but two 

samples were assigned to the correct class, in this case “ bad”  represented the 15:5 w/w ratio 

and “ good”  represented the remaining two ratios. PLS accuracy was calculated from the average 

across the time points of the various materials being processed (Figure 8c), this showed a 

maximum of 0.02 % deviation from expected values (Table 1). This represents a good 

performance showing that the multivariate methodology allows the predictions to be robust even 

when the process is not at a full steady state. 

 



 
Figure 8 - Evaluation of Melt Spectra using PCA, LDA and PLS Models. Data shows a 

continuous time series where the feed was changed at ca. 250 and 500 seconds to a different ratio 

of 5 µm:15 µm β -TCP premixed with PLLA 

 

 

Table 1 –  PLS Predictive Accuracy 

Actual 30:5 ratio Predicted Ratio 

0.33 0.31 

0.05 0.07 

0.1 0.10 

 

Online measurement of mixed size microadditives during melt processing using ultrasonic 

spectroscopy was reported by (Alig et al. 2005), this work used a PLS methodology to predict the 

content of 85 µm particles in a 5 µm:85 µm mixed system, while this was successful the presently 

reported method shows a greater sensitivity, while maintaining a good predictive accuracy. 

The three models here are computationally simple and can give results in real time. 

Previously Alig et al. (2010) showed a correlation between NIR spectra and particle morphology 

under different processing parameters. This focussed on nano-additives, was mathematically 

heavy and required calculation of the scattering cross-sections of the particles. The methodologies 

used here require little background information or extensive mathematical knowledge. 

The results suggest that with careful calibration of the models; differences in particle size, 

loading and loading composition can be distinguished in almost real time. These models can be 

developed relatively simply and cheaply (not much data required, cheap material can be used for 

model development). Variations in particle size (which can be indicative of agglomerates or 

particle breakdown) can be identified in real time with 100% sampling - compared to lab imaging 

on limited samples. Further the results indicate that the method is robust even with fluctuations 

in the process. This allows the user to make informed process decisions in real time. 



5 Conclusion 

UV-Vis spectroscopy coupled with multivariate analysis has been shown to be effective at 

classifying particles of different sizes (which can be viewed as models of differing filler particle 

agglomeration) within a molten polymer matrix. Additionally PLS modelling was able to predict 

D50 or particle size ratio with reasonable accuracy. The transferability of the predictive models 

from an extrusion grade to a medical grade of PLLA is highly significant due to the high costs of 

collecting calibration data and utilising trial and error processing approaches when using the 

expensive medical grade materials. Future work will further optimise the models by the inclusion 

of more data points in the calibration set, and additionally a similar approach may be carried out 

on another polymer-additive system where agglomeration can be directly observed.  
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