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Abstract 

Age-related macular degeneration (AMD) is associated with the formation of sub-retinal 

pigment epithelial (RPE) deposits that block circulatory exchange with the retina. The factors 

that contribute to deposit formation are not well understood. Recently, we identified the 

presence of spherular hydroxyapatite (HAP) structures within sub-RPE deposits to which 

several AMD-associated proteins were bound. This suggested that protein binding to HAP 

represents a potential mechanism for the retention of proteins in the sub-RPE space. Here we 

performed quantitative proteomics using Sequential Window Acquisition of all THeoretical 

fragment-ion spectra-Mass Spectrometry (SWATH-MS) on plasma samples from 23 patients 

with late-stage neovascular AMD following HAP-binding. Individuals were genotyped for 

the high risk CFH variant (T1277C) and binding to HAP was compared between wild type 

and risk variants. From a library of 242 HAP binding plasma proteins (1% false discovery 

rate), SWATH-MS revealed significant quantitative differences in the abundance of 32 HAP-

binding proteins (p<0.05) between the two homozygous groups. The concentrations of six 

proteins (FHR1, FHR3, APOC4, C4A, C4B and PZP) in the HAP eluted fractions and whole 

plasma were further analysed using ELISA and their presence in sections from human 

cadaver eyes was examined using immunofluorescence. All six proteins were found to be 

present in the RPE/choroid interface, and four of these (FHR1, FHR3, APOC4 and PZP) 

were associated with spherules in sub-RPE space. This study provides qualitative and 

quantitative information relating to the degree by which plasma proteins may contribute to 

sub-RPE deposit formation through binding to HAP spherules and how genetic differences 

might contribute to deposit formation.   
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1. Introduction 

Age-related macular degeneration (AMD) is the leading cause of visual impairment in the 

elderly in the developed world (Congdon et al., 2003). One of the hallmarks of AMD is the 

formation and growth of sub-retinal pigment epithelial (RPE) deposits in the macula that can 

be focal (drusen) or diffuse (basal linear laminar deposits; Bird et al., 2010; Sarks, 1976) 

There are several potential sources of accumulating proteins in the sub-RPE space. These 

include circulatory proteins from the vasculature and RPE secreted proteins. Curcio et al. 

have drawn an analogy between drusen formation in the retina and plaque formation in 

arterial walls (Curcio et al., 2001). It was also suggested that drusen originates primarily from 

incomplete digestion of photoreceptor outer segments (Farkas et al., 1971). In fact, the most 

likely scenario is that sub-RPE deposits originate from a range of sources, and Crabb et al. 

have identified constituents of drusen consistent with this (Crabb et al., 2002). It was, 

however, not clear how these proteins are retained in the sub-RPE space until it was 

demonstrated that all sub-RPE deposits appear to contain hydroxyapatite (HAP) spherules 

that, via their binding capacity to proteins, can serve as a retainer (Thompson et al., 2015)  

 

Based on immunohistochemical analysis of sub-RPE deposits, it was proposed that AMD is 

associated with complement attack (Hageman et al., 2001). Further support for the 

involvement of the complement system in AMD was provided by genetic studies that 

identified a mutation in the complement factor H (CFH) gene that in turn increased the risk to 

develop AMD by several folds (Edwards et al., 2005; Haines et al. 2005; Klein et al., 2005; 

Toomey et al., 2015). Since then, further genetic associations between the complement 

system and AMD have been uncovered. However, the mechanism(s) with which CFH or its 

genetic polymorphisms contribute to AMD is not fully understood although information is 

emerging (van Asten et al., 2017).   

 

CFH is a component of sub-RPE deposits (Klein et al., 2005), and is associated with HAP 

spherules (Thompson et al., 2015). It can form multimeric complexes (Perkins et al., 2012) or 

can undergo zinc-induced self-association with complement C3b (Nan et al., 2013), all of 

which directly influence the regulation of the complement cascade. As the RPE-expressed 

CFH appears to be preferentially secreted apically towards to the photoreceptor (Kim et al., 

2009) the sub-RPE CFH could be derived from the blood circulation. As other proteins from 

the circulation appear to contribute to sub-RPE deposit formation (Crabb et al., 2002), it is 

important to define which of these could be retained in the sub-RPE space due to binding to 
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HAP. Changes in plasma composition have been associated with early onset drusen 

formation (Kobayashi et al., 2014), it is thus important to determine whether CFH genotype 

affects the plasma proteome and thus the HAP interactome. 

 

Here, we quantitatively identify HAP-binding proteins in the plasma of individuals genotyped 

for the most common AMD-associated CFH polymorphism (T1277C) in late-stage AMD 

patients by Sequential Window Acquisition of all THeoretical Mass Spectra (SWATH-MS). 

The concentrations of several proteins that exhibited quantitative differences in HAP eluted 

fractions were further examined using ELISA and their presence in RPE/choroid interface in 

sections from human cadaver eyes assessed using immunofluorescence. This study explores 

the influence of an AMD-associated CFH polymorphism on the plasma abundance of HAP-

binding proteins. We believe the presented findings will be useful in determining how genetic 

factors may contribute to the formation of sub-RPE deposits. 

 

2. Materials and Methods 

2.1. Patient information and sample collection 

Plasma samples were taken from 23 individuals aged 65-90 with late stage AMD, each 

displaying drusen and choroidal neovascularisation in clinical images and attending the anti-

VEGF injection clinic at Moorfields Eye Hospital, London. Following consent, the 

haematocrit values were determined before blood collection into K2EDTA bags 

(Macopharma, Twickenham, UK) for plasma separation by centrifugation (10 minutes at 

1300 RCF at room temperature). The plasma was then aliquoted and frozen immediately at -

80C. Red-cupped blood collection tubes were used for DNA isolation (Becton and Dickinson, 

Plymouth, UK). To determine the genotype of the blood samples PCR (with GoTaq DNA 

polymerase, Promega, Southampton, UK) and Sanger sequencing (with Big Dye v3.1; Life 

Technologies, Paisley, UK) was carried out according to manufacturer’s instructions. The 

samples were run on ABI3730 DNA Sequencer. For the proteomic analysis, samples were 

run with technical duplicates and we included no fewer than 6 biological samples from each 

of the CFH genotypic groups: homozygous T1277, homozygous C1277 and heterozygous 

T/C1277. There was no statistically significant difference in age between the participants 

assigned to each of the three genotypic groups (one-way ANOVA; Kruskal-Wallis test, 

p=0.1373). The study was approved by Bromley Local Research Ethics Committee (REC 

reference number: 08/H0805/6) and adhered to the conventions of the Helsinki Declaration. 
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2.2. Sample preparation for mass spectroscopy 

Plasma samples were filtered using 0.45 µm syringe filter (precautionary stto remove 

particles that could block the columns) and depleted of albumin and IgG with single-use spin 

columns using the Albumin and IgG Depletion SpinTrap kit (GE Healthcare, 

Buckinghamshire, UK The resulting plasma was quantitated using BCA/bicinchoninic acid 

assay (Thermo Fisher Scientific, Paisley, UK) and 600 µg of plasma proteins from each 

sample werebound to 10 mg of CHT ceramic HAP type-I beads (Bio-Rad, Hertfordshire, 

UK), in individual microcentrifuge tubes The HAP beads were used once (and not recycled) 

in order to avoid any cross-contamination. These spherical beads are coated with HAP at 

their surface providing a similar structure and chemical surface to that present in vivo in the 

human eye (Thompson et al., 2015). They therefore represent an ideal medium for the in vitro 

identification of HAP binding proteins. Plasma protein binding was carried out in a binding 

buffer composed of 10 mM sodium phosphate, 75 mM sodium chloride, pH 7.4. Bound 

proteins were eluted in 250 mM sodium phosphate, 10 mM Tris-Cl, 0.5 M sodium chloride, 

pH 7.4. The resulting proteins were quantified using a bicinchoninic acid assay.  

 

All samples for mass spectrometric analysis were processed as follows: Samples containing 

30 μg of protein were denatured in 6 M urea in 50 mM ammonium bicarbonate and were then 

reduced and alkylated with 1 mM tris (2-carboxyethyl) phosphine and 5 mM iodoacetamide. 

The reaction was quenched with 10 mM dithiothreitol. Samples were diluted with 50 mM 

ammonium bicarbonate to a final urea concentration of 1.5 M. The resulting samples were 

then digested with trypsin (1:50 ratio (w/w), 0.2 µg/μl trypsin; Promega, Southampton, UK), 

overnight at 30°C. The digestion was stopped upon addition of 0.5% (v/v) trifluoroacetic acid. 

Peptides were desalted using a C18 SepPak cartridge (Thermo Fisher Scientific) and dried 

under vacuum.  

 

2.3 Protein identification after HAP binding by LC-ESI-MSMS 

Albumin/IgG-depleted plasma proteins were analysed after HAP binding. For this, 1 µg of 

the respective sample peptides were injected on an AB Sciex TripleTOF 5600+ system mass 

spectrometer (Sciex, Framingham, MA, USA) coupled to an Eksigent nanoLC AS-2/2Dplus 

system (Sciex). Prior to mass spectrometric analysis, iRT reference peptides (Biognosys, 

Schlieren, Switzerland) were added to each sample according to the manufacturer’s 
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specifications. The samples were prepared in loading buffer (2% acetonitrile, 0.05% 

trifluoroacetic acid), bound to an Acclaim Pepmap 100 µm × 2 cm trap (Thermo Fisher 

Scientific) and washed for 10 min to waste after which the trap was turned in-line with the 

analytical column (Acclaim Pepmap RSLC 75 µm × 15 cm). The analytical solvent system 

consisted of buffer A (2% acetonitrile, 0.1% formic acid in water) and buffer B (2% water, 

0.1% formic acid in acetonitrile) at a flow rate of 0.3 μl/min with the following gradient: 

linear 1-20% of buffer B over 90 min, linear 20-40% of buffer B for 30 min, linear 40-99% of 

buffer B for 10 min, isocratic 99% of buffer B for 5 min, linear 99-1% of buffer B for 2.5 min 

and isocratic 1% solvent buffer B for 12.5 min. The mass spectrometer was operated in DDA 

top 20 positive ion mode, with 250 and 150 ms acquisition time for the MS1 (m/z 400-1200) 

and MS2 (m/z 230-1800) scans respectively, and 15 s dynamic exclusion. Rolling collision 

energy with a collision energy spread of 5 eV was used for fragmentation. The data files were 

searched using Protein Pilot v5.0.1 (Sciex) with the following search parameters: urea 

denaturation as special factors, trypsin as the cleavage enzyme and carbamidomethylation as 

a fixed modification of cysteines. The search was carried out in “rapid ID” mode with a 

detected protein threshold of 10% plus false discovery rate analysis against the Swissprot 

database downloaded June 2015, restricted only to proteins from humans. Note that the iRT 

peptides were added to this database.  

 

2.4. Sequential window acquisition of all theoretical fragment-ion spectra-mass spectrometry 

(SWATH-MS) 

2.4.1 LC-ESI-MS/MS analysis for spectral library generation 

For spectral library generation, 1 μg of peptides from each individually digested HAP eluate 

sample from each patient were combined to be a representative sample. This sample was 

analysed on an AB Sciex TripleTOF 5600+ system mass spectrometer coupled to an Eksigent 

nanoLC AS-2/2Dplus system as described in Section 2.3. The data was searched against three 

databases resulting in three different libraries. The first was the original Swissprot database 

(downloaded June 2015), restricted only to proteins from humans. This database contains 

FHR1 in its original form (with the amino acid sequence, STDTSCVNPPTVQNAHILSR at 

position 142 to 161; FHR1a). The second database is identical to this original Swissprot 

database but contains FHR1b instead of FHR1a (with the amino acid sequence, 

STDTSCVNPPTVQNAYIVSR at position 142 to 161). The third database was the original 

Swissprot database but the C-terminus but the protein sequence for FHR1a was extended to 
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include the following sequence: STDTSCVNPPTVQNAYIVSR (taken from FHR1b). The 

sequences of the iRT peptides were added to each database. 

 

2.4.2 SWATH-MS data acquisition and analysis 

For SWATH-MS data acquisition, the same mass spectrometer and LC-MS/MS setup as 

described above was used, but operated in SWATH mode. The method uses 50 windows of 

variable Da effective isolation width with a 1 Da overlap using AB Sciex Variable Window 

Calculator tool. Each window has a dwell time of 150 ms to cover the mass range of 400-

1250 m/z in TOF-MS mode and MS/MS data is acquired over a range of 230-1800 m/z with 

high sensitivity setting and a dwell time of 70 ms, resulting in a cycle time of 3.6 s. The 

collision energy for each window was set using the collision energy of a 2
+
 ion centred in the 

middle of the window with a spread of 5 eV. During data processing identified proteins with 

a 1% false detection rate (FDR) at the global protein level (242 proteins) were imported into 

PeakView 2.2 (Sciex) for spectral library generation. SWATH-MS results were analysed 

using SWATH micro App (v2.0) embedded in PeakView. Sample peptide retention times 

were calibrated against the iRT peptide retention times. The data was then further processed 

with the following settings: 10 peptides/protein, 5 transitions/peptide, peptide confidence 

threshold of 95%, FDR threshold of 1%. Modified and shared peptides were excluded. The 

XIC extraction window was set to 6 min and 10 ppm. The quantified protein peak areas were 

then exported into Markerview 1.2.1.1 (Sciex) for data normalisation. Relative protein 

quantitation and statistical tests were performed using Microsoft Excel. Basic statistical 

calculations were performed using Markerview software. The p-values were calculated using 

students t-test and the q-values were calculated using the Benjamini Hochberg method. The 

mass spectrometry proteomics data is available at the ProteomeXchange Consortium, PRIDE 

with the dataset identifier PXD007944. 

 

2.5. STRING analysis 

The protein interaction network for significantly changing HAP binding plasma proteins 

(between the homozygous CFH genotyped groups) was analysed by STRING software 

(https://string-db.org/). As a reference dataset we used the human plasma proteome from the 

Plasma Proteome Database’s official website (http://plasmaproteomedatabase.org/).  

 

2.6. Enzyme-linked immunosorbent assays (ELISAs) 

https://string-db.org/
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ELISAs were performed on patient plasma prior to and following HAP bead binding and 

elution. Patient plasma was filtered through 0.45 µm filter and incubated with and eluted 

from 10 mg of CHT ceramic HAP beads as described above for SWATH-MS preparation. 

The ELISAs were performed using commercially available kits (all from Cloud-Clone Corp., 

Buckingham, UK) for pregnancy zone protein (PZP, #SEG324Hu), complement factor H-

related protein 1(FHR1, #SEL327HU), complement factor H-related protein 3 (FHR3, # 

SEL329Hu), apolipoprotein C4 (APOC4, #SEB828Hu), complement factor 4A (C4A, 

#SEA389Hu) and complement factor 4B (C4B, #SEB305Hu) in accordance with the 

manufacturer’s instructions. Statistical comparisons (p-values) were done by one-way 

ANOVA using Dunnet’s multiple comparison test. 

 

2.7. Immunofluorescence imaging 

Tissues were obtained from the Eye Depository at the UCL Institute of Ophthalmology, 

London. Approval for the use of these tissues was obtained from the UCL Institute of 

Ophthalmology Local Research Ethics Committee (REC reference number: 10/H0106/57-

2012ETR26). The donor eyes were fixed <24 hours after death. Samples were selected based 

on the presence of drusen from male and female donors, aged between 76 and 94 years, 

without clinical and genotype information. Four micron sections containing several drusen 

were selected after microscopic evaluation of formalin-fixed paraffin embedded tissues 

following hematoxilin-eosin staining. In addition, adjacent sections were labelled with von 

Kossa (Puchtler and Meloen, 1978) and OsteoSense 680EX (Figueiredo et al., 2008) to verify 

the presence of mineral in the deposits. 

 

Antigen retrieval was carried out in 10 mM citrate buffer (pH 6). The sections were heated 

for 9 min in a microwave following de-paraffinisation. The samples were blocked with 20% 

goat sera for 1 hr at room temperature. Afterwards, the sections from 3-5 donors were 

incubated with primary antibodies overnight at 4°C; C4A (ab170942, Abcam, Cambridge, 

UK, 1:50 dilution); C4B (ab181241, Abcam, 1:250 dilution); FHR1 (ab182652, Abcam, 1:50 

dilution); APOC4 (ab199163, Abcam, 1:50 dilution); PZP (Abcam: ab122718, 1:20 dilution); 

FHR3 (16583-1-AP, Proteintech, Manchester, UK, 1:100 dilution); amyloid-β 1-16 (SIG-

39320, Covance, London, UK, 1:100) followed by incubation with goat anti-rabbit or goat 

anti-mouse secondary antibody conjugated to alexa-fluor 488 or 568, respectively (Life 

Technologies, Paisley, UK), at 1:200 dilution for 1 hr at room temperature. Slides were 

counterstained for nuclei with DAPI (Thermo Fisher Scientific, 1:1000 dilution) for 15 min at 
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room temperature and mounted with antifade mounting media (Vector Laboratories, 

Peterborough, UK) using glass coverslips (Thermo Fisher Scientific). Optical sections were 

generated using a Leica TCS SP8 confocal laser scanning microscope (Leica Microsystems, 

Milton Keynes, UK). The images presented are in all cases representative. 

 

3. Results 

3.1. Quantitative analysis of HAP-binding plasma proteins in individuals with late-stage 

AMD 

For SWATH-MS quantitation, a sample specific reference spectral library was generated (for 

use as a reference in generating peptide query parameters for the peptide centric analysis of 

the data) by data-dependent acquisition analysis of the HAP-binding plasma proteins. This 

resulted in a spectral library consisting of 242 human plasma proteins with a FDR of 1% on 

the protein level. To determine the differences in levels of HAP-binding proteins present 

across the different CFH genotypic groups, we measured quantitative proteome profiles of 

HAP-eluted plasma proteins in each individual sample by SWATH-MS. Comparisons of the 

obtained quantitative data identified 210 proteins (1% FDR) that were consistently detected 

in all samples. The quantitative information for the 174 proteins that were quantified based 

on 2 or more peptides is provided in Table S2.  To account for the probability of minor 

sample variability due to multiple steps in sample processing, all the samples were prepared 

in duplicates and ran as technical replicates. A principal component analysis of the proteomic 

data obtained from individual samples (PC1=13.6%, PC2=7.9%) revealed that the samples 

did not vary greatly as a collective, with technical replicates clustering together closely 

(indicating strong reproducibility) as shown in Figure S1. A volcano plot showing a 

comparison of relative abundance of all HAP-binding plasma proteins between T/T1277 and 

C/C1277 groups is presented in Figure 1A. Of the proteins consistently quantified, the 

relative abundance of a total of 32 unique proteins (14%) was statistically significantly 

altered (p-value ≤0.05) between T/T1277 and C/C1277 groups. Multiple hypothesis testing 

was also performed with the respective q-values calculated. However, these were too 

stringent for this study and as such were not used in determining significance. An analysis of 

the STRING database for these 32 proteins (shown in Figure 1B) indicates that they have 

more interactions among themselves than would be expected for a random set of 32 proteins 

drawn from the proteome. Such enrichment indicates that the proteins might be, at least 

partially, biologically connected as a group. The quantitative data for all significantly altered 

proteins is presented in Figure 1C. 
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Twenty-one plasma proteins were found to exhibit a statistically significant increase (p≤0.05) 

in mean relative abundance (represented as average peak intensity in Table S2) in the 

C/C1277 group (compared to the T/T1277 group). Of those displaying the greatest increase 

were IgG delta chain C region (~2.8-fold change; p=0.04), thrombospondin-I (~2.2-fold 

change; p=0.0342), FHR1 (~2.1-fold change; p=6.58 × 10
-8

), platelet basic protein (~2-fold 

change; p=0.04). The observed increased abundance of FHR1 protein in the C/C1277 group 

was interesting as a variant (FHR1a) of the corresponding gene is associated with AMD, and 

is genetically linked to the C1277 CFH allele (Timmann et al., 1991; Martínez-Barricarte et 

al., 2012). FHR1a encodes a protein, which is the same length as (the other variant) FHR1b 

but differs in amino acid sequence at 3 residues (H157Y, L159V and E175Q). Examination 

of FHR1-derived peptides in the SWATH-MS spectra revealed that FHR1a and FHR1b 

variants could be identified within the samples based upon the presence of a peptide unique 

to each form. This was achieved by generating separate peptide libraries containing peptides 

derived from either FHR1a or FHR1b variant proteins. The presence of FHR1a and FHR1b 

variants within the C/C1277 and T/T1277 groups were analysed by quantitative mass 

spectrometric analysis as shown in Figure 2. The p-values were calculated by one-way 

ANOVA using Dunnet’s multiple comparison test. The results confirmed strong associations 

between the C1277 CFH allele and FHR1a and the T1277 and FHR1b, respectively.   

 

Eleven plasma proteins found to exhibit a statistically significant increase (p≤0.05) in mean 

relative abundance in the T/T1277 group (compared to the C/C1277 group). Of those 

displaying the greatest increase were PZP (~2-fold change; p=0.01), APOC4 (~1.7-fold 

change; p=0.0118), FHR3 (~1.7-fold change; p=0.001), C4B (~1.7-fold change; p=0.01), 

vitamin K-dependent protein Z (~1.6-fold change; p=0.03) and C4A (~1.6-fold change; 

p=0.01). Although PZP exhibited the greatest increase in mean relative abundance in the 

T/T1277 group, the protein has been shown previously to be expressed at higher levels in 

females when compared to levels in males (Folkersen et al., 1981). To determine whether this 

observation may have been due to sex differences in individuals within the groups, we carried 

out a separate analysis of the SWATH-MS data where samples from females were compared 

with those from males (as shown in Table S3). This analysis suggested that PZP may only be 

increased in the T/T1277 group as it is more prevalent in females as there was a bias toward 

females in this genetic group in our study. The abundance of six other proteins (protein S100-

A9, Ig alpha-2 chain C region, cystatin C, Ig kappa chain V-III region POM, complement 
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factor D and carboxypeptidase B2) was also found to significantly differ between male and 

female participants (in all these cases levels were higher in males) but did not vary 

significantly across the three CFH genotypic groups. 

 

3.2. Determination of concentrations of plasma proteins exhibiting quantitative differences 

between genotypic groups 

Several proteins that exhibited differing mean relative abundances in the different CFH 

genotypic groups were chosen for further analysis – these were PZP, FHR1, FHR3, APOC4, 

C4A and C4B. Although APOC4 was quantified based on single peptide we thought it also 

merited further analysis given that it displayed a statistically significant p-value (0.01) and 

relatively high fold-change (1.7), in the T/T1277 vs C/C1277 comparison and a confident 

signal in SWATH-MS. To validate the findings from the SWATH-MS analysis and to 

determine whether differences in relative abundance of these proteins between samples from 

different genotypic groups were due to affinity/competition effects of HAP-binding or their 

plasma concentration prior to binding, ELISA assays were carried out both on untreated 

plasma samples and the HAP-eluted samples subjected to the SWATH-MS analysis. The 

resultant data is shown in Figure 3. Statistically significant differences in the concentrations 

of each of the six proteins were observed in both the native plasma and processed samples, 

suggesting that the differences in abundance of these proteins between groups were most 

likely due to initial differences in the plasma concentrations of these proteins prior to 

processing.  

 

3.3. Immunohistochemistry of identified plasma proteins in cadaveric retinal tissue 

Human cadaveric eye sections pre-screened according to Thompson et al. (2015) contained 

several drusen and HAP spherules were immunolabelled for the detection of C4A, C4B, 

APOC4, PZP, FHR3 and FHR1 (Figure 4). For visualisation of HAP spherules, we used 

amyloid-β immunolabelling as the acidity of the citrate buffer used for antigen retrieval 

inhibited HAP labelling. The amyloid-β antibody 6E10 reliably co-localises with some of the 

HAP spherules (Dentchev et al., 2003; Anderson et al., 2004; Luibl et al., 2006; Thompson et 

al., 2015). FHR1, FHR3, PZP and APOC4 showed distinct spheroid shape immunostaining 

that co-localised with amyloid-β (Figure 4A-F). C4A and C4B immunolabelling was 

localised in most cases to choriocapillary pillars (Figure 4G-I). Complement C4A was also 

observed in drusen, but did not appear in association with amyloid-β (Fig 4G). APOC4, PZP 

and FHR3 were also detected in RPE cells (Figure 4B-F) and FHR1 and PZP were present in 
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the Bruch’s membrane (Figure 4A and E). In addition, FHR1 immunolabelling was observed 

in the choriocapillary pillars (Figure 4A). 

 

4. Discussion 

Several reports have described circulatory plasma biomarkers for AMD (Gu et al., 2010; 

Lambert et al., 2016; Kersten et al., 2017). However, how these contribute to the 

development and progression of the AMD is not well understood. Plasma proteins appear to 

contribute to the development and growth of sub-RPE deposits (Crabb et al., 2002) and as 

sub-RPE deposit accumulation is a hallmark of AMD (Bird, 2003), understanding how 

plasma proteins may contribute to deposit formation could be important to identify early 

events in AMD pathogenesis. In this study, we examined the relationship between genotype 

and abundance of HAP-binding plasma proteins that are potentially involved in deposit 

formation. We made two new and significant observations: 1) at least 242 plasma proteins 

can readily bind HAP (either directly or, in some cases, via association with another HAP-

binding protein); 2) genetic variations in CFH can influence the plasma concentration of 

some of these proteins.  

 

In our SWATH-MS analysis 14% of quantified plasma proteins showed statistically 

significant difference when CFH genotyped samples (T/T1277 and C/C1277) were compared 

(32 out of 242). A STRING analysis of the 32 proteins revealed that many of these proteins 

are biologically connected: for example, we found 8 complement or complement-related 

proteins as well as 2 apolipoproteins (APOC4 was not included) amongst these proteins. Such 

connections might be relevant because they align with the concept that complement 

dysregulation and changes in lipid homeostasis are mechanistically involved in AMD 

pathogenesis. In addition, protein-protein interactions could lead to the growth of sub-RPE 

deposits. 

 

The HAP-binding protein exhibiting the most significant relative decrease in samples from 

the T/T1277 compared to C/C1277 group, was FHR1 (fold–change of 0.47; p-value 

≥6.58×10
-8

). An ELISA-based analysis confirmed this finding in both whole plasma samples 

and those eluted from HAP beads. FHR1 is a CFH-related protein that exists in two 

polymorphic forms, FHR1a and FHR1b derived from distinct FHR1 alleles. Further 

inspection of the SWATH-MS data revealed that a peptide specific to the FHR1a form was 

found in all samples derived from C/C1277 subjects and absent in all but one sample derived 
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from the T/T1277 subjects. Similarly, a peptide specific to the FHR1b protein was found in 

all T/T1277 derived samples and absent in all but one sample derived from the C/C1277 

subjects. This is the first time that such an association has been shown at the protein level, 

supporting a previous study suggesting a link between the corresponding CFH and FHR1 

genotypes (Martinez-Barricante et al., 2012). Interestingly, deletion of the gene encoding 

FHR1 together with FHR3, which we conversely found to be more abundant in the T/T1277 

subjects, is associated with a reduced risk of developing AMD. The specific role(s) these 

proteins play in the aetiology of AMD is unclear, but it is thought that they may function to 

modulate CFH activity in vivo (Fritsche et al., 2010). In addition, our study demonstrates that 

both FHR1 and FHR3 could bind to HAP and associate with spherules at the RPE/choroid 

interface.   

 

In our analysis of the HAP-eluted plasma proteins, significantly higher plasma levels of both 

C4A and C4B (1.68 and 1.57-fold, respectively) were observed in individuals with the 

T/T1277 CFH genotype than those with the C/C1277 genotype, with this trend confirmed by 

ELISA both after HAP-binding and in whole plasma. This is an interesting finding as it 

suggests that an allelic difference in CFH, which encodes a protein associated with the 

alternative complement pathway, influences the plasma level of C4, which is essentially a 

classical pathway component. In eye sections both C4A and C4B were found to be present in 

the choriocapilliary pillars in every section we examined, and C4A occasionally associated 

with drusen but neither were observed to be associated with HAP spherules in the sections we 

examined. Examining further sections may clarify whether HAP-association exists. In a 

previous quantitative proteomics analysis of Bruch’s membrane/choroid complex from 

patients with AMD, it was revealed that C4A and C4B are present in this complex and that 

C4A was statistically significantly more prevalent in the AMD group compared to controls 

(Yuan et al., 2010). 

 

Another protein that exhibited higher plasma levels in T/T1277 individuals was plasma 

protease C1 inhibitor (IC1; 1.4-fold), a negative regulator of the classical pathway. IC1 is a 

glycoprotein inhibitor of activated complement factor 1r and 1s proteins, which form part of 

the first complement component (C1). Deficiency of IC1 is associated with hereditary 

angioneurotic oedema (Cugno et al., 2009). It is possible that the relatively lower abundance 

of either IC1 or C4 proteins (in C/C1277 group relative to T/T1277 group) could be 

interdependent and that the change in concentration of either occurs to maintain balance of 
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the classical pathway. Other components of the complement cascade, C8 (both C8A and C8B 

proteins) and complement factor I (negative regulator of alternative pathway), were also 

found to be higher in the T/T1277 group, albeit by less than 1.3-fold. We hasten to add that 

though these results are interesting and may have functional implications, it is not possible 

based on this data alone to relate these observations directly to complement dysregulation in 

AMD     

 

Defective lipid metabolism and genotypic differences in genes encoding proteins involved in 

lipid transport have also been associated with the risk of developing AMD (Cheung et al., 

2017). Such genes include those encoding apolipoproteins such as ApoE and ApoB (Klaver 

et al., 1998, Baird et al., 2006, Curcio et al., 2010). In our SWATH-MS analysis we observed 

a higher abundance of APOC4 and ApoE in the HAP-eluted protein fractions derived from 

the T/T1277 group, relative to the C/C1277 group (1.78-fold and 1.24-fold, respectively). 

The difference in APOC4 levels (in the HAP-eluted fractions) between T/T1277 and 

C/C1277 groups were also confirmed by ELISA, with levels of APOC4 in whole plasma also 

being significantly higher in the T/T1277 group. In retinal sections APOC4 was found to co-

localise with spherular structures and was also found to be expressed in RPE cells. 

Associations between APOC4 and AMD have been reported previously based on genome-

wide candidate gene association studies (Pennington and DeAngelis, 2016). It is therefore 

possible that this protein may be involved in AMD pathogenesis by binding to HAP in the 

sub-RPE space.   

 

We also identified new sub-RPE deposit-associated proteins that might be relevant for AMD 

progression. The protein that exhibited the greatest increase in relative abundance in the 

T/T1277 group compared to the C/C1277 group was PZP, an α2-macroglobulin-like 

endopeptidase inhibitory protein recently implicated in Alzheimer’s disease and identified 

within amyloid plaques in cadaveric brain tissue (Ijsselstijn et al., 2011; Nijholt et al., 2015). 

However, PZP was found to be higher in samples taken from females rather than males, 

which could account for this difference (as the T/T1277 group consisted exclusively of 

female subjects), although it should be noted that females are more predisposed to developing 

AMD than males (Owen et al., 2012; Rudnicka et al., 2012). PZP has not previously been 

associated with sub-RPE deposit formation or AMD. Here we found that the protein is 

present in drusen and associated with spherular structures. PZP was also present in the 

Bruch’s membrane and in the RPE. These observations support the hypothesis that PZP may 
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contribute to the growth of deposits, thickening of Bruch’s membrane and thus the 

progression of AMD.  

 

A number of proteins present in plasma, including complement factors, have already been 

identified in drusen (Crabb et al., 2002; Hollyfield et al., 2003), with some of these, such as 

haemoglobin, specific to the blood (Crabb et al., 2002; Beattie et al., 2010). These data 

together with our findings collectively suggest that plasma proteins are likely to contribute to 

sub-RPE deposit formation. The differences in concentrations of potential deposit-forming 

plasma proteins in AMD-affected individuals of different genotypes could points towards 

different aetiologies of disease. For example, based on our data, FHR1 may play a more 

prominent role in sub-RPE deposit formation in individuals with the C/C1277 CFH genotype 

than those with the T/T1277 genotype. 

 

In conclusion, this study has utilised a new quantitative proteomic approach to understand the 

potential molecular events that give rise to sub-RPE deposit formation, a feature central to the 

development of AMD. More specifically, we have identified a number of a plasma proteins 

that can bind HAP and are differentially expressed in plasmas from individuals belonging to 

different genotypic groups. These observations point towards different aetiologies of sub-

RPE deposit formation and heterogeneity and why people from different genetic backgrounds 

develop AMD. Given that the retention of proteins in the sub-RPE space occurs at a very 

early stage of the disease process, targeting the binding of key proteins to HAP may provide a 

robust therapeutic strategy that could slow or even prevent drusen formation. 
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Figure Legends 

Figure 1. Quantitative analysis of HAP-binding plasma proteins examined by SWATH-

MS. (A) Volcano plot of all quantified proteins displaying differences in relative abundance 

between CFH T/T1277 (TT) and C/C1277 (CC) groups. The plot represents the negative 

log10 of the p-value against the log2 of the fold change (FC). FC was calculated based on the 

relative abundance in TT/CC. Proteins shown by the open circles exhibited statistically 

significant differences between the homozygous groups (p<0.05) following binding and 

elution from HAP beads. The six proteins selected for further investigation are shown in bold. 

(B) The protein interaction network for 32 significantly changing HAP binding plasma 

proteins (between the homozygous CFH genotyped groups) as analysed by STRING software 

(https://string-db.org/). A network was drawn with seven differently coloured lines that 

represent different types of associations. A green line indicates neighbourhood evidence; red 

line indicates the presence of gene fusion evidence; a blue line indicates co-occurrence 

evidence; a purple line indicates experimental evidence; a yellow line indicates text-mining 

evidence; a light blue line indicates database evidence; and a black line indicates co-

expression evidence.  (C) HAP-binding plasma proteins displaying a significant difference in 

abundance between CFH T/T1277 (TT) and C/C1277 (CC) groups. Proteins with ≥1.5 

relative fold-change (both CC vs TT and TT vs CC) are shaded. FC was calculated based on 

the relative abundance in TT/CC. The six proteins selected for further investigation are 

shown in bold. 

 

Figure 2. Detection of FHR1a and FHR1b-specific peptides in HAP-eluted fractions 

derived from CFH T/T1277 (TT), C/T1277 (CT) and C/C1277 (CC) plasma samples by 

SWATH-MS. (A) Amino acid sequence alignment of FHR1a and FHR1b proteins. 

Alignment was performed using ClustalW (“*” denote fully conserved residues; “:” denotes 

semi-conserved residues). Location of specific peptides in the sequences are shown by the 

grey-shaded box. (B) Plot of average intensities of the FHR1a-specific peptide in T/T1277 

(TT), T/C1277 (CT) and C/C1277 (CC) groups. (C) Plot of average intensities of the FHR1b-

specific peptide in T/T1277 (TT), T/C1277 (CT) and C/C1277 (CC) groups. Data in (B) and 

(C) are based on SWATH-MS data from HAP-eluted plasma-derived samples taken from the 

genotyped subjects. Statistical comparisons to the TT group were carried out by one-way 

ANOVA using Dunnet’s multiple comparison test (ns, not significant; *, p<0.05; ***, 

p<0.001; ****, p<0.0001). 

 

https://string-db.org/
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Figure 3. Quantitative analysis of six HAP-binding plasma proteins examined by 

enzyme-linked immunosorbent assay (ELISA) in HAP-eluted fractions and whole 

plasma. Relative concentrations of FHR1, FHR3, PZP, APOC4, C4A and C4B protein in 

HAP-eluted fractions (A) and whole plasma samples (B) from CFH T/T1277 (TT), C/T1277 

(CT) and C/C1277 (CC) groups. Statistical comparisons to the TT group were carried out by 

one-way ANOVA using Dunnet’s multiple comparison test (ns, not significant; *, p<0.05; **, 

p<0.01; ***, p<0.001; ****, p<0.0001). 

 

Figure 4. Immunolocalisation of HAP-binding proteins in the human RPE-choroid 

interface. Immunostaining was performed on sections from donated human eyes. RPE 

pigmentation shows natural auto-fluorescence. Most spherules (yellow arrows) in deposits 

(yellow star) are visualised by amyloid-β immunolabelling using Alexa Fluor 568 (red). 

Localisation of complement factor H-related protein 1 (A), Complement factor H-related 

protein 3 (B-C), pregnancy zone protein (D-E), apolipoprotein C4 (F), complement 4A (G-H) 

and complement 4B (I) are visualised by immunolabelling using Alexa Fluor 488 (green and 

yellow in case of co-labelling with amyloid-β; white arrows). The presented observations 

were found in all samples analysed, therefore the images presented are representative. Scale 

bar is 10 µm.  
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Table S1: Participant information showing age, sex and CFH genotype (either T/T1277 (TT), 

T/C1277 (CT) or C/C1277 (CC)) of the 23 individuals in this study. 

Participant 

Number 

Genotype Sex Age 

1 CT F 77 

2 CT M 81 

3 CC M 79 

4 CT M 75 

5 CT F 86 

6 CC M 65 

7 CT M 85 

8 TT F 90 

9 CT M 80 

10 CC F 64 

11 TT F 77 

12 TT F 84 

13 CC M 80 

14 CC F 84 

15 CC M 68 

16 TT F 86 

17 CT M 84 

18 TT F 81 

19 CC M 80 

20 CC F 87 

21 TT F 82 

22 CC F 69 

23 CT M 78 

  



Table S2: List of HAP-binding plasma proteins detected and quantified (based on two or more 

peptides) in all 23 participant samples. For each protein the Uniprot ID and name, number of 

peptides, and average peak intensities for C/T1277 (CT), C/C1277 (CC) or T/T1277 (TT) groups are 

provided. The peptide number indicates the total number of peptides used for protein quantitation 

that were consistently detected across all samples. The quantitative value for each unique peptide 

originates from summing the integrated area of the selected b and y-ions for this peptide and is an 

average value for each genotypic group (indicated as average intensity). σ  represents the standard 

deviation 

Ind

ex 

Uniprot 

number 

Unipro

t name 

Pepti

des 

Average 

peak 

intensity 

CT  

Average 

peak 

intensity 

CC 

Average 

peak 

intensity 

TT 

σ CT  σ CC  σ TT  

1 P04114 APOB 10 1.20E+07 9.99E+06 1.09E+07 2.86E+06 2.27E+06 3.50E+06 

2 P01024 CO3 10 2.92E+07 2.92E+07 2.84E+07 9.29E+06 7.98E+06 8.59E+06 

3 P08603 CFAH 10 1.26E+07 1.15E+07 1.09E+07 8.65E+05 1.59E+06 2.81E+06 

4 P01023 A2MG 10 1.21E+07 1.50E+07 1.41E+07 2.58E+06 3.63E+06 2.15E+06 

5 P02768 ALBU 10 1.43E+07 1.51E+07 1.31E+07 1.12E+07 1.42E+07 1.79E+07 

6 P00450 CERU 10 1.52E+07 1.41E+07 1.50E+07 2.81E+06 3.07E+06 1.91E+06 

7 P02787 TRFE 10 1.41E+07 1.70E+07 1.36E+07 1.23E+06 2.94E+06 2.64E+06 

8 P01031 CO5 10 3.01E+06 2.81E+06 3.06E+06 8.67E+05 1.07E+06 1.20E+06 

9 P02671 FIBA 10 1.33E+07 1.31E+07 1.57E+07 3.11E+06 3.38E+06 6.05E+06 

10 P00751 CFAB 10 1.09E+07 9.62E+06 9.92E+06 1.66E+06 2.76E+06 2.67E+06 

11 P02675 FIBB 10 1.11E+07 1.09E+07 1.33E+07 2.26E+06 3.95E+06 5.49E+06 

12 P02751 FINC 10 2.91E+06 3.08E+06 2.26E+06 2.08E+06 2.36E+06 2.28E+06 

13 P00747 PLMN 10 1.96E+06 1.94E+06 2.07E+06 5.63E+05 3.95E+05 5.86E+05 

14 P02679 FIBG 10 9.67E+06 9.71E+06 1.21E+07 2.15E+06 3.12E+06 4.81E+06 

15 P04003 C4BPA 10 1.23E+07 1.19E+07 1.16E+07 1.88E+06 2.81E+06 1.65E+06 

16 P19823 ITIH2 10 9.29E+06 9.42E+06 1.05E+07 1.28E+06 2.78E+06 3.58E+06 

17 P00734 THRB 10 1.32E+07 1.03E+07 1.19E+07 4.41E+06 4.32E+06 4.35E+06 

18 P02748 CO9 10 7.56E+06 7.62E+06 7.71E+06 2.02E+06 2.15E+06 1.98E+06 

19 P06396 GELS 10 2.61E+06 2.32E+06 2.53E+06 4.44E+05 4.60E+05 3.28E+05 

20 P02647 APOA1 10 1.06E+07 1.39E+07 1.31E+07 1.63E+06 1.48E+06 1.43E+06 

21 P10643 CO7 10 1.62E+06 1.47E+06 1.58E+06 2.94E+05 3.95E+05 3.53E+05 

22 P00738 HPT 10 1.24E+07 1.09E+07 1.13E+07 2.35E+06 4.73E+06 2.80E+06 

23 P01871 IGHM 10 7.89E+06 6.45E+06 7.04E+06 2.89E+06 2.65E+06 4.02E+06 

24 P19827 ITIH1 10 7.04E+06 7.44E+06 7.99E+06 1.05E+06 2.25E+06 2.85E+06 

25 P01009 A1AT 10 7.58E+06 8.97E+06 8.13E+06 9.28E+05 2.11E+06 1.54E+06 

26 Q14624 ITIH4 10 1.48E+06 2.05E+06 1.80E+06 2.36E+05 4.35E+05 5.28E+05 

27 P06727 APOA4 10 1.14E+06 1.23E+06 1.41E+06 4.74E+05 3.89E+05 2.42E+05 

28 P07225 PROS 10 4.14E+06 3.74E+06 3.73E+06 1.06E+06 9.29E+05 6.66E+05 

29 P13671 CO6 10 1.69E+06 1.37E+06 1.60E+06 4.34E+05 2.86E+05 5.30E+05 

30 P02774 VTDB 10 2.94E+06 3.65E+06 3.11E+06 4.64E+05 8.26E+05 7.87E+05 

31 P01042 KNG1 10 4.92E+06 5.51E+06 5.63E+06 1.93E+06 1.63E+06 1.62E+06 

32 P02790 HEMO 10 1.04E+07 1.36E+07 1.05E+07 1.30E+06 1.92E+06 2.02E+06 

33 P07358 CO8B 10 2.57E+06 2.09E+06 2.48E+06 3.64E+05 2.98E+05 4.01E+05 

34 P04196 HRG 10 6.26E+06 5.78E+06 6.94E+06 1.59E+06 2.81E+06 1.53E+06 

35 P02749 APOH 10 2.20E+07 1.77E+07 1.86E+07 3.59E+06 4.00E+06 3.72E+06 

36 P03952 KLKB1 10 2.12E+06 1.97E+06 2.17E+06 5.85E+05 5.50E+05 3.84E+05 

37 P02649 APOE 10 6.95E+06 5.04E+06 6.31E+06 2.80E+06 8.61E+05 2.18E+06 



38 P09871 C1S 10 1.39E+06 1.38E+06 1.52E+06 3.31E+05 3.03E+05 3.51E+05 

39 P01011 AACT 10 5.89E+06 7.41E+06 6.83E+06 8.50E+05 1.47E+06 2.08E+06 

40 P36955 PEDF 10 4.31E+06 3.20E+06 3.19E+06 5.95E+05 6.93E+05 4.87E+05 

41 P01008 ANT3 10 3.41E+06 4.15E+06 3.83E+06 3.64E+05 6.79E+05 6.11E+05 

42 P04217 A1BG 10 3.29E+06 4.31E+06 3.60E+06 3.47E+05 6.01E+05 7.21E+05 

43 P12259 FA5 10 5.15E+05 4.76E+05 4.56E+05 1.43E+05 2.28E+05 1.22E+05 

44 P00748 FA12 10 4.90E+06 4.67E+06 5.51E+06 7.39E+05 1.54E+06 1.64E+06 

45 P00736 C1R 10 1.59E+06 1.54E+06 1.66E+06 4.10E+05 4.22E+05 3.22E+05 

46 P05155 IC1 10 5.30E+06 6.16E+06 8.65E+06 1.42E+06 2.90E+06 3.30E+06 

47 P08519 APOA 10 6.71E+05 7.63E+05 7.35E+05 1.00E+06 9.08E+05 6.65E+05 

48 P07357 CO8A 10 2.74E+06 2.41E+06 2.72E+06 3.74E+05 1.43E+05 3.71E+05 

49 P10909 CLUS 10 2.99E+06 3.54E+06 3.26E+06 2.39E+05 7.06E+05 5.71E+05 

50 P06681 CO2 10 6.21E+05 6.34E+05 7.08E+05 1.24E+05 2.02E+05 1.94E+05 

51 P02760 AMBP 10 2.96E+06 3.26E+06 3.67E+06 7.42E+05 1.26E+06 1.21E+06 

52 P05156 CFAI 10 1.24E+06 1.13E+06 1.45E+06 2.51E+05 2.25E+05 3.88E+05 

53 P35858 ALS 10 1.10E+06 1.01E+06 1.08E+06 3.96E+05 2.21E+05 2.36E+05 

54 P43652 AFAM 10 5.20E+05 5.94E+05 4.65E+05 1.18E+05 1.27E+05 5.91E+04 

55 O43866 CD5L 10 3.41E+06 2.67E+06 3.02E+06 1.63E+06 1.22E+06 2.07E+06 

56 Q92954 PRG4 10 5.12E+05 5.08E+05 4.75E+05 2.09E+05 1.29E+05 6.41E+04 

57 P02765 FETUA 10 2.60E+06 3.52E+06 2.64E+06 7.16E+05 9.57E+05 3.68E+05 

58 P08697 A2AP 10 4.12E+05 5.05E+05 4.20E+05 8.06E+04 1.25E+05 7.49E+04 

59 Q96PD5 PGRP2 10 3.77E+05 4.78E+05 3.54E+05 5.56E+04 7.14E+04 6.31E+04 

60 P29622 KAIN 10 8.10E+05 7.21E+05 7.83E+05 1.39E+05 2.13E+05 2.00E+05 

61 P03951 FA11 10 6.92E+05 6.94E+05 6.98E+05 1.70E+05 2.88E+05 2.01E+05 

62 P05452 TETN 10 9.76E+05 1.14E+06 9.22E+05 2.32E+05 2.47E+05 2.14E+05 

63 P27169 PON1 10 6.67E+05 5.92E+05 6.90E+05 1.45E+05 2.53E+05 2.96E+05 

64 P05546 HEP2 10 1.19E+06 1.22E+06 1.13E+06 3.05E+05 2.35E+05 2.51E+05 

65 P25311 ZA2G 10 3.36E+05 3.96E+05 4.04E+05 9.61E+04 1.59E+05 6.55E+04 

66 P00742 FA10 10 1.12E+06 8.30E+05 9.95E+05 5.05E+05 3.86E+05 5.28E+05 

67 P02766 TTHY 10 3.32E+06 4.19E+06 3.05E+06 4.61E+05 1.61E+06 5.25E+05 

68 P01834 IGKC 10 8.52E+06 7.40E+06 7.59E+06 3.03E+06 1.94E+06 3.20E+06 

69 Q14520 HABP2 10 4.81E+05 4.47E+05 5.49E+05 1.64E+05 1.59E+05 2.13E+05 

70 P51884 LUM 10 6.00E+05 7.61E+05 6.52E+05 1.74E+05 2.68E+05 1.24E+05 

71 P05090 APOD 10 1.13E+06 1.23E+06 1.23E+06 2.68E+05 3.69E+05 5.97E+05 

72 P02753 RET4 10 9.65E+05 1.08E+06 8.54E+05 2.82E+05 2.98E+05 3.40E+05 

73 Q96IY4 CBPB2 10 7.73E+05 6.92E+05 6.45E+05 1.36E+05 2.16E+05 1.29E+05 

74 P00739 HPTR 10 1.36E+06 1.50E+06 1.34E+06 4.69E+05 8.75E+05 7.95E+05 

75 P01019 ANGT 10 4.90E+05 6.94E+05 7.47E+05 1.44E+05 9.97E+04 3.35E+05 

76 P02743 SAMP 10 2.62E+06 1.80E+06 9.84E+05 1.90E+06 1.53E+06 6.13E+05 

77 P02750 A2GL 10 6.15E+05 8.40E+05 9.34E+05 1.84E+05 2.33E+05 5.05E+05 

78 P20851 C4BPB 10 2.19E+06 2.10E+06 2.23E+06 5.28E+05 7.08E+05 5.08E+05 

79 P01591 IGJ 10 2.84E+06 2.53E+06 2.45E+06 1.23E+06 7.40E+05 1.50E+06 

80 P01876 IGHA1 9 7.88E+06 9.82E+06 8.60E+06 2.52E+06 4.66E+06 2.65E+06 

81 P04004 VTNC 9 3.44E+06 3.96E+06 3.43E+06 1.56E+06 8.31E+05 5.64E+05 

82 P27918 PROP 9 4.69E+05 4.39E+05 3.79E+05 9.39E+04 1.38E+05 1.12E+05 

83 P00740 FA9 9 4.52E+05 4.55E+05 5.50E+05 3.10E+05 2.62E+05 2.91E+05 

84 P07360 CO8G 9 2.38E+06 2.08E+06 2.05E+06 4.15E+05 3.26E+05 3.96E+05 

85 P68871 HBB 8 8.85E+05 1.04E+06 6.79E+05 3.32E+05 4.11E+05 2.41E+05 

86 P02763 A1AG1 8 3.44E+06 4.38E+06 3.40E+06 3.97E+05 1.17E+06 1.12E+06 

87 Q9BXR6 FHR5 8 2.95E+05 2.96E+05 2.91E+05 6.75E+04 1.37E+05 1.04E+05 



88 P02747 C1QC 8 1.23E+06 1.24E+06 1.35E+06 4.48E+05 6.70E+05 6.72E+05 

89 P19652 A1AG2 8 5.84E+05 6.08E+05 5.14E+05 1.14E+05 1.85E+05 1.19E+05 

90 P02652 APOA2 7 4.73E+05 5.65E+05 4.92E+05 9.35E+04 9.81E+04 6.75E+04 

91 P02746 C1QB 7 9.06E+05 9.57E+05 1.03E+06 3.20E+05 5.34E+05 4.90E+05 

92 P69905 HBA 7 1.02E+06 1.22E+06 8.11E+05 4.09E+05 4.48E+05 2.43E+05 

93 Q06033 ITIH3 7 8.00E+04 1.13E+05 1.13E+05 2.07E+04 2.71E+04 3.35E+04 

94 P0C0L5 CO4B 6 1.36E+05 1.37E+05 2.31E+05 4.62E+04 9.73E+04 7.21E+04 

95 P01857 IGHG1 6 2.95E+06 2.12E+06 1.43E+06 3.36E+06 3.18E+06 1.81E+06 

96 B9A064 IGLL5 6 7.34E+05 8.37E+05 5.81E+05 4.21E+05 5.36E+05 1.77E+05 

97 P00746 CFAD 6 6.39E+05 5.82E+05 5.06E+05 1.36E+05 1.35E+05 1.15E+05 

98 O95445 APOM 6 1.50E+05 1.61E+05 1.46E+05 3.95E+04 4.45E+04 5.96E+04 

99 P22792 CPN2 6 1.17E+05 1.45E+05 1.63E+05 4.49E+04 4.56E+04 5.87E+04 

100 P05543 THBG 6 1.49E+05 1.82E+05 1.68E+05 3.32E+04 6.09E+04 4.89E+04 

101 O14791 APOL1 6 2.31E+05 2.30E+05 1.95E+05 7.55E+04 8.08E+04 7.55E+04 

102 P18428 LBP 6 1.35E+05 1.42E+05 1.80E+05 3.17E+04 3.96E+04 1.00E+05 

103 P01859 IGHG2 5 7.71E+05 5.27E+05 6.64E+05 7.03E+05 8.26E+05 7.71E+05 

104 P18136 KV313 5 2.80E+06 2.66E+06 2.48E+06 8.35E+05 1.14E+06 1.85E+06 

105 P01880 IGHD 5 5.06E+05 4.22E+05 1.46E+05 6.09E+05 4.39E+05 1.58E+05 

106 P02655 APOC2 5 1.03E+06 7.67E+05 7.46E+05 7.14E+05 2.64E+05 1.20E+05 

107 P49908 SEPP1 5 3.61E+05 3.78E+05 4.09E+05 1.38E+05 8.65E+04 1.65E+05 

108 P61626 LYSC 5 2.03E+05 1.38E+05 1.58E+05 6.94E+04 6.12E+04 7.37E+04 

109 O75636 FCN3 5 2.82E+05 2.36E+05 2.59E+05 8.07E+04 6.11E+04 7.89E+04 

110 P17936 IBP3 5 3.99E+05 3.90E+05 3.72E+05 1.45E+05 9.77E+04 7.90E+04 

111 P02656 APOC3 5 2.52E+06 1.73E+06 1.79E+06 1.16E+06 6.17E+05 2.15E+05 

112 P01877 IGHA2 5 9.20E+05 6.94E+05 6.12E+05 7.20E+05 4.03E+05 2.66E+05 

113 Q04756 HGFA 5 1.39E+05 1.59E+05 1.47E+05 9.84E+04 1.35E+05 1.21E+05 

114 P04070 PROC 5 1.17E+05 8.53E+04 1.03E+05 4.32E+04 5.02E+04 4.49E+04 

115 Q9NQ79 CRAC1 5 1.29E+05 1.25E+05 1.84E+05 4.27E+04 5.78E+04 4.99E+04 

116 P0CG05 LAC2 4 8.52E+04 7.31E+04 1.06E+05 3.37E+04 4.18E+04 5.21E+04 

117 P36980 FHR2 4 2.95E+05 3.77E+05 3.00E+05 5.98E+04 5.73E+04 1.10E+05 

118 P04275 VWF 4 6.28E+04 1.10E+05 1.43E+05 6.19E+04 1.57E+05 2.12E+05 

119 P04220 MUCB 4 4.45E+05 3.34E+05 4.17E+05 1.89E+05 2.10E+05 2.85E+05 

120 P01602 KV110 4 3.05E+05 2.26E+05 4.14E+05 1.20E+05 7.68E+04 4.50E+05 

121 Q16610 ECM1 4 1.05E+05 1.43E+05 1.17E+05 4.26E+04 3.80E+04 3.38E+04 

122 P02745 C1QA 4 1.65E+05 1.71E+05 1.94E+05 6.83E+04 1.06E+05 8.53E+04 

123 P02775 CXCL7 4 2.46E+05 2.20E+05 1.12E+05 2.28E+05 1.73E+05 4.42E+04 

124 Q9UK55 ZPI 4 8.22E+04 6.78E+04 5.40E+04 7.20E+04 5.33E+04 1.68E+04 

126 P0C0L4 CO4A 4 2.29E+05 1.84E+05 2.89E+05 9.87E+04 1.06E+05 1.11E+05 

127 P01861 IGHG4 4 2.79E+05 3.98E+04 3.42E+04 6.16E+05 5.25E+04 3.58E+04 

128 P20742 PZP 4 2.56E+04 6.91E+04 1.42E+05 3.45E+04 5.55E+04 1.04E+05 

129 P01860 IGHG3 4 2.98E+05 3.08E+05 1.75E+05 2.85E+05 5.59E+05 2.47E+05 

130 P22891 PROZ 4 5.53E+04 5.16E+04 8.28E+04 4.03E+04 2.68E+04 5.07E+04 

131 P15169 CBPN 4 9.87E+04 1.28E+05 1.11E+05 2.21E+04 5.17E+04 3.88E+04 

125 Q03591 FHR1        3 6.08E+05  7.50E+05  3.55E+05  1.14E+05  1.60E+05  1.21E+05 

132 P01764 HV303 3 1.37E+05 1.02E+05 1.81E+05 9.61E+04 4.48E+04 2.35E+05 

133 P35542 SAA4 3 7.16E+05 6.77E+05 5.47E+05 2.14E+05 1.93E+05 1.26E+05 

134 P01781 HV320 3 1.51E+05 7.72E+04 6.45E+04 1.80E+05 4.65E+04 3.17E+04 

135 P06310 KV206 3 2.26E+05 2.11E+05 1.57E+05 8.52E+04 1.01E+05 5.30E+04 

136 P11226 MBL2 3 1.12E+05 8.37E+04 1.28E+05 7.31E+04 5.64E+04 1.04E+05 

137 P0DJI8 SAA1 3 9.76E+04 1.49E+05 2.14E+05 8.56E+04 1.33E+05 2.75E+05 



138 P06313 KV403 3 1.19E+06 1.05E+06 1.43E+06 4.07E+05 3.99E+05 7.06E+05 

139 O75882 ATRN 3 1.29E+04 1.66E+04 1.28E+04 2.21E+03 6.71E+03 2.99E+03 

140 P02654 APOC1 3 7.28E+05 5.97E+05 5.05E+05 4.00E+05 3.29E+05 2.61E+05 

141 Q15113 PCOC1 3 1.90E+05 2.04E+05 1.59E+05 9.37E+04 1.08E+05 2.99E+04 

142 Q15582 BGH3 3 2.88E+04 2.98E+04 2.58E+04 5.76E+03 6.69E+03 3.54E+03 

143 Q02985 FHR3 3 8.43E+04 6.06E+04 1.07E+05 2.76E+04 1.76E+04 4.99E+04 

144 P80108 PHLD 3 5.60E+04 6.67E+04 4.28E+04 1.08E+04 3.33E+04 1.90E+04 

145 P08571 CD14 3 4.64E+04 5.38E+04 4.82E+04 1.57E+04 1.94E+04 1.37E+04 

146 P08185 CBG 3 6.95E+04 1.07E+05 1.10E+05 2.64E+04 3.94E+04 3.80E+04 

147 O00391 QSOX1 3 1.14E+05 1.10E+05 1.08E+05 1.34E+04 8.43E+03 1.22E+04 

148 P23142 FBLN1 3 1.43E+04 2.02E+04 1.89E+04 4.31E+03 8.60E+03 4.02E+03 

149 P63261 ACTG 3 3.68E+04 5.10E+04 3.23E+04 9.76E+03 1.30E+04 7.00E+03 

150 P07996 TSP1 3 5.07E+04 5.61E+04 2.53E+04 3.56E+04 4.66E+04 1.47E+04 

151 P04278 SHBG 2 2.29E+04 3.65E+04 4.25E+04 9.76E+03 2.42E+04 2.86E+04 

152 P06316 LV107 2 9.37E+04 7.30E+04 7.95E+04 5.43E+04 5.58E+04 7.73E+04 

153 P02741 CRP 2 5.13E+04 6.67E+04 1.12E+05 4.09E+04 5.64E+04 1.24E+05 

154 P01603 KV111 2 2.02E+04 7.99E+02 4.50E+02 5.47E+04 8.28E+02 2.43E+02 

155 P04208 LV106 2 1.73E+05 1.66E+05 1.34E+05 8.76E+04 5.25E+04 3.49E+04 

156 P05160 F13B 2 5.30E+04 5.99E+04 6.59E+04 1.53E+04 2.01E+04 2.31E+04 

157 Q8NF91 SYNE1 2 7.91E+03 4.85E+03 3.97E+03 8.15E+03 3.78E+03 2.13E+03 

158 P0CG06 LAC3 2 1.66E+04 1.28E+04 1.47E+04 8.48E+03 1.09E+04 8.57E+03 

159 P01617 KV204 2 4.81E+05 4.68E+05 3.10E+05 1.79E+05 1.94E+05 1.18E+05 

160 P01593 KV101 2 7.70E+04 5.68E+04 5.30E+04 1.81E+04 3.37E+04 3.03E+04 

161 P80748 LV302 2 6.18E+05 6.69E+05 6.81E+05 2.26E+05 3.23E+05 1.62E+05 

162 P14151 LYAM1 2 2.70E+04 2.71E+04 2.70E+04 9.98E+03 1.16E+04 9.50E+03 

163 P10720 PF4V 2 7.14E+04 6.52E+04 4.09E+04 6.72E+04 4.41E+04 2.76E+04 

164 P08253 MMP2 2 1.68E+04 2.05E+04 2.06E+04 4.75E+03 1.01E+04 4.86E+03 

165 P06331 HV209 2 2.79E+05 2.60E+05 2.29E+05 8.18E+04 1.21E+05 1.70E+05 

166 P04433 KV309 2 7.68E+04 7.35E+04 8.07E+04 2.42E+04 2.30E+04 9.33E+04 

167 P01833 PIGR 2 2.64E+04 2.50E+04 3.19E+04 1.29E+04 1.29E+04 2.12E+04 

168 P01612 KV120 2 3.50E+05 3.85E+03 4.87E+03 9.69E+05 1.84E+03 2.44E+03 

169 P01779 HV318 2 8.68E+05 6.51E+05 9.21E+05 4.41E+05 3.50E+05 8.95E+05 

170 P22105 TENX 2 1.52E+04 2.60E+04 2.43E+04 6.32E+03 1.22E+04 1.18E+04 

171 Q12805 FBLN3 2 1.22E+04 1.52E+04 1.09E+04 1.98E+03 5.36E+03 4.68E+03 

172 P22352 GPX3 2 6.27E+04 1.02E+05 7.60E+04 1.53E+04 2.86E+04 2.71E+04 

173 P03950 ANGI 2 1.31E+04 1.10E+04 8.34E+03 3.53E+03 6.07E+03 1.51E+03 

174 Q13790 APOF 2 1.96E+04 2.63E+04 2.16E+04 8.19E+03 6.30E+03 7.20E+03 

  



Table S3: List of HAP binding plasma proteins displaying a statistically significant difference (p-

value <0.05) in abundance between male and female participants.  

No. Uniprot ID Uniprot 

name 

Group Fold change 

Male/Female 

p-value 

1 P20742 PZP Pregnancy zone protein 0.25 3.88E-03 

2 P06702 S10A9 Protein S100-A9 2.95 1.70E-02 

3 P01877 IGHA2 Ig alpha-2 chain C region 1.94 2.10E-02 

4 P01034 CYTC Cystatin-C 1.40 2.24E-02 

5 P01624 KV306 Ig kappa chain V-III region POM 1.92 2.36E-02 

6 P00746 CFAD Complement factor D 1.29 3.67E-02 

7 Q96IY4 CBPB2 Carboxypeptidase B2 1.24 4.81E-02 

  



Figure S1: Principal component analysis of SWATH-MS data from technical duplicates of HAP-

eluted plasma samples from all participants. Points are labelled with the participant number (as 

given in Table S1). Samples were also designated as replicate a  or b  and assigned to their 

respective CFH genotypic group; T/T1277 (TT), T/C1277 (CT) or C/C1277 (CC). 

 


