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We assess two different nonequilibrium quantum Landauer bounds: the traditional approach based on the
change in entropy, referred to as the “entropic bound,” and one based on the details of the dynamical map,
referred to as the “thermodynamic bound.” By first restricting to a simple exactly solvable model of a single
two-level system coupled to a finite-dimensional thermal environment and by exploiting an excitation-preserving
interaction, we establish the dominant role played by the population terms in dictating the tightness of these
bounds with respect to the dissipated heat and clearly establish that coherences only affect the entropic bound.
Furthermore, we show that sharp boundaries between the relative performance of the two quantities emerge and
find that there are clear instances where both approaches return a bound weaker than Clausius’ statement of the
second law, rendering them ineffective. Finally, we show that our results extend to generic interaction terms.
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I. INTRODUCTION

Landauer’s principle provides us with the fundamental
conclusion that information is physical and its erasure is
necessarily accompanied by a minimum thermodynamic cost,
the dissipated heat [1,2]. It is now increasingly accepted that
the assessment of genuinely quantum systems and elementary
quantum processes necessitates the re-examination of familiar
thermodynamic quantities such as work and heat [3]. With
this in mind, it is quite remarkable that Landauer’s principle
extends beyond its original classical paradigm and equally
applies when the state of a joint system-environment configu-
ration is quantum [4].

A clear understanding of how a quantum system dissipates
heat is intrinsically important both from a fundamental and
practical standpoint. Indeed, such disordered forms of energy
are a potential source of inefficiency in emerging quantum
technologies. Thus recently, several studies have explored
lower bounds on the dissipated heat in a variety of systems,
including the experimental tests of Landauer’s principle [5–8],
examining the validity of Landauer’s bound for a fully quantum
setting [4], its behavior in open quantum systems [9,10],
schemes to minimize the dissipated heat [11], and a rigorous
tightening of Landauer’s bound [12]. While Landauer’s prin-
ciple is rooted in the use of information-theoretic entropies
[1,2,12], recent studies have shown that other approaches that
do not necessarily invoke any information theoretic tools but
rather rely on the dynamics of the system can be used to
derive a “nonequilibrium thermodynamic” lower bound on the
dissipated heat [13,14]. The relevance of this approach further
relies on the fact that a microscopic analysis of the erasing
procedure allows us to take into account effects related to
non-Markovianity or initial correlations [15], which have often
shown to lead to counterintuitive phenomena [16,17]. Despite
their quite different origin, both entropic and thermodynamic
bounds are valid, though possibly far from being tight, for
a generic system-environment interaction. It is therefore of
interest to ascertain the relative performance of the bounds
while also exploring their dependence on the choice of

initial system state and environmental temperature. Indeed, the
dependence of the erasing procedure and the related entropy
variation and dissipated heat on the initial system state was one
of the basic concerns already considered in the seminal paper
by Landauer [1]. A better understanding of the relationship
of the two bounds, in particular, in their dependence on the
initial state, further provides hints on the interplay between
logical and thermodynamic irreversibility. Indeed, the latter
issue is all the more relevant in the quantum framework due
to the different role of measurement in quantum mechanics.
It is exactly in this direction that this work progresses. We
examine the relative performance of Landauer’s entropic
bound with the bound derived in Ref. [13]. To this aim we
consider a system consisting of a single qubit coupled to a
finite-dimensional thermal environment. Initially assuming an
excitation-preserving interaction, we show that the details of
the initial system state are crucial in dictating the tightness
of the different bounds. Remarkably, we find that in the
parameter space of the initial system, sharp boundaries emerge,
highlighting a crossover between the bounds. Interestingly,
the presence or absence of coherences is shown to play a
diminished role, only entering into the details of the entropic
bound and being completely absent from the dissipated heat
as well as the thermodynamic bound. Furthermore, it is
shown that the same qualitative behavior extends beyond the
excitation-preserving interactions to more generic models.

The remainder of this paper is organized as follows. In
Sec. II we define the lower bounds on the dissipated heat that
will be the focus of this work. In Sec. III we exhaustively
study the performance of these bounds in a simple excitation-
preserving model. In Sec. IV we show the results persist for
generic interaction terms. Finally, in Sec. V we present our
conclusions and a short discussion.

II. LANDAUER-TYPE BOUNDS

Consider a situation in which the total Hamiltonian of a
system in contact with an environment is time independent,
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such that no work is done. The heat dissipated by the system
into its environment can be expressed as

〈Q〉 = Tr[HE(�E(t) − �E(0))], (1)

where �E is the density operator and HE the Hamiltonian of
the environment. Using an information-theoretic framework,
Landauer established that this quantity can be bounded from
below by examining the corresponding change in entropy,

β〈Q〉 � �S = S(�S(0)) − S(�S(t)), (2)

where β is the inverse temperature, S(·) is the von Neumann
entropy, and �S is the density operator of the system. For
brevity we refer to Refs. [1] and [12] for a more detailed
discussion. This result, which has recently been tightened
by Reeb and Wolf [12] when quantum systems are explicitly
considered, is remarkable as it was one of the first instances to
explicitly demonstrate the physical nature of information. In
the following we will refer to Eq. (2) as the “entropic bound.”

The growing interest in exploring the thermodynamics
of quantum systems [3] has led to a closer examination of
Landauer’s principle and the dissipated heat [6–14,18–21].
Recently, a different approach to bounding β〈Q〉 was proposed
in Ref. [13]. Starting from the unitary dynamics of the total
system-environment state and employing a heat fluctuation
relation, the dissipated heat can be bounded by a quantity that
is related to the dynamical map governing the evolution of the
system. Explicitly it was shown that [13]

β〈Q〉 � B = − ln

(
Tr

[∑
i

K
†
i �S(0)Ki

])
, (3)

with Ki the Kraus operators of the map acting on the system,
which depend on the environment initial state (assumed here to
be in Gibbs form) as well as the system-environment interac-
tion Hamiltonian. Again, for brevity we refer to Ref. [13] for a
detailed derivation. We will refer to this as the “thermodynamic
bound.”

Clearly, the approaches used to derive the bounds are
fundamentally different in nature, and this leads us to explore
their respective relevance in the dependence on choice of initial
states and features of the dynamics. To answer this question
we will examine these quantities in simple exactly solvable
systems, showing that the answer reveals remarkably subtle
features of the two approaches.

III. DESCRIPTION OF THE SYSTEM-ENVIRONMENT
COUPLING: XX INTERACTION

Our model consists of two coupled qubits, which we label
system S and environment E with free HamiltoniansHS(E) =
σ z. As a first characterization of the model the two spins are
coupled via an XX interaction,

H = J
(
σx

S ⊗ σx
E + σ

y

S ⊗ σ
y

E

)
, (4)

with σi the usual Pauli matrices, where the coupling is mea-
sured in energy units set by the free evolution. The environment
qubit is initially in a thermal state �E(0) = e−βHE /Z, with
Z the associated partition function. As noted in Ref. [13],
the case of a single spin environment is already sufficient to
capture the salient features of the quantities at hand while still

FIG. 1. Dissipated heat β〈Q〉 (blue), thermodynamic bound B
(red), and Landauer bound �S (orange). In both panels we set the
inverse temperature of the environment qubit β = 1. (a) Pure excited
initial system state, i.e., α = 0. (b) Mixed initial system state with
α = 0.6. The solid orange curve is for a fully dephased initial state
w = 0, while the dashed orange curve is for w = 0.5. We remark that
the thermodynamic bound and the dissipated heat have no dependence
on w.

allowing for a fully analytical treatment. Furthermore, it serves
as a benchmark for larger interacting systems which will be
considered elsewhere. We take the initial state of the system
to be

�S(0) =
(

1 − α2 δ

δ α2

)
, with δ = w(α

√
1 − α2), (5)

where 0 � w � 1 and 0 � α2 � 1, so that 0 � δ � 1/2.
Note that we are assuming the ordered basis {|1〉,|0〉}. The
simplicity of the interaction allows us to readily determine
Eqs. (1)–(3); however, given their somewhat involved form,
we omit explicitly reporting them here. In Fig. 1 we examine
the effect that taking different initial states for the system
has on the relative performance of the bounds. This simple
analysis already allows us to infer that both the dissipated
heat, Eq. (1), and the thermodynamic bound, Eq. (3), are
independent of the value of w, i.e., the presence of coherence
in the initial state has no bearing on these quantities. For an
initially pure state, as in panel (a), we find �S �0 and its
dynamical behavior bears little affinity to that of the dissipated
heat, while the thermodynamic bound closely mimics β〈Q〉.
However, the fact that B is a tighter bound when the initial
state is pure is simply an artefact of the special restriction
such an initial state puts on �S: as the state is pure the
entropy can only increase and therefore Eq. (2) is always
negative. Considering an initially mixed system state, panel
(b), we see the situation becomes much more subtle. While
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the thermodynamic bound still closely tracks the functional
behavior of the dissipated heat, it is not as tight as in the pure
excited state case. Furthermore, since the initial state is mixed
the entropy can now both increase and decrease due to the
interaction. We now see that if w = 0 (solid orange curve),
corresponding to a fully dephased initial system state, then
during the dynamics the entropic bound can be tighter than
the thermodynamic bound, while for a partially dephased state
(dashed orange) the converse can hold true.

A. Quantitative comparison of the bounds

Comparing the relative performance of the two bounds is
delicately dependent on the particular details of the initial
state of the overall system. Since the coupling is excitation
preserving, the total system has a very well-defined period
which we can exploit to make our analysis more quantitative.
The question still arises: how do we unambiguously define
which bound is tighter? While clearly there are the trivial
instances at which β〈Q〉=0 and both quantities are tight, we
see that dynamically they can exhibit crossovers. Thus, even
though for arbitrary times the interplay between the bounds is
complex, it is arguably most interesting to determine which is
tighter when the dissipated heat is maximized, β〈Q〉max. Due
to the periodicity this simply means determining the value
of the bounds at time t = π/(4J ). Concise analytical expres-
sions putting into evidence the different role of coherences
and populations can be obtained using the standard Bloch
representation for the statistical operator ρS = 1

2 (1 + σ · v),
with v = (vx,vy,vz). Taking into account the invariance of
the dynamics with respect to the choice of polar angle in the
Bloch sphere, corresponding to the reality of Eq. (5), we take
v = (2δ,0,1 − 2α2), thus obtaining

Bmax = − ln[1 − vz tanh(β)] (6)

and

�Smax = �Sβ − �Sv, (7)

where

�Sβ = β tanh β + ln
√

1 − tanh2 β,

�Sv = ln
√

1 − |v|2 + |v|tanh−1|v|.
We remark that at this instant in time the interaction plays the
role of a swap operation between the state of the system and
the environment. Note that an important difference between
the bounds already appears in these expressions. As noted
previously, we explicitly see that the thermodynamic bound
does not depend on the coherences and is determined by
the interplay between the environmental temperature and the
initial population of the system’s ground state. On the other
hand, we see that the entropic bound is affected by coherences,
but interestingly, it is the sum of two contributions. The first
is independent of the state of the system and provides a fixed
offset ranging from 0 to a plateau at its maximum value ln 2
for decreasing environmental temperature. The second term
depends on the initial system state only through the modulus
of the Bloch vector.

Using Eqs. (6) and (7) we explore the role that the
temperature of the environment and the initial state of the

FIG. 2. (a) The leftmost red region contains states for which
Bmax >�Smax for β = 10, while for all other states �Smax >Bmax. As
the temperature of the environment is increased we find the range of
states for which �Smax >Bmax shrinks and is delineated by everything
within the colored regions (left to right): β = 10 [cyan], 2 [blue], 1
[green], 0.5 [yellow], and 0.1 [orange]. (b) Linear entropy of the states
lying along the boundaries given by the dashed lines in panel (a).

system has on the relative performance of both bounds in
Fig. 2. In panel (a) we randomly generate millions of initial
states for �S and determine which is closer to β〈Q〉max. Setting
β = 10 corresponds to a cold environment such that it is
essentially initialized in its ground state. The leftmost red
region shows the states for which Bmax > �Smax, while in
the (lighter) cyan region and for all further states to the right
we find the converse. The dashed lines show the boundary
states that can be found by solving the transcendental equation
Bmax =�Smax. While both quantities have a clear temperature
dependence, for the entropic bound the decrease in the system’s
entropy calls for a growth of the environmental entropy,
favored by the purity of its initial state. In particular, the
temperature dependence of �Smax is typically much weaker
than compared with Bmax, and furthermore, this contribution
is independent of the system’s initial state. It follows then
that the region in which the entropic bound out-performs the
thermodynamic bound shrinks and progressively tends towards
a point corresponding to the maximally mixed initial system
state. At this point it is important to stress a caveat regarding
Fig. 2(a): as evidenced previously, within the parameter space
one or both bounds can be negative, even when the dissipated
heat is positive. Therefore, there are regions in which one
bound outperforms the other; however, ultimately both fail to
provide any meaningful information regarding the dissipated
heat. We will return to this point more explicitly in the
proceeding section.
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Given the invariance of B to the presence of coherences,
which clearly appears from Eq. (6), we can conclude that
the main parameter delineating the regions is the initial
populations, parameterized by α. The dominate role that the
populations play in dictating the performance of the bounds
is shown in Fig. 2(b), where we reparameterize panel (a) to
show the linearized entropy SL = 2(1 − Tr[�2

S]) against the
ground-state population α2 for the boundary states, i.e., those
states lying along the dashed lines. States lying on the x axis
correspond to pure states while those along the outer boundary
are the maximally mixed for a given value of α. Clearly,
for predominantly excited (α2 � 0.5) the thermodynamic
bound is always tighter regardless of the temperature of the
environment.

B. Tightness of the bounds

While the previous section highlights which bound serves
as a better estimate for β〈Q〉, an immediate question arises:
how close do either of these quantities get to the dissipated
heat? From Fig. 1 we see instances where the thermodynamic
bound is close to the actual dissipated heat, while it appears the
entropic bound is always quite loose. In Fig. 3(a) we rescale
the quantities by β for clarity and examine their tightness for
the extremal value of w = 0 corresponding to fully dephased
states, which maximizes the entropic bound. The topmost
transparent plane is 〈Q〉, the red and meshed orange planes
correspond to Bmax/β and �Smax/β, respectively, and finally
the dark flat plane is at zero. We see that for α2 = 0, which
corresponds to a pure excited system state, B serves as a
reasonable lower bound on β〈Q〉, and in fact, for β → 0
becomes tight, although we remark that this corresponds to
an infinite temperature environment and therefore the actual
dissipated heat β〈Q〉 → 0. By changing α the discrepancy
grows between Bmax/β and 〈Q〉max, and we find that for
α2 > 0.5 the thermodynamic bound is always negative. By
fixing w = 0 we see that for cold environments �Smax only
provides a better bound when both quantities are quite far
from the true value of the dissipated heat. For any w �= 0 the
entropic bound performs progressively worse and for w = 1
is always negative.

This behavior highlights a further point mentioned previ-
ously: with the exception of a small region of the parameter
space, namely, α2 � 1

2 [1 + tanh(β)], the dissipated heat is
positive β〈Q〉 � 0. While evidently Bmax < 0 if α2 > 0.5 and
�Smax can be negative for a wide range of parameter choices.
From the Clausius statement of the second law, it is immediate
to conclude that

β〈Q〉 � 0 for α2 � 1
2 [1 + tanh(β)]. (8)

Thus there can be clear situations in which both bounds fail
to capture any features of the dissipated heat. It is therefore
of relevance to compare �Smax and Bmax in the parameter
region in which the dissipated heat is positive and in which
they provide a more informative statement than Clausius’
law, which we do in Figs. 3(b) and 3(c) for β = 1 and 0.1,
respectively. The black regions show the states for which
β〈Q〉 < 0 and therefore are not a relevant implementation of
Landauer’s principle. Conversely, the white region shows the
states in which both quantities are negative despite β〈Q〉 > 0.

FIG. 3. (a) Analysis of the tightness of the bounds. We plot 〈Q〉max

[topmost], Bmax/β [red], and �Smax/β [meshed, orange] for w = 0.
The flat plane at zero is for reference. (b, c) We reexamine which
bound is tighter with the additional constraints that the dissipated
heat and both bounds are positive. The black regions correspond to
where β〈Q〉 < 0 and therefore it is not a relevant implementation of
Landauer’s principle. The white region is when β〈Q〉 > 0, butBmax <

0 and �Smax < 0. The leftmost red region represents states such that
Bmax > �Smax, while Bmax < �Smax for β = 1 [central green region
in panel (b)] and β = 0.1 [central cyan region in panel (c)].

Hence, in these regions neither bound is any more informative
than Clausius’ law, Eq. (8). Notice that a lower environmental
temperature reduces the size of these regions significantly,
and we remark that for β � 10 we find β〈Q〉 > 0 (since
the environment is essentially in its ground state) and one
bound is always positive. Thus, while the results of Fig. 2(a)
explicitly show which bound is tighter, it excludes the instances
when either Landauer’s principle does not hold or when both
bounds are weaker than Clausius’ law. While the vertical sharp
boundaries in Figs. 3(b) and 3(c) are a consequence of the
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independence of β〈Q〉 andBwith respect to w, the emergence
of the sharp crossovers between all the regions is nevertheless
remarkable.

IV. DESCRIPTION OF THE SYSTEM-ENVIRONMENT
COUPLING: OTHER INTERACTION MODELS

In order to understand the general features in the interplay
between the bounds, we generalize our results to other
interaction models, showing that the previously obtained
qualitative features indeed persist for arbitrary interactions.
In order to do so we must modify our strategy to compare the
bounds, as arbitrary interactions do not exhibit such a clean
periodic behavior; thus there is no definite point during the
dynamics where a simple comparison can be made. Therefore
we will consider the average value of the bounds, taken over the
coupling, as one would naturally do in a operational approach
to comply with a fluctuating interaction strength

A =
∫ Jmax

0
dJ p(J )AJ . (9)

The bounds are evaluated at a time much longer than the
free evolution time, so as to ensure that they have reached an
asymptotic value. Due to the significantly more involved nature
of the quantities, when evaluating the bounds,B and �S, these
averages are performed numerically by taking a large sample
of random values for J from the interval (0,Jmax) and taking
the statistical mean. Considering an Ising interaction between
the qubits

H = Jσx
S ⊗ σx

E, (10)

in Figs. 4(a) and 4(b) we show that already t = 102 when
J = 1 is sufficient to ensure good convergence. Furthermore,
we immediately see several qualitative features carry over to
the new interaction model. In particular, we again find that
the thermodynamic bound becomes negative when α2 > 0.5,
and furthermore find that the entropic bound is the only one
sensitive to coherences. In the same way as for the XX model,
we can establish a bound on the value of the ground-state
initial population α2 such that the dissipated heat is positive
and therefore represents a meaningful instance of Landauer’s
principle. For the dissipated heat, due to the comparative
simplicity of Eq. (1) we can evaluate Eq. (9) analytically in
the long time limit and we find that Clausius’ law holds when

α2 � 1

2

[
1 + tanh(β)

(
Jmax

arctan(Jmax/2)
− 1

)]
. (11)

This result immediately puts into evidence the non-excitation-
preserving nature of the Ising interaction. Examining Fig. 4(c)
we see inline with intuition that if the environment is initially
cold then the dissipated heat is always positive. However, for
hotter environments we see that taking a larger value of Jmax is
sufficient to ensure the dissipated heat is always positive, due
to the fact that the interaction term is now injecting significant
amounts of energy into the total system.

Following from the previous analysis we determine B and
�S for various initial states of the system and for different
initial temperatures for the environment and examine which
bound is tighter. Sampling J ∈ (0,Jmax), Fig. 5(a) shows
that qualitatively the same behavior is exhibited as found

FIG. 4. Fixing β = 1, Jmax = 1, and ensuring the coherence term
of the initial state δ = 0.1, we examine the averaged values of the
quantities for (a) α2 = 0.45 and (b) α2 = 0.9. (c) The maximum
allowed value of the initial system ground-state population α2

max such
that the averaged dissipated heat β〈Q〉 � 0.

for the XX model when the coupling Jmax = 1. Again,
the thermodynamic bound outperforms the entropic bound
for initial highly excited states. As the temperature of the
environment is increased, the range of states such that �S > B
shrinks. Furthermore, we recall these figures must be caveated
inline with Eq. (11) where β〈Q〉 < 0, and more significantly,
where both bounds are negative despite the dissipated heat
being positive, cf. Fig. 4(b). Hence, we conclude that virtually
all of the qualitative features exhaustively explored for the
XX model, where an analytical treatment was possible,
extend to other interaction models when the interaction term
is of the same order of magnitude as the system’s natural
energy, i.e., for our purposes when Jmax ≈ 1. We find some
important differences arising for stronger couplings due to the
non-excitation-preserving nature of a generic interaction term.

More specifically, the non-excitation-preserving nature of
the interaction leads to the results shown in Fig. 5(b). For large
Jmax � 5, we know the dissipated heat is positive for a wide
range of β, cf. Fig. 4(c). Setting Jmax = 10, we see the division
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FIG. 5. (a) Jmax = 1 and (b) Jmax = 10. Similarly to Fig. 2, in
both panels the red regions B > �S for β = 10, while for all other
states �S > B. Hotter environments lead to smaller regions in which
�Smax > Bmax, as indicated by everything within the colored regions:
β = 10 [lighter cyan], 1 [darker orange]. For each point we set t = 103

and average over 500 values for J .

between which of the bounds is tighter changes significantly.
While there is still the appearance of sharp crossovers between
the performance of the two quantities, now they have become
more symmetrical around the central region of the plot. Note
that we still have that B < 0 for α2 > 0.5, while the behavior
of �S is more involved. We remark, however, that for the Ising
case, both bounds are typically quite far from the average value
of the dissipated heat β〈Q〉 and therefore act as only a loose
bound.

Although we have focused on the Ising model, the preceding
analysis can be performed for a generic two-body interaction of
the form H = ∑

k=x,y,z Jk(σ k
S ⊗ σ k

E), with random couplings
Jk involving all the Pauli operators. In this case, the compu-
tational resources are significantly increased due to the more
involved interaction term. Regardless, we obtain analogous
results to those shown in Figs. 2 and 5. In particular, sharp
convex subsets of the Bloch sphere mark a crossover between
the performance of the two bounds, which are qualitatively the

same as those obtained for the XX− and Ising interactions,
thus indicating that our results are robust against any choice
of two-body interaction in one-dimensional systems.

V. CONCLUSIONS

We have compared and contrasted different formulations
of nonequilibrium quantum Landauer bounds. We have shown
the delicate dependence of the “entropically” defined and
“thermodynamically” defined bounds to the initial state of
the system and environmental temperatures. Remarkably, the
thermodynamic formulation shares several features with the
dissipated heat, in particular, its independence to the presence
of initial state coherences, a feature not shared by the entropic
approach. By examining the relative performance of the
quantities we find sharp boundaries exist in the parameter
space, and more interestingly, there are instances where both
are negative despite the dissipated heat being positive. In these
situations the bounds are weaker than the standard Clausius’
statement of the second law. The features explored in this
work were exhaustively shown for an excitation-preserving
interaction, however the qualitative behavior was confirmed to
persist for generic interaction models.

Of course, given that the bounds are derived from disparate
formalisms, it is not surprising that they should perform
differently. However, as our results highlight, there are in-
teresting subtleties when one explicitly considers how they
perform for a generic initial system states and different
environmental conditions. The seemingly small role quantum
coherences play in both instances is quite remarkable, and it
is interesting to consider if this extends to entangled systems
undergoing Landauer-like erasure. It is important to note that
the analysis could be performed using the sharpened entropic
bound derived by Reeb and Wolf [12]; however, the qualitative
features shown here remain since this bound adds a correction
to Eq. (2) rather than significantly changing it. Furthermore,
the more involved form of this bound would have largely ruled
out an insightful analytical treatment.
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