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We consider the dynamics of a collisional model in which both the system and environment are embodied by
spin-1/2 particles. In order to include non-Markovian features in our model, we introduce interactions among
the environmental qubits and investigate the effect that different models of such interaction have on the degree
of non-Markovianity of the system’s dynamics. By extending that interaction beyond the nearest neighbor, we
enhance the degree of non-Markovianity in the system’s dynamics. A further significant increase can be observed
if a collective interaction with the forthcoming environmental qubits is considered. However, the observed degree
of non-Markovianity in this case is nonmonotonic with the increasing number of qubits included in the interaction.
Moreover, one can establish a connection between the degree of non-Markovianity in the evolution of the system
and the fading behavior of quantum coherence in its state as the number of collisions grows. We complement our
study with an investigation of system-environment correlations and present an example of their importance on a
physical upper bound on the trace distance derivative.

DOI: 10.1103/PhysRevA.96.022109

I. INTRODUCTION

The theory of open quantum systems deals with the
inevitable interaction between a system and its surrounding
environment, which results in a nonunitary time evolution
of the system density matrix [1–3]. As a result, quantum
coherence and the information encoded in the system’s state
are lost into the environmental degrees of freedom. In the
case of a Markovian evolution, the loss of system information
is monotonic and at any time the future evolution of the
system only depends on its present state. On the other hand,
non-Markovian dynamics can be associated with a temporary
reverse of such a flow of information, which results in the
system regaining some of the lost information and making the
future evolution of the system dependent on its past.

Recently, the characterization and quantification of non-
Markovian dynamics has attracted a lot of attention. The tools
of quantum information theory have been used extensively to
quantify the amount of information backflow from the envi-
ronment to the system, thus providing an important intuitive
understanding of non-Markovianity [4,5]. The measures of
non-Markovianity put forward so far are helping us charac-
terize the features of memory-bearing quantum open-system
dynamics, shedding light on the ultimate origins of such
behaviors. In general, however, they do not mutually agree
on the emergence and degree of non-Markovianity. In this
sense, they all characterize it from different perspectives [6].

In this work, we consider a model that describes the
system-environment interaction through a series of sequen-
tial “collisions” between the system and the environmental
particles. Such “collisional” model is capable of simulating
both Markovian and non-Markovian dynamics depending on
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the interaction and/or correlation between the environmental
degrees of freedom [7–13]. We explore how various ways
of engineering the interactions among the particles in the
environment affect the degree of non-Markovianity of the
dynamics of the system. In particular, we consider separate
and collective long-range interactions and determine if and
how the non-Markovianity, as quantified using the tool put
forward in Ref. [4], is affected by the different ways in
which the information propagates through the environment.
Furthermore, we investigate the relation between the amount
of non-Markovianity that our dynamical model generates and
the behavior of the coherence in the system’s state. Lastly, we
turn our attention to the relation between system-environment
correlations and non-Markovianity, which are believed to be
intimately related.

The analysis reported in this work allows us to highlight
a set of counterintuitive results. First, we find that the degree
of non-Markovianity of the dynamics of the system appears
to be decreasing with the depth of the collective interactions
considered in our study. In fact, we show how the inclusion
of non-nearest-neighbor interactions does not necessarily
result in a more pronounced non-Markovian character of
the dynamics, as one might expect. Moreover, we unveil a
peculiar relation between quantum coherence and the nature
of the coupling with the environment: while we find vanishing
quantum coherences for single-environment interactions, the
coupling to a collective environment appears to shield them for
more than an order of magnitude higher number of collisions.
Such a protection effect shows direct proportionality with the
degree of non-Markovianity of the dynamics.

The remainder of the paper is organized as follows.
Section II introduces the general idea behind collisional
models and gives the specifications of the models we consider
throughout this manuscript. We also briefly introduce the mea-
sure that is going to be utilized to quantify non-Markovianity
of the dynamics in the same section. Section III presents
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the results on the non-Markovian features of the dynamics
produced by our collision model and its effect on coherence
and system-environment correlations. Finally, in Sec. IV, we
draw our conclusions.

II. COLLISION MODEL

The collisional model that we consider consists of a system
(s) interacting with an ensemble of environmental particles,
e ∈ {e1,e2, . . . ,em}, one at a time. Each ek, k ∈ {1, · · · ,m}, is a
subenvironment, and m is the number of elements constituting
the environment. Throughout this work, we will take each ek to
be a two-level system. In our model, a given subenvironment
interacts with the system only once and is then discarded.

In any one step of the dynamics, the system interacts
with the kth subenvironment, which is then coupled to the
forthcoming subenvironment. In order to obtain the reduced
state of the system, we trace out the environment. Repeating
this process in an iterative loop for the desired number of
times results in the full time evolution of the system qubit. The
dynamical maps that govern this time evolution can be written
as

�[ρ] = UseρU †
se, �[ρ] = UeeρU †

ee, (1)

where Use = exp(−iHseφ) and Uee = exp(−iHeeθ ), with Hse

(φ) and Hee (θ ) the s-e and e-e interaction Hamiltonians
(strengths), respectively. If we initialize the collective system
and environmental state in the factorized form ρse

0 = ρs
0 ⊗ ρe

0,
it is possible to obtain the final combined state after the kth
iteration by a unitary transformation,

ρse
k = Uρse

0 U †, (2)

where U is composed of sequential applications of Use and Uee.
The reduced state of the system can be obtained by tracing out
the environmental degrees of freedom, ρs

k = Tre(ρse
k ).

In the case of identical noninteracting subenvironments, one
gets a dynamical process called quantum homogenization [7].
As the system qubit collides with the environmental ones, its
state will gradually change and, after a sufficient number of
collisions, it will eventually become identical to the initial state
of the subenvironments. Clearly, this is a microscopic model
of Markovian decoherence. However, by adding e-e collisions
to the model, the reduced dynamical evolution of s becomes
non-Markovian: some of the information that the system has
lost to a subenvironment propagates within the environment
due to e-e interactions, and is fed back to the system at a
later collision. The form of Hee strongly affects the degree of
non-Markovianity of the dynamics. For example, a SWAP-like
interaction between neighboring subenvironments results in a
non-Markovian time evolution whose degree is determined by
whether a partial or full SWAP operation is used [10].

In this work, our aim is to construct a simple collisional
model which allows for demonstration and control of non-
Markovian features. We model the s-e and e-e couplings as
spin-spin interactions, which may be implemented in systems
such as quantum-dot spin-valve-type devices (see, e.g., [14]
and references therein) or molecular nanomagnets. In order
to model the s-e interaction, we choose the Hamiltonian
governing the dynamics as (we take units such that h̄ = 1

FIG. 1. Schematic view of the two different environmental
interaction models considered in this work. The left column describes
the separate interaction with the second-nearest neighbor, while the
right column depicts the collective interaction scenario with qubits
up to the second-nearest neighbor. Generalization to longer-range
interactions follows from the picture presented here.

throughout the manuscript)

Hse = Jse

(
σ s

x σ e
x + σ s

y σ e
y

)
, (3)

where σx,y,z are the Pauli matrices. For the case of e-e coupling,
we want to extend the length of the interaction beyond the
nearest neighbor (NN) and see if and how the amount of non-
Markovianity depends on such a modification. We introduce
the long-range interactions in two ways, as depicted in Fig. 1.
On one hand, we consider separate interactions with second-,
third-, or fourth-NN subenvironments, for which the e-e
Hamiltonians can be written as the Heisenberg-like couplings,

Hj
ee = Jee

m−j∑
i=1

(
σ ei

x σ
ei+j

x + σ ei

y σ
ei+j

y + σ ei

z σ
ei+j

z

)/
2, (4)

with j = 1, . . . ,4. On the other hand, we introduce
subenvironment interactions as an equally weighted
linear combination of the Hi

ee, i = 1,2,3,4, such
as H 12

ee = H 1
ee + H 2

ee, H
123
ee = H 1

ee + H 2
ee + H 3

ee and
H 1234

ee = H 1
ee + H 2

ee + H 3
ee + H 4

ee. This scenario can be
seen as the collective interaction of the environmental qubit
which has interacted with the system, with the remaining
environmental qubits. Interactions between subenvironments
are designed to be only in the forward direction, i.e., ei interacts
with e′

i particle(s) only if i ′ > i as the environmental particles
with i ′ < i have already been discarded. Throughout this
work, we solve the dynamics for system particles numerically
since analytical approaches, such as deriving a master
equation for the cases addressed here, are far from tractable.

In order to quantify and discuss the non-Markovian be-
havior in our models, it is now appropriate to introduce the
measure of non-Markovianity which will be utilized in this
manuscript. It is known as the Breuer, Laine, and Piilo (BLP)
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measure [4] and is based on the trace distance between two
quantum states,

D(ρ1(t),ρ2(t)) = 1
2 ||ρ1(t) − ρ2(t)||1, (5)

where || · ||1 is the trace norm. The trace distance is zero for
indistinguishable (identical) quantum states, while it is unity
for completely distinguishable (orthogonal) quantum states,
and thus it can be thought of as a measure of distinguishability.

Consider two completely distinguishable initial states
which are then exposed to the same Markovian environment.
Both of the initial states will eventually lose all their initial
information into the environmental degrees of freedom and
become identical. Due to the Markovian nature of the dynami-
cal process, the loss of their distinguishability, as quantified by
the trace distance, will be monotonic in time. In other words,
the rate of change of the trace distance will always be negative,
dD/dt < 0. However, if there is a deviation from this behavior,
such that dD/dt > 0, we can conclude that the dynamical
evolution under consideration is non-Markovian in nature.
Intuitively, we can interpret the increase in the trace distance
as a backflow of the information that the subject system has
lost into the environment. Based on this, it is possible to define
a measure of non-Markovianity as follows [4]:

N = max
ρ1(0),ρ2(0)

∫
dD/dt>0

dD

dt
dt, (6)

where the maximization is made over all possible pairs of
initial states ρ1(0) and ρ2(0). Since in the collision model
considered in this work the time evolution takes place in
discrete steps, we will use the discretized version of the above
measure, expressed as [15,16]

N = max
ρs

1,0,ρ
s
2,0

∑
k

[
D

(
ρs

1,k,ρ
s
2,k

) − D
(
ρs

1,k−1,ρ
s
2,k−1

)]
, (7)

where k is the index that denotes the collision number. It is
important to note that while observing a temporary increase in
the trace distance is sufficient to conclude that the dynamical
map is non-Markovian, the converse statement is not always
true: there may be a non-Markovian time evolution in which
the trace distance decreases monotonically. In this sense, the
condition dD/dt > 0 is only a witness for non-Markovianity.

III. RESULTS

A. Non-Markovian evolution

1. Separate interaction case

We start by presenting our findings on separate second-
, third-, and fourth-NN subenvironment interactions and
compare them to the case of NN coupling. To begin with,
assume weak system-environment coupling (Jset � 1) and
set the interaction strength Jset = 0.05, where t is the
interaction time. Considering the interactions between the
subenvironments, it is known that for the NN interaction,
the maximum degree of non-Markovianity is obtained when
Jeet = π/2, which up to a global phase corresponds to the
full SWAP operation between the neighbor environmental
systems [10]. This is a rather expected result, as by completely
swapping the two subenvironments one actually makes the
system interact with the same environmental state at every
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FIG. 2. Non-Markovianity against the number of collisions for
NN, second-NN, third-NN, and fourth-NN interactions. The initial
system states that maximize N are |±〉 and Jeet = π/2 for all cases.

s-e collision. Decreasing the value of Jeet below π/2 will
result in the gradual degradation and eventual loss of the
non-Markovian features of the model. The same line of
thought also applies in the case of distant e-e couplings: to
obtain the highest degree of non-Markovianity, we again set
Jeet = π/2. The initial system states that maximize the BLP
measure are |±〉 = (|0〉 ± |1〉)/√2 and the initial state of each
subenvironment is set to be |0〉.

It can be seen in Fig. 2 that as the distance between the
two interacting subenvironments increases up to the fourth
NN, the degree of non-Markovianity monotonically increases
too. Furthermore, we observe that the number of collisions
needed for the saturation of N is affected by the choice of
the environmental interaction: the system qubit needs to go
through a higher number of collisions, as compared to the NN
e-e interaction case, before settling to a final state which is the
same as the environment initial state.

It is also important to note that as the distance between
two interacting subenvironments increases, we observe a shift
towards higher values in the number of collisions needed, to
have a nonzero degree of non-Markovianity. The reason behind
this is that in the cases of the second-, third-, and fourth-NN
interactions, the system qubit has to interact respectively with
one, two, and three subenvironments, which are all in their
initial state, before it comes in contact with the subenvironment
that has a partial information about its past state.

As an extension to the single separate interaction, it
is possible to consider two or more consecutive separate
interactions of the environmental qubits with different or
same coupling strengths. However, these scenarios do not
increase the non-Markovianity due to the SWAP-like form of
the interaction that we choose in our model. For example,
considering a NN interaction followed by a second-NN
interaction with Jeet = π/2 will result in the same value
of N as the sole NN interaction: when the interaction with
the second NN takes place, the environmental qubit that has
interacted with the system has already been swapped with the
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NN subenvironment, which is in its initial state. Therefore the
second-NN interaction does not produce any difference in the
dynamics. One can naturally ask what happens if we relax
the full SWAP condition and freely change the interaction
strengths of various consecutive separate interactions. Even
though the answer is not quite definitive, one can still
observe, following the example above, that the degree of non-
Markovianity changes from zero to the maximum obtained
in the sole second-NN interaction. Therefore, we can tune the
amount of non-Markovianity of the dynamical evolution in our
model. This example can be generalized to any combination
of consecutive interactions considered in this work, given that
the interactions are ordered by the increasing distance between
environmental qubits.

2. Collective interaction case

We would like now to turn our focus on the collective long-
range interaction model and again see whether it is possible
to enhance the degree of non-Markovianity, as quantified by
the trace distance. We again assume weak system-environment
coupling Jset = 0.05. Comparing with the previous case, we
see that the value of Jeet = π/2, which yields the strongest
non-Markovianity for the separate interaction scenario, is
no longer the best choice if we change the environmental
interaction Hamiltonian to a collective one. In fact, we find
that the maximum degree of non-Markovianity is obtained
for Jeet = 0.6(π/2), Jeet = 0.43(π/2), and Jeet = 0.33(π/2)
for H 12

ee , H 123
ee , and H 1234

ee , respectively. Moreover, apart from
these specific Jeet values, N is always zero, which implies
that either the time evolution is Markovian or that its non-
Markovian character cannot be detected by the BLP measure.

In Fig. 3, we present N versus the number of s-e collisions.
It is clear that extending the e-e interactions and considering
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FIG. 3. Non-Markovianity against number of collisions for NN
interactions; NN and second-NN interactions; NN, second-, and third-
NN interactions; and NN, second-, third-, and fourth-NN interactions,
with the interaction strengths Jeet = 0.6(π/2), Jeet = 0.43(π/2), and
Jeet = 0.33(π/2), respectively. The initial states that maximizeN are
|±〉 for all cases.

collective interactions significantly increases the degree of
non-Markovianity as compared to just the NN coupling.
However, this increase is not monotonic in the number of
interacting environmental qubits: the time evolution governed
by H 123

ee settles to a lower N value than that given by H 12
ee ,

but still greater than that obtained by H 1
ee. Including the

fourth-NN interaction further decreases N , which, however,
remains significantly higher than in the case of just NN
interaction. The mechanism behind this decrease may be
the dilution of the system information that has leaked to
the environment. At every e-e interaction, some information
about the original state of the first environmental qubit is
transferred to the forthcoming subenvironments, together with
some information from the system. Increasing the interaction
length when such collective interactions are considered results
in increasing the number of times that an environmental
qubit receives information from the system, before it interacts
directly with the system qubit. As a result, in comparison with
the separate interaction case, in the collective interaction case it
is possible to reach higher values of non-Markovianity (cf. the
y-axis ranges in Figs. 2 and 3). Furthermore, as the range of the
e-e interaction increases, the values at which N is saturated
get closer and closer. One way to understand this result is
that as the number of collectively interacting subenvironments
increases, we gradually approach the spin-boson model limit
in the e-e interactions, and therefore the final values of N
converge to the same number.

B. Coherence

Another important fact observed when considering col-
lective e-e interactions is that the number of collisions
needed to reach the maximum amount of non-Markovianity
increases by almost an order of magnitude, with respect to
the NN-interaction case. The “time” it takes to reach the
final configuration is also considerably higher as compared
to the separate interaction case (cf. the x-axis ranges in Figs. 2
and 3).

The reason why the saturation of N happens later in the
long-range separate and collective interaction cases, compared
to the case with just NN interaction, is that the revivals in
the trace distance continue for a higher number of collisions,
resulting in a more pronounced non-Markovianity of the
dynamics. Since we interpret these revivals as the backflow
of information from the environment to the system, we
also looked for the effects of this information regain on
the coherence contained in our system, which is initially in
the fully coherent |+〉 or |−〉 state. Indeed, we observe a
connection between the degree of non-Markovianity and the
coherence, as shown in Fig. 4: prolonged oscillations in the
trace distance, and therefore increased N , are accompanied
by prolonged oscillations in the coherence possessed by the
system. We quantify the coherence with a recently introduced
coherence measure, the l1 norm of coherence,

Cl1 (ρ) =
∑
i �=j

|ρi,j |, (8)

which is nothing but the sum of the absolute values of the
off-diagonal elements in the density matrix [17]. Cl1 satisfies
all the criteria introduced in [17] to be a valid measure
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FIG. 4. Plots of the l1 norm of coherence against the number of
collisions, for NN (at the top), separate (left column), and collective
(right column) interactions. From top to bottom, the range of the
e-e interactions increases. We can see that the the number of
s-e collisions required for the coherence to vanish increases with
longest living coherence being the one having the highest degree
of non-Markovianity in both environment models. The frequency of
oscillations in the collective interaction case is much higher than that
of the separate interaction case.

of quantum coherence. Therefore, we have shown that the
stronger the non-Markovianity in our system, the longer the
time for which the coherence content will remain finite. In
other words, by increasing the range of the interaction be-
tween subenvironments, we increase the number of collisions
required for the complete decoherence of the system qubit,
which is quite desirable in most practical cases. Comparing
the separate interaction scenario with the collective one, we
can conclude that in terms of coherence lifetime, the latter is
much more advantageous than the former. Such a correlation
between the non-Markovianity of a dynamical evolution and
prolonged oscillations in the coherence have also been reported
in a model constructed to understand the mechanism behind
the long-lived coherence in photosynthetic complexes [18].
Furthermore, in Ref. [19], the interplay between coherence
and non-Markovianity was examined in a refined spin-boson
model, and it was shown that non-Markovianity causes revivals
in the dynamics of coherence. A more detailed analysis along
these lines of work can be found in [20].

C. System-environment correlations: Mutual information

We also investigated whether the trend of the non-
Markovianity can be connected with the behavior of the cor-
relations created between the system and the subenvironment
with whom it has just interacted. In order to quantify these
correlations, we chose to look at the mutual information (MI)
between s and e after they have interacted with each other,

I (ρse) = S(ρs) + S(ρe) − S(ρse), (9)

where S(ρ) = −tr(ρlnρ) is the von Neumann entropy.
We present our findings on the relation between the MI

and N in Fig. 5. First, one can immediately notice that
the MI is significantly different from zero only around the
first few-hundred collisions, and approaches zero long before
the non-Markovianity measure saturates to its final value.
Furthermore, we can see that in the separate interaction
case, as the interaction length is increased, the MI becomes
more delocalized and remains finite for a higher number of
collisions. Such a behavior of the MI seems correlated with
the degree of non-Markovianity: the more the MI delocalizes
(spreads) over the number of collisions, the higher is the
increase between two plateaus of N , which results directly
in a higher degree of non-Markovianity. As the MI tends to
zero, the increase of the non-Markovianity measure also slows
down. Another correlation between the behaviors of MI and
N is that the increases and plateaus of N occur in coincidence
with the odd and even revivals of the MI, respectively.

D. System-environment correlations: A bound on the trace
distance derivative

Mutual information is not the only tool available to in-
vestigate the connection between quantum non-Markovianity
and system-environment correlations. Reference [21] provides
a link between the behavior of the trace distance deriva-
tive dD/dt and system-environment correlations, which are
quantified using the matrix χse(t) := ρse(t) − ρs(t) ⊗ ρe(t)
as explained below; such matrix is identically zero when
system and environment are completely uncorrelated. In
Ref. [21], the trace distance derivative is upper bounded
by a quantity dependent explicitly on χse(t). The result is
obtained in the weak-coupling limit, under the assumptions of
a system-environment interaction generated by the propagator
Ut,t0 = e−iH (t−t0)/h̄ for any initial time t0 < t , and of an
initially uncorrelated system-environment state: let ρs

1,2(t0)
be two arbitrary initial system states and ρe

1(t0) = ρe
2(t0) be

identical initial environment states, then the joint initial states
are ρse

j (t0) = ρs
j (t0) ⊗ ρe

j (t0) for j = 1,2. These assumptions
imply that the dynamics of the system is completely positive.
Denoting the evolved marginal states of the system (envi-
ronment) with ρ

s(e)
j (t) = Tre(s)[Ut,t0ρ

se
j (t0)U †

t,t0 ], the bound on
dD/dt takes the form

dD(t)

dt
� 1

2
[BEnv(t) + BCorr(t)],

BEnv(t) = ∥∥ρ̃s
1,1(t) − ρ̃s

1,2(t)
∥∥,

BCorr(t) = ∥∥χ̃ s
1 (t) − χ̃ s

2 (t)
∥∥, (10)

022109-5



B. ÇAKMAK et al. PHYSICAL REVIEW A 96, 022109 (2017)

0 100 200 300 400 500 600
0

1

2

3

4

5

No. collisions

100xMI
non−Markovianity

0 200 400 600 800
0

2

4

6

8
100xMI
non−Markovianity

2nd

0 200 400 600
0

2

4

6
100xMI
non−Markovianity

up to 2nd NN

0 200 400 600 800
0

2

4

6

8
100xMI
non−Markovianity

3rd NN

 NN

0 200 400 600
0

2

4

6
100xMI
non−Markovianity

up to 3rd NN

0 200 400 600 800
0

2

4

6

No. collisions

100xMI
non−Markovianity

4th NN

0 200 400 600
0

1

2

3

4

5

No. collisions

100xMI
non−Markovianity

up to 4th NN

FIG. 5. Mutual information and non-Markovianity against num-
ber of collisions for NN (at the top), separate (left column), and
collective (right column) interactions. From top to bottom, the range
of the e-e interactions increases.

where we employed the auxiliary states

ρ̃s
1,j (t) = Tre

{[
H,ρs

1(t) ⊗ ρe
j (t)

]}
,

χ̃ s
j (t) = Tre

{[
H,χse

j (t)
]}

, j = 1,2, (11)

obtained from ρs
1(t) ⊗ ρe

j (t) and χse
j (t) by evolving them

for an infinitesimally small time through expansion of the
operator U to first order in H , and then taking the partial
trace over the environment [22]. In Eq. (10), the term BEnv(t)
connects the emergence of non-Markovianity to the induced
distinguishability in the environment states ρe

1(t) and ρe
2(t)

which were initially identical. The term BCorr(t) instead

NN

NN NN

NN

NNNN

NN

FIG. 6. Upper bound on the trace distance derivative from
Eq. (10), for NN (at the top), separate (left column), and collective
(right column) interactions. From top to bottom, the range of the
e-e interactions increases. Since only the BEnv term gives a nonzero
contribution, the bound clearly does not hold.

accounts for the presence of system-environment correlations
at time t , resulting from the previous evolution. Note that with
our choice of initial conditions, at the beginning both BEnv(t0)
and BCorr(t0) are zero, and so dD(t0)/dt � 0.

The application of this bound to our dynamical model
requires some care: in our implementation, after each iteration
(s-e followed by e-e interaction), in order to prepare the states
for the following step, system and environment are traced
apart, assigning to each of them the respective marginal state.
This operation erases at every step all the s-e correlations
that may have been created and causes the (discretized) term
BCorr(k) to be identically 0 at each step k. Figure 6 shows an
example of the behavior of the bound of Eq. (10), to which only
the term BEnv(k) contributes. We plot it against the discretized
trace distance derivative,


D(ρ1,ρ2,k) = D
(
ρs

1,k,ρ
s
2,k

) − D
(
ρs

1,k−1,ρ
s
2,k−1

)
. (12)

The term BEnv alone is clearly not sufficient to bound the
trace distance derivative, and this fact can be seen as a further
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FIG. 7. Upper bound on the trace distance derivative from
Eq. (10), computed now after each interaction and before preparing
the uncorrelated state for the following iteration. Displayed plots
are for NN (at the top), separate (left column), and collective (right
column) interactions. From top to bottom, the range of the e-e
interactions increases.

proof of the relevance of system-environment correlations in
non-Markovian quantum dynamics.

In order to further investigate the situation, we implemented
the computation of the bound in Eq. (10) in a subtly different
way. Instead of computing it at the beginning of every step, now
we compute it after the s-e and e-e interactions occurred, and
before erasing the correlations, effectively making a fictitious
evolution step as if we were able to carry over such correlations
from one step to the following. The results are displayed in
Fig. 7 and now the bound is satisfied correctly [23]. On a
more fundamental level and in the spirit of [21], the bound
computed straightforwardly with our discrete-time model, as
shown in Fig. 6, does not hold because of the following: the
derivation of Eq. (10) assumes that the evolved states ρ

s(e)
1 (k)

and ρ
s(e)
2 (k) are connected to their respective initial states

ρ
s(e)
1 (0) and ρ

s(e)
2 (0) uniquely by the unitary evolution given

by k subsequent applications of the one-step unitaries Use

and Uee from Eqs. (1). However, in our model at every step,

before the application of Use and Uee, the joint states ρse
1 (k)

and ρse
2 (k) are each substituted with the tensor product of their

two marginal system and environment states. Therefore, the
overall process leading from ρ

s(e)
1 (0) and ρ

s(e)
2 (0) to ρ

s(e)
1 (k)

and ρ
s(e)
2 (k) cannot be fully described by a unitary evolution,

as required by the derivation of Eq. (10). In the example of
Fig. 7, the dynamics is the same as in Fig. 6, but the bound
is computed at each step in such a way that this condition is
satisfied for the current step.

IV. CONCLUSIONS

We have investigated the dynamics of a long-range col-
lision model consisting of spin-1/2 particles. For practical
applications and simplicity, we have modeled the s-e and e-e
interactions as spin-spin interactions. We have considered two
different models of e-e interactions with varying interaction
lengths. On the one hand, we have allowed the subenvironment
which has interacted with the system qubit to interact with its
NN, second NN, third NN, or fourth NN separately. On the
other hand, we have changed the e-e to be a collective one,
so that after interacting with the system, the subenvironment
interacts with a collection of forthcoming environmental
qubits, such as NN + second NN, NN + second NN + third
NN, or NN + second NN + third NN + fourth NN.

We have found that increasing the interactions beyond NN
immediately increases the non-Markovianity in the system
dynamics. While in the separate interaction case this increase is
linear with the distance between the interacting environmental
qubits, in the collective interaction case it is nonmonotonic
with the number of qubits involved in the interaction increase.
Moreover, it is possible to tune the degree of non-Markovianity
by considering a scenario in which we consecutively apply
separate e-e interactions of different length and tunable
strength. However, for collectively interacting environments,
the interaction strength must be set to a very specific value
in order to observe a non-Markovian dynamics. In both
scenarios, the BLP measure of non-Markovianity saturates
after a certain number of collisions between the system and
the subenvironments. The number of collisions for which
the saturation occurs is found to be related to the degree of
non-Markovianity in the dynamics. We have seen that the
higher the saturation value of non-Markovianity, the longer
it takes to the system to reach that saturation value.

Another result that we have obtained is the observation of
a direct connection between the degree non-Markovianity in
the dynamics and how fast the system loses coherence. By
employing a recently proposed coherence measure, we have
observed that the coherence of the system particle remains
finite after a higher number of collisions in a dynamics
that generates a higher degree of non-Markovianity. This
may find application in relating resource theories of non-
Markovianity and coherence, and allows for a non-Markovian
route preserving coherence in a dynamical system.

Finally, we investigated the connection between non-
Markovianity and system-environment correlations. The post-
collision mutual information shows how the odd and even
peaks of revival of mutual information coincide, respec-
tively, with the ramps and plateaus of the measure of
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non-Markovianity. Furthermore, we computed an upper bound
on the trace distance derivative, based on system-environment
correlations and on the distinguishability induced in the
environment. The necessity of both of these contributions for
the validity of the bound constitutes further evidence of the
relevance of correlations in non-Markovian dynamics.
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