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Oil Price Volatility Forecast with Mixture Memory GARCHI

Tony Kleina,∗, Thomas Walthera

aFaculty of Business and Economics, Technische Universität Dresden, 01062 Dresden, Germany

Abstract

We expand the literature of volatility and Value-at-Risk forecasting of oil price returns

by comparing the recently proposed Mixture Memory GARCH (MMGARCH) model

to other discrete volatility models (GARCH, RiskMetrics, EGARCH, APARCH, FI-

GARCH, HYGARCH, and FIAPARCH). We incorporate an Expectation-Maximization

algorithm for parameter estimation of the MMGARCH and find different structures in

volatility level as well as shock persistence. MMGARCH is also able to cover asymmet-

ric and long memory effects. Furthermore, a dissimilar memory structure in variance

of WTI and Brent crude oil prices is observed which is supported by additional tests.

Parameter estimation and comparison of the models reveal significant long memory

and asymmetry in oil price returns. In regard of variance forecasting and Value-at-Risk

prediction, it is shown that MMGARCH outperforms the aforementioned models due to

its dynamic approach in varying the volatility level and memory of the process. We find

MMGARCH superior for application in risk management as a result of its flexibility in

adjusting to variance shifts and shocks.

Keywords: GARCH-type models, long memory, asymmetry, mixture memory, oil

price volatility, Value-at-Risk, volatility structure

1. Introduction

Forecasting oil price volatility is crucial for numerous industries. Research has

revealed links between oil and other commodities, financial instruments, stocks, and
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bonds (e.g. Wang et al., 2014, Kang et al., 2014, Mohanty et al., 2014). Furthermore,

variance predictions are of great importance to the energy and utility branch.

Typically, volatility of financial instruments and commodities in general, and of oil

price returns in particular, are modeled by using Generalized Autoregressive Condi-

tional Heteroskedasticity (GARCH) processes introduced by Engle (1982) and Boller-

slev (1986). However, a complete model covering a variety of stylized facts has not been

proposed so far. The so-called Long Memory property is one of these facts. Empiri-

cal results show that shocks have a much longer persistence in volatility than simple

GARCH models are able to describe (see e.g. Baillie, 1996, Cont, 2001). GARCH

models have a memory that declines exponentially and only an increased number of

parameters provides a suitable fit. To implement this persistence of shocks, Fractional

Integrated GARCH (FIGARCH) was proposed (Baillie et al., 1996). The memory pro-

cess of FIGARCH models decays hyperbolically. While GARCH models have a short

memory, FIGARCH models tend to depict a long memory, are still parsimonious with

parameters, and show better performance in predicting future oil price volatility (Kang

et al., 2009).

Researchers aim to find the most suitable and accurate model for decision making

in regard to volatility forecasting. Some studies use long memory GARCH-type models

(e.g. FIGARCH) to predict future oil price volatility (see e.g. Chkili et al., 2014, Wang

& Wu, 2012) while other studies observe and identify different volatility regimes (Fong &

See, 2002, Nomikos & Pouliasis, 2011, Chang, 2012). Motivated from recent literature,

we assume that oil price volatility regimes do not only differ in level, but also in shock

persistence. A model with varying memory structure would overcome drawbacks of

fixed short or long memory. We expect this increased flexibility to provide better

results in forecasting future oil price volatility.

We contribute to the literature by showing the presence of different memory types

and confirm the existence of a high and a low volatility level in oil return series. Un-

like others studies before, which utilize Markov-Regime-Switching models, we apply a

mixture of two distinct GARCH models. Li et al. (2013) recently proposed the Mix-

ture Memory GARCH (MMGARCH) which consists of a plain GARCH-part and a

FIGARCH-part in volatility and provides a time-dependent and stochastic decision on

whether to use short or long memory in each modeling step. With this work, we are the

first to test the MMGARCH model against other GARCH-type models in predicting

oil price volatility and its application for calculation of the Value-at-Risk.

Additionally to varying memory structures and volatility levels, we find structural
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differences between the oil blends WTI and Brent. Our results suggest that the persis-

tence of shocks is almost infinite for WTI, while the impacts of shocks for Brent feature

a shorter lifespan. This particular finding provides further evidence of a heterogeneous

oil price market (Fattouh, 2010, Liu et al., 2013). Moreover, we can support the findings

of studies observing asymmetric impact of good and bad news on volatility (Aloui &

Mabrouk, 2010, Chkili et al., 2014).

The remainder is structured as follows: in Section 2 we introduce the models to

be tested as well as estimation and forecasting methods. Section 3 is devoted to data

acquisition and descriptive statistics of the utilized time series. Results are presented

and discussed in Section 4. Section 5 concludes this work.

2. Methodology

2.1. Competitive GARCH models

The conditional variance ht in a GARCH(p, q) model depends on the lagged squared

residuals up to order q as well as on lagged conditional variances up to order p. Given

that the conditional mean of the return series yt is µt and the residuals are denoted by

ut, the GARCH(1, 1) can be written as

yt = µt + ut,

ut = εt
√
ht,

ht = Var (yt|Ft−1) = ω + αu2
t−1 + βht−1,

where εt ∼ N (0, 1) i.i.d for all t = 1, . . . , n and Ft−1 denotes the sigma algebra generated

by the history of the time series. We assume ω > 0 and α, β to be greater or equal to

zero to ensure the non-negativity of the variance process as well as α+ β < 1 to obtain

a stationary process.

If it holds that α + β = 1, every shock has an infinite persistence. The model is

then called Integrated-GARCH (IGARCH) (Engle & Bollerslev, 1986). The special

case with ω = 0, α = 0.06, and β = 0.94 is part of the “RiskMetrics” of JP Morgan.

With these fixed RiskMetrics parameters it is straightforward to model the conditional

variance without estimation.

Another class of GARCH models depict the stylized fact of asymmetric impact of

positive and negative returns on volatility. Nelson (1991) proposed the Exponential
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GARCH (EGARCH) which models the logarithm of ht. For normally distributed ut,

the EGARCH(1, 1) can be written as (Engle & Ng, 1993)

log (ht) = ω + β log (ht−1) + γ
ut−1√
ht−1

+ α

(
|ut−1|√
ht−1

−
√

2/π

)
.

Due to its nature, the EGARCH does not have any parameter restrictions. The param-

eter γ is often referred to as “leverage” parameter. A negative parameter γ indicates

that negative returns have a larger impact on volatility than positive returns.

Another model to describe asymmetric effects is the Asymmetric Power ARCH by

Ding et al. (1993). Furthermore, it generalizes the power of the modeled volatility. The

APARCH(1,1) can be written as

h
δ/2
t = ω + α (|ut−1| − γut−1)δ + βh

δ/2
t−1, (1)

with the restrictions ω ≥ 0, α, β, δ > 0, and γ ∈ [−1, 1]. For the APARCH and

following FIAPARCH, a positive leverage parameter γ indicates that negative returns

have a larger impact on the conditional variance than positive returns.

As mentioned before, GARCH models show only short memory when not highly pa-

rameterized. Therefore, models with fewer parameters to cover long memory are needed.

FIGARCH(p, d, q) was proposed by Baillie et al. (1996) where d is the fractional inte-

gration parameter and p and q are analogues to the order of lag. A FIGARCH(1, d, 1)

variance process is defined as

ht = ω +
(

1− βL− (1− ϕL) (1− L)d
)
u2
t + βht−1,

where L denotes the lag-operator. We assume that ω > 0, 0 ≤ β ≤ ϕ + d, and

0 ≤ d ≤ 1 − 2ϕ. The FIGARCH nests the aforementioned GARCH (if d = 0) as well

as the IGARCH (if d = 1) with an infinite shock persistence.

Another long memory model we implement for comparison is the Hyperbolic GARCH

(HYGARCH, Davidson, 2004). It generalizes the hyperbolic decay of memory by adding

a weight b on the fractional difference to overcome the drawback that for any 0 < d < 1

FIGARCH has no unconditional variance (Conrad, 2010). The HYGARCH(1, d, 1)

variance process can be formulated as

ht = ω +

(
1− 1− ϕL

1− βL

(
1 + b

(
(1− L)d − 1

)))
u2
t .
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The Fractionally Integrated Asymmetric Power ARCH (FIAPARCH) proposed by

Tse (1998) is a FIGARCH applied on APARCH innovations. The FIAPARCH(1,d,1)

is given by

h
δ/2
t = ω +

(
1− βL− (1− ϕL) (1− L)d

)
(|ut−1| − γut−1)δ + βh

δ/2
t−1

All parameter specifications of APARCH and FIGARCH have to hold for FIAPARCH

as well.

2.2. Mixture Memory GARCH

Motivated by Li et al. (2013), we incorporate a GARCH(1, 1) and a FIGARCH(1, d, 0)

component for variance modeling. Let εt ∼ N (0, 1) i.i.d. for all t = 1, . . . , n. A random

mixture between the GARCH and the FIGARCH component is incorporated by in-

troducing a sequence of Bernoulli random variables, (Zt)t=1,...,n, where P [Zt = 1] = πt.

The mixture proportion πt ∈ [0, 1] is addressed at a later point. The Mixture Memory

GARCH (MMGARCH) is then defined as

yt = µt + ut,

ut = εt
√
ht,

ht = zth1,t + (1− zt)h2,t,

where

h1,t = ω1 + α1u
2
t−1 + β1h1,t−1,

h2,t = ω2 +
(
1− β2L− (1− L)d

)
u2
t + β2h2,t−1,

(2)

for t = 1, . . . n, where h1,t denotes the GARCH, h2,t the FIGARCH component with the

aforementioned assumptions applied, and zt is a realization of the Bernoulli random

variable Zt at time t. Since zt ∈ {0, 1}, either the GARCH (h1,t) or the FIGARCH

(h2,t) component is applied as instantaneous, conditional variance at time t. Li et al.

(2013) show that under the given assumptions of non-negativity and strict stationarity

for the respective components, there exists a strictly stationary solution to (2) with

finite variance. In view of estimating model (2), we adopt the equivalent ARCH(∞)

representation of the FIGARCH component h2 as introduced in Bollerslev & Mikkelsen

(1996):
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h2,t = ω2 +
(
(1− β2L)− (1− L)d

)
u2
t + β2h2,t−1

=
ω2

1− β2

+
∞∑
j=1

δju
2
t−j,

(3)

where δi is calculated from the FIGARCH parameters and referred to as FIGARCH-

weights. The infinite summation needs to be truncated at an index lT < ∞, which

is the so-called truncation lag. This truncation lag has to be handled with caution in

regard to the hyperbolic decay of the FIGARCH-weights (δ1, . . . , δlT ) and thus, the long

memory of the FIGARCH process. In literature, frequently proposed lags range from

lT = 50 to lT = 2 000. We set lT = 500 for all long memory models.

A dynamic approach for the mixture proportion, that is dependent on a lagged

realization of the time series of order one, is implemented. We adopt a logistic link

function which was tested in recent research (e.g. Cheng et al., 2009). Hence, we define

log

(
πt

1− πt

)
= λ0 + λ1 (yt−1 − µt−1)

⇐⇒ πt :=
1

1 + exp(−λ0 − λ1 (yt−1 − µt−1))
.

(4)

While Li et al. (2013) implement the absolute (unsigned) value of the time series (|yt−1−
µt−1|) for calculating the mixture proportion in Eq. (4), we find that incorporating the

absolute value cancels some asymmetric effects; therefore, we employ the signed value.

A positive parameter λ1 indicates that negative deviations from the mean lead to a

higher probability of FIGARCH being the instantaneous variance at time t.

2.3. EM Algorithm

From Li et al. (2013), we adopt the following pseudo-log-likelihood function for

Model (2) with θ = (m,ω1, α1, β1, ω2, β2, d, λ0, λ1) and t = 1, . . . , n:

LL(θ) =
n∑
t=1

log

(
πt(θ)√
h1,t(θ)

exp

(
−(yt − µt)2

2h1,t(θ)

)
+

(1− πt(θ))√
h2,t(θ)

exp

(
−(yt − µt)2

2h2,t(θ)

))
− n

2
log(2π),

(5)
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where m refers to all parameters associated with the structure of the conditional mean

µt.

Let Ω denote the admissible parameter space originating from the parameter re-

strictions. The direct maximization of Eq. (5) to find the log-likelihood estimate

θ̂ = arg max
θ∈Ω

(LL(θ)) (6)

is not feasible. The actual decision on whether h1,t or h2,t is the instantaneous variance

depends on πt which is unobservable. Hence, the maximization problem (6) is a so-called

missing data problem. We incorporate the iterative Expectation-Maximization (EM)

algorithm which was introduced by Dempster et al. (1977) to replace the missing data

with its conditional expectation. The initial, incomplete data log-likelihood function in

Eq. (5) is replaced by the following complete data, substitute log-likelihood function:

LL#(θ) =
n∑
t=1

[
ztlog (πt(θ)) + (1− zt)log (1− πt(θ))

− 1

2
zt

(
log (h1,t(θ)) +

(yt − µt)2

h1,t(θ)

)

− 1

2
(1− zt)

(
log(h2,t(θ)) +

(yt − µt)2

h2,t(θ)

)]
,

(7)

where zt is a realization of the Bernoulli random variable as in Eq. (2) and represents

the missing data. The maximization problem reads as follows:

θ̂ = arg max
θ∈Ω

(
LL#(θ)

)
. (8)

Dempster et al. (1977) show that a solution for the substitution problem (8) solves prob-

lem (6). Hence, the maximum-likelihood estimate for Eq. (7) is a maximum-likelihood

estimate for Eq. (5). Implementing the EM algorithm, we replace the missing data zt

with its expected value τt, conditional on the observed y = (yt)t=1,...,n and estimates θ̂,

and obtain the following algorithm structure in the k-th iteration:

E-step

Calculate the conditional expectation τ
(k)
t of zt with regard to the observations yt and
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the (k−1)-th estimate θ̂(k−1) =
(
m̂(k−1), ω̂

(k−1)
1 , α̂

(k−1)
1 , β̂

(k−1)
1 , ω̂

(k−1)
2 , β̂

(k−1)
2 , d̂(k−1), λ̂

(k−1)
0 , λ̂

(k−1)
1

)
of the (k − 1)-th M-step as follows:

τ
(k)
t =

π̂
(k−1)
t φ

(
yt − µ̂(k−1)

t√
ĥ
(k−1)
1,t

)
1√
ĥ
(k−1)
1,t

π̂
(k−1)
t φ

(
yt − µ̂(k−1)

t√
ĥ
(k−1)
1,t

)
1√
ĥ
(k−1)
1,t

+ (1− π̂(k−1)
t )φ

(
yt − µ̂(k−1)

t√
ĥ
(k−1)
2,t

)
1√
ĥ
(k−1)
2,t

,

where φ(·) denotes the density of a standard normal distribution and π̂
(k−1)
t , µ̂

(k−1)
t ,

ĥ
(k−1)
1,t , and ĥ

(k−1)
2,t denote the estimates of the respective processes that were calculated

in the (k − 1)-th M-step by estimating θ̂(k−1).

M-step

Solve problem (8) by replacing zt with τ
(k)
t to obtain the estimate θ̂(k).1 If there is no

conditional mean structure, we decompose the maximization problem to three separate

problems with yt = ut:

θ̂
(k)
1 = arg min

n∑
t=1

τ
(k)
t

(
log(h1,t(θ)) +

u2
t

h1,t(θ)

)
, (9)

θ̂
(k)
2 = arg min

n∑
t=1

(1− τ (k)
t )

(
log(h2,t(θ)) +

u2
t

h2,t(θ)

)
, (10)

θ̂
(k)
3 = arg max

n∑
t=1

(
τ

(k)
t log(πt(θ)) + (1− τ (k)

t )log(1− πt(θ))
)
. (11)

Consequently, we obtain θ̂(k) =
(
θ̂

(k)
1 , θ̂

(k)
2 , θ̂

(k)
3

)
by solving Eq. (9), (10), and (11) indi-

vidually, where θ̂
(k)
1 =

(
ω̂

(k)
1 , α̂

(k)
1 , β̂

(k)
1

)
, θ̂

(k)
2 =

(
ω̂

(k)
2 , β̂

(k)
2 , d̂(k)

)
, and θ̂

(k)
3 =

(
λ̂

(k)
0 , λ̂

(k)
1

)
.

The main property of the EM algorithm defined above is that the log-likelihood

function is monotonically increasing with every iteration,2 we have

1With estimating θ̂(k), one obtains π̂
(k)
t , µ̂

(k)
t , ĥ

(k)
1,t , and ĥ

(k)
2,t which is then used in the (k + 1)-th

iteration and fed into the (k + 1)-th E-step.
2While theory only ensures monotonicity, the implementation of the algorithm in MATLAB conve-

niently shows a strictly monotonically increasing log-likelihood without exception.
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LL#
(
θ̂(k)
)
≤ LL#

(
θ̂(k+1)

)
.

In our implementation, the EM algorithm is terminated after the l-th iteration if∥∥∥θ̂(l) − θ̂(l−1)
∥∥∥

2
< 10−5,

where ‖·‖2 denotes the Euclidean norm. The estimate θ̂(l) is interpreted as a maximum-

likelihood estimate for problem (6) and LL(θ̂(l)) is calculated as log-likelihood of the

given estimation for the initial problem.

It is noteworthy that the EM algorithm is very sensitive to starting values, e.g.

one has to carefully calculate or estimate the input values
(
π̂

(0)
t , ĥ

(0)
1,t , ĥ

(0)
2,t

)
for the first

E-step (k = 1). While the EM algorithm does not ensure convergence to a global

maximum of the log-likelihood function, there are several techniques that increase the

chance of converging to such. Deterministic and simulated annealing are considerable

(Ueda & Nakano, 1998, Lavielle & Moulines, 1997), but are only tested for mixture

density estimation. We implement a highly parallelized, grid-search like estimation for

starting values θ̂(0) and
(
π̂

(0)
t , ĥ

(0)
1,t , ĥ

(0)
2,t

)
which is somewhat time-consuming. However,

the total estimation time of the EM algorithm is vastly reduced because fewer iterations

are needed if the algorithm is initiated with adequate inputs in the first (k=1) iteration.

The calculation of the standard errors of the parameter estimates is based on the

missing information principle of Hartley & Hocking (1971). For technical details re-

garding the standard errors, we refer to Li et al. (2013) due to their complete derivation

of the calculation process for this particular mixture model.

2.4. Variance Forecast

In view of the forecasting quality of the different models, the k day-ahead variance

at time t, denoted by ĥt+k, is calculated for k ∈ {1, 5, 20}. At time t, we assume yt,

µ̂t, and ht to be known, where ht stems from the parameter estimation of the given

model.3 An increasing window of training data as suggested in recent literature (Chkili

et al., 2014, Hou & Suardi, 2012) is incorporated. For each t in the out-of-sample data

a separate parameter estimation is carried out using all available data up to this time,

yielding the respective parameter estimates which are used for the forecast at time t.

3While ht is calculated from parameter estimates at time t, we omit the “hat” notation to distinguish
from forecasted variances.
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The GARCH(1, 1) model is then forecasted by

E (ht+1|Ft) = ĥt+1 = ω̂ + α̂u2
t + β̂ht (12)

for the 1 day-ahead forecast and by

ĥt+k =
ω̂

1− (α̂ + β̂)
+ (α̂ + β̂)k−1

(
ĥt+1 −

ω̂

1− (α̂ + β̂)

)
(13)

for the k day-ahead forecast. Note that we use the known variance ht in Eq. (12). How-

ever, for Eq. (13), which yields from recursive calculation of the 1 day-ahead forecast,

we set u2
t+i = ĥt+i for all i = 1, . . . , k − 1. This is justified by the stationarity of the

GARCH process.4

When predicting the variance with RiskMetrics, we use ĥt+1 for all k day-ahead

predictions because the underlying IGARCH is not stationary.

The EGARCH forecast is carried out by applying the following equation recursively

for k ≥ 1:

ĥt+k = ĥt+k−1 exp
[
(1− β)ω − α

√
2/π
]

·
(

exp

[
γ + α2

2

]
Φ (γ + α) + exp

[
γ − α2

2

]
Φ (γ − α)

)
,

(14)

where Φ (·) is the cumulative distribution function of the standard normal distribution

(Tsay, 2013).

Forecasting the FIGARCH process, we incorporate the ARCH(∞) representation

as in Eq. (3) and calculate the k day-ahead variance recursively by

ĥt+k =
ω̂

1− β̂
+ δ(L)′ĥ(t+k−1,...,1),

where ĥ(t+k−1,...,1) :=
(
ĥt+k−1, . . . , ĥt+1, u

2
t , . . . , u

2
1

)
is the data vector and δ(L) refers to

the vector of the FIGARCH weights. Both vector lengths are determined by the chosen

truncation lag. Predicting the HYGARCH process is done analogously to FIGARCH

with respect to the additional parameter b.

4In literature it is common practice to already apply u2t = ht in Eq. (12); we decide to use as much
information as available, however.
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In order to forecast the APARCH and FIAPARCH, the following additional term

has to be calculated prior to calculating any k > 1 day-ahead forecast:

E
(

(|ut+k−1| − γ̂ut+k−1)δ̂ |Ft
)

= κh
δ̂
2
t+k−1, (15)

with

κ =
1√
2π

(
(1 + γ̂)δ̂ + (1− γ̂)δ̂

)
2

(δ̂−1)
2 Γ

(
δ̂ + 1

2

)
for normally distributed residuals (Ding et al., 1993), where Γ(·) denotes the Gamma

function. Forecasts are then carried out analogously to the GARCH and FIGARCH

forecasts.

The MMGARCH forecast consists of a separate GARCH and FIGARCH forecast.

The mixing proportion is fixed at the value at time t. The k day-ahead forecast is

calculated by

ĥt+k = π∗t+1ĥ1,t+k + (1− π∗t+1)ĥ2,t+k, (16)

where

π∗t+1 =
1

1 + exp
(
−λ̂0 − λ̂1 (yt − µt)

)
is the last determinable mixture proportion and ĥ1,t+k and ĥ2,t+k refer to the GARCH

and FIGARCH forecast, respectively.

2.5. Forecast evaluation and Value-at-Risk

In order to test and compare the prediction ability of the aforementioned models

on the out-of-sample data, we apply different loss functions. We define the root mean

squared error (RMSE)

RMSE :=

√√√√ 1

M

M∑
t=1

(ĥt − ht)2,

the mean absolute error (MAE)

MAE :=
1

M

M∑
t=1

|ĥt − ht|,
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the QLIKE which represents the loss against a normal likelihood

QLIKE :=
1

M

M∑
t=1

(
log
(
ĥt

)
− ht

ĥt

)
,

the R2LOG based on Pagan & Schwert (1990)

R2LOG :=
1

M

M∑
t=1

(
log

(
ht

ĥt

))2

,

and the mixed mean error (MME) for under-predicted values

MME(U) :=
1

M

(∑
t∈O

|ĥt − ht|+
∑
t∈U

√
|ĥt − ht|

)
,

and over-predicted values

MME(O) :=
1

M

(∑
t∈U

|ĥt − ht|+
∑
t∈O

√
|ĥt − ht|

)
,

where M denotes the number of observations in the out-of-sample data, ĥt denotes the

forecasted variance at time t and ht denotes the actual, realized variance. The sets O

and U are defined as in Brailsford & Faff (1996), where

O :=
{
t ∈ {1, . . . ,M}

∣∣∣ ĥt > ht

}
and

U :=
{
t ∈ {1, . . . ,M}

∣∣∣ ĥt < ht

}
.

MME(U) and MME(O) penalize under- and over-predicted values, respectively. There-

fore, both of them can be used to derive results regarding application in risk manage-

ment. Following Wei et al. (2010), the realized variance ht is set equal to the squared

daily residual u2
t = (yt − µ̂t)2.5 The decision on the out-of-sample performance is made

with respect to the smallest error calculated in each loss function. We apply the Su-

perior Predictive Ability (SPA) test by Hansen (2005) to assess the outperformance of

a model. The null hypothesis states that the benchmark model is not inferior to the

5We note that squared residuals as a measure of realized variance of a real data time series might
be biased by some idiosyncratic error. For discussion on this matter, see Andersen & Bollerslev (1998).
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models in its peer.

In order to compare the benefits for risk management applications we forecast the

Value-at-Risk (VaR) for each t ∈ 1, 2, . . . ,M in the out-of-sample series k day-ahead

by

V aR
(k day)
p,t = µ̂t+k +Qp

√
ĥt+k,

where Qp denotes the p-quantile of the standard normal distribution and µ̂t+k =

E (µt+k|Ft). We examine the VaR at the 0.01 and 0.05 significance level and at the 0.99

and 0.95 significance level for long and short investment positions, respectively. For

testing the VaR, we apply the popular unconditional coverage test by Kupiec (1995),

the conditional coverage test by Christoffersen (1998), and the alternatives for both

tests proposed by Ziggel et al. (2014). In comparison to the Kupiec and Christoffersen

test, the Ziggel alternatives are one-sided and test for i.i.d. observations instead of

a first-order Markov chain. We compare the performance of the models in terms of

variance forecast quality by the above-mentioned tests for k ∈ {1, 5, 20}.

3. Data

Our data set consists of daily log return series of the U.S. West Texas Intermediate

(WTI) and European Brent crude oil prices which we obtain from the U.S. Energy Infor-

mation Administration (EIA). We define returns yt of prices Pt by yt = log (Pt/Pt−1) for

t = 2, . . . , n. The sample data is acquired from 01/01/1995 to 12/31/2014 which yields

n = 5024 return observations for WTI and n = 5062 return observations for Brent.

The last five years are used for out-of-sample analysis which produces an out-of-sample

length of M = 1260 for WTI and M = 1255 for Brent.

This data set allows us to adjust the volatility models with two major crises (Dot-

Com 2002 and Financial Crisis 2008) and test them with the decline in oil prices in

2014. The return series of each crude oil blend are displayed in Fig. 1 and 2. Both

figures appear to have volatility clusters, with periods of low returns and periods of

high returns.

The descriptive statistics of the return series for both blends are given in Tab. 1.

The mean of the two return series is close to zero, but negative skewness, a kurtosis

higher than 3, and the significant Jarque-Bera test show evidence of non-normality. This

characteristic can be the result of volatility clusters and different volatility regimes. The

Ljung-Box test rejects the hypothesis of i.i.d. observation in the squared returns and
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Figure 1: WTI log returns, 01/04/1995 – 12/31/2014, n = 5024, out-of-sample window is plotted in
red.
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Figure 2: Brent log returns, 01/04/1995 – 12/31/2014, n = 5062, out-of-sample window is plotted in
red.

describe highly significant autocorrelation,6 which may imply a conditional structure

in the variance of the time series. The same test finds autocorrelation in the returns of

WTI and cannot reject the hypothesis of no autocorrelation in the Brent returns. The

hypothesis of non-stationarity is rejected by the augmented Dickey-Fuller test and the

hypothesis of stationarity is not rejected by the Kwiatkowski, Philipps, Schmidt, Shin

(KPSS)-test. Therefore, we assume both series to be stationary, a requirement for most

time series analysis.

6Ljung & Box (1978) show that their test is insensitive for deviation from the assumption of normally
distributed time series.
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WTI Brent

Descriptive Statistics

Observations 5024 5062
Mean 0.0002 0.0002
Standard deviation 0.0241 0.0223
Minimum −0.1709 −0.1989
Maximum 0.1641 0.1813
Skewness −0.1983 −0.1056
Kurtosis 8.1099 8.4545

Preliminary Tests

Jarque-Bera 5489.68∗∗∗ 6274.23∗∗∗

Ljung-Box Q′ (8) 31.11∗∗∗ 12.45
Ljung-Box Q′2 (8) 959.74∗∗∗ 466.39∗∗∗

Augmented Dickey-Fuller −16.25∗∗∗ −15.94∗∗∗

KPSS 0.0573 0.0788

Table 1: Descriptive statistics and preliminary tests for WTI and Brent log returns, 01/04/1995 –
12/31/2014. Rejection of the null hypothesis is displayed by ∗, ∗∗, ∗∗∗ for 10%, 5% and 1% significance
level.

Prior to the analysis of the conditional volatility structure of both oil blends, the

conditional mean structure is examined. We make use of the Box/Jenkins method (Box

et al., 2008), which applies different autoregressive integrated moving average (ARIMA)

models on the return series and compares the Bayesian Information Criterion (BIC) as

a measure for the goodness-of-fit. As both time series appear to be stationary, no

further differencing (degree of integration) is needed. Furthermore, we cannot identify

any lag-order, neither for the autoregressive part nor for the moving average part, that

yields a higher BIC than the simple unconditional mean (intercept).7 Hence, we include

an unconditional mean (µt ≡ µ const.) into the parameter estimation and forecasting

in the following section.

4. Results and Discussion

4.1. Estimation Results

The estimation results of the different models are presented in Tab. 2 (WTI) and

Tab. 3 (Brent). Both tables show that MMGARCH clearly outperforms all other mod-

7These results are available upon request.
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els regarding the Log-Likelihood (LL) and the BIC, indicating a better fit. All models

significantly decrease the autocorrelation in the return and squared return series accord-

ing to the Ljung-Box statistics of the standardized residuals. Due to the goodness-of-fit

of MMGARCH, we conclude that both time series have different volatility structures,

which is consistent with the findings of Fong & See (2002), Nomikos & Pouliasis (2011),

and Chang (2012). All three studies find regimes of low and high volatility in oil fu-

ture data by applying different Markov-Switching GARCH models. In our approach a

link function is used to mix between GARCH and FIGARCH instead of a Markovian

transition matrix.

Additionally, we find that these two components do not only distinguish between

volatility levels but also differ in the persistence of shocks. This result expands the

literature by giving evidence of different decay of shocks during the time period evalu-

ated. Assuming no difference in the memory structure (short or long memory) of the

time series, the fractional differencing parameter of MMGARCH would be d = 0 which

is not the case for both blends. Hence, each series consist of two different variance

components. The first component has a short memory, with weights declining expo-

nentially and a low unconditional volatility. The second component has a long memory

with a hyperbolic decline of weights and a high volatility level which is derived from

the different dimensions of the parameters ω1 and ω2 in MMGARCH.

For the Brent return series, APARCH and FIAPARCH feature a relatively high and

statistically significant leverage parameter γ. For both models the parameter is positive

which emphasizes that downward movements have a greater impact on the conditional

variance than upward movements.The EGARCH reveals the same properties which is

consistent with recent literature, e.g. Chkili et al. (2014). This asymmetric news impact

behavior is covered by a large mixing parameter λ1 in the MMGARCH. The parameter

λ1 increases the proportion of the high-volatility FIGARCH in the variance mixture

if large, downward movements in returns are present. Fig. 3 visualizes the estimated

mixing proportion of the variance components for the Brent. In contrast, the WTI

return series features a less pronounced asymmetry in its variance.

The estimation results also indicate that long memory models feature a better

goodness-of-fit than short memory models for the WTI and Brent. This is supported by

studies finding long memory and asymmetry in oil price return volatility (e.g. Charfed-

dine, 2014, Chkili et al., 2014)

Much to our surprise we discover significant structural differences regarding the

MMGARCH model in the return series of WTI and Brent. Shocks and elevated variance
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levels in the WTI series appear to be significantly more persistent than in the Brent

returns. We derive this result from the different fractional differencing parameters d of

the FIGARCH component in MMGARCH. While we estimate d = 0.7069 for the Brent

series, the WTI series yields d ≈ 1.8 The latter indicates an infinite persistence known

as IGARCH effect. If d = 1, FIGARCH(1, d, 0) decomposes to an IGARCH(1, 1) which

is easily shown in the following equation:

h2,t = ω2 +
(
(1− β2L)− (1− L)d

)
u2
t + β2h2,t−1

(d=1)
= ω2 + ((1− β2)L)u2

t + β2h2,t−1

= ω2 + (1− β2)u2
t−1 + β2h2,t−1.

The differences in the return and variance series of the WTI and Brent are of a very

complex nature. Differences could be caused by variations of the USD/EUR rate and

varying local supply and demand. The latter relates to the expansion of hydraulic

fracturing in North America, for example. Buyuksahin et al. (2013) analyze the WTI-

Brent spread and find evidence that business cycles, storage levels in the United States,

and transportation infrastructure explains some of the observed spread. A connection

to WTI future markets is also found. Kanamura (2015) focuses on the financialization

of crude oil markets and finds significant differences in the correlation of the blends

with the S&P 500 index. While these studies identify and aim to explain the price

spread, our results indicate that there is also a significant difference in the conditional

variance and memory structure of the WTI and Brent.

Regarding the calculated standard errors, it is noteworthy that for both blends the

mixing parameter λ1 stands out. Setting λ1 = 0 prior to parameter estimation to obtain

a constant mixing proportion worsens results in view of goodness-of-fit. We assume that

the elevated errors are caused by the exponential structure of the link function given in

Eq. 4. As for WTI where the parameter λ1 is not statistically significant, the mixing

proportion is somewhat stable and the lagged return has only little impact on it.

Testing the aforementioned IGARCH findings for the WTI blend, we mix two

GARCH(1, 1) processes in the MMGARCH model which produces the same result with

8Our implementation of the FIGARCH parameter estimation caps the maximum value of d at
0.9999. The interested reader will find that allowing a value of d = 1 causes problems in maximizing
the log-likelihood function.
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the same Log-Likelihood. The results are shown in Tab. 4. Inevitably, the GARCH

estimates of one GARCH component are identical to the GARCH estimates in the

initial MMGARCH model. The second component reveals an IGARCH process with

parameter estimates α + β ≈ 1, which confirms our assumptions of an IGARCH effect

obtained by the FIGARCH parameter estimates. Having identified an IGARCH pro-

cess, we loose covariance stationarity which has major effects on variance forecasting.

Depending on starting values, the GARCH/GARCH mixture yields another symmetric

estimate with mixing proportion parameters (λ̃0, λ̃1) = −(λ0, λ1), where the parameter

estimates for the first and second GARCH component are interchanged. This behav-

ior of the EM-algorithm is perfectly coherent and demonstrates the convergence to a

maximum of the Log-likelihood function.

GARCH1 GARCH2 Mix & LL

ω1 1.20× 10−6 ω2 1.96× 10−6 λ0 −2.3553
α1 0.5174 α2 0.0305 λ1 2.3440
β1 0.4826 β2 0.9548 LL 12 271

Table 4: Parameter estimates for WTI with a GARCH/GARCH mixture in MMGARCH, 01/04/1995
– 12/31/2014, n = 5024.

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

M
ix

in
g 

P
ro

po
rt

io
n

Figure 3: Brent mixing proportion for the parameter estimates from 01/04/1995 – 12/31/2014, n =
5062, out-of-sample window is plotted in red.

4.2. Forecasting Results

Firstly, we compare the results for variance forecasts obtained with the loss functions

defined. The calculated errors are listed in Tab. 5. The smallest value for each loss

20



function represented in the rows is given in bold type. For both WTI and Brent, we find

that MMGARCH minimizes loss functions; or is close to the minimum value while the

hypothesis of not being inferior to any other model cannot be rejected. This hypothesis

is tested by Hansen’s SPA. Regarding RMSE and MAE, we find that for both blends

MMGARCH is superior to any other model tested as it produces the smallest errors.

For the QLIKE and R2LIKE loss functions, MMGARCH either features the lowest

error and hence outperforms the other models or features a similar performance and is

not inferior to the best model (QLIKE for 1 day-ahead forecasts). In view of the loss

function MME(U), that penalizes under-predicted variances, we find that FIAPARCH

is superior to any other model, while other long memory models display very good

results. This might stem from their behavior of over-predicting the variance. This

becomes more obvious with the loss function MME(O) which penalizes over-predicted

variances. For this measure, FIAPARCH and other long memory models are inferior to

any other tested model and for all forecasting horizons for WTI and Brent. We hence

conclude that predicting future variance of oil prices with a FIAPARCH or FIGARCH

process is not recommended due to their tendency to over-predict future variances for

this time window. On one hand, this would lead to very conservative VaR-forecasts, on

the other hand it could cause excessive hedging costs. The MMGARCH minimizes the

MME(O) in all cases except for the 20 day-ahead WTI prediction. We do not detect

any differences in forecasting quality of MMGARCH regarding the forecasting horizon.

Overall, MMGARCH shows very good performance in variance prediction for different

forecasting horizons and outperforms the tested models in most cases for WTI and

Brent with respect to the implemented loss functions.

Lastly and more importantly, we compare the performance of the given models

in regard to Value-at-Risk predictions and coverage. The results are given in Tab. 6

for the WTI and in Tab. 7 for Brent. Comparing the results of the blend WTI for

the short position, we find MMGARCH to outperform most of the other models for

all time horizons. Only RiskMetrics has similar coverage performance. The 5% 20

day-ahead forecast has a coverage of 3.6%, but is still closer to 5% than all other

GARCH variants (except RiskMetrics, which has a slightly better coverage). However,

the Kupiec and the Christoffersen tests reject the 5% 20 day-ahead prediction because

of its low coverage. Another rejected test is the conditional coverage (Christoffersen)

at 5% 1 day-ahead. The test detects a first order Markov chain in the Value-at-Risk

violations, which is an unwanted property. Nevertheless, the statistic is still small

(8.9855) compared to the other models (between 18.6987 and 42.3081), which are all
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rejected except for RiskMetrics.

Regarding the long position for WTI the only really concerning drawback regards

the 1% long position where MMGARCH under-predicts for all time horizons. Hence,

all corresponding unconditional and conditional coverage tests reject the predictions.

The 5% long position coverage performance is in line with the other GARCH models.

Figure 4 shows the VaR predictions for GARCH, FIGARCH, and MMGARCH over the

full out-of-sample period.

The results for the short position VaR of the Brent are very much in favor to

the MMGARCH. The unconditional coverage test of Kupiec does not reject any VaR

prediction of MMGARCH. Additionally, all other models fail (except the RiskMetrics

1% for all time horizons and the HYGARCH 1 day-ahead 1% forecast). Comparing the

conditional coverage test of Christoffersen leads to the same result. Only RiskMetrics

passes the 5% VaR test for 1 day-ahead predictions along with the MMGARCH. For

5 and 20 day-ahead MMGARCH is the only model which passes the tests. Thus, we

conclude that the competitive GARCH models are too conservative when forecasting

short position VaR of the Brent, especially for longer forecasting horizons. The only

test which rejects the MMGARCH is the conditional coverage test of Ziggel et al. (2014)

at 5% and 20 day-ahead prediction. Based on the test constructions, we conclude that

VaR violations do not follow a first order Markov chain (Christoffersen test) but build

clusters (Ziggel test). Clustering is an unfavorable property for any VaR forecast and

is caused by the lagged reaction of the 20 day-ahead forecast. Indeed, all competitive

models pass this test only because they are too conservative, which has a 50% influence

on the test statistic.

For the long position the MMGARCH does not perform as good as for the short

position. All predictions for all time horizons under-predict the realized VaR. Hence, all

tests reject the model. However, a general statement on which model is to be favored

over all long position Brent forecast horizons cannot be made. For the 1 day-ahead

forecast APARCH, for the 5 day-ahead forecast EGARCH, and for the 20 day-ahead

forecast HYGARCH show the best coverage.

We conclude that MMGARCH has a very good variance prediction power for WTI

and Brent in comparison to other models. VaR forecasts for portfolios with oil blends

should also concern about different regimes of volatility level and memory. MMGARCH

shows very good results for short position VaR predictions, but has a tendency to under-

predict VaR for long positions, which is most obvious in the results for Brent.
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4.3. Additional Remarks and Results

For additional robustness checks, estimation and forecasts were carried out for a

rolling time window with fixed in-sample length of ñ = 3800 observations. Estimation

results differed very little and there was no qualitative difference neither in the loss

functions nor in the VaR forecasting results. As expected, the standard errors of the

parameter estimates remained elevated.

In addition, we divided the out-of-sample data into two periods of the same length

(2.5 years, approximately 630 observations per period) to cover the sharp decline of oil

prices separately. VaR coverage tests and prediction ability of the models performed

broadly similar to the previous analysis; MMGARCH showed a minimal better perfor-

mance in the first period for the 20 day-ahead forecasts.9
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Figure 4: WTI 5% Value-at-Risk 1 day-ahead forecast of GARCH, FIGARCH, and MMGARCH from
01/01/2010 – 12/31/2014, M = 1260 for short (above) and long (below) position.

5. Conclusions

We are the first to test the MMGARCH on oil price returns and find it to be superior

to non-regime-switching/non-mixing GARCH models with respect to the goodness-of-

fit (Log-Likelihood and BIC) and to different measures for variance prediction.

In line with recent literature, the estimation results reveal significant long memory

in the variance of Brent and WTI as well as asymmetric properties of the variance.

9The results of the loss functions and coverage tests for the split out-of-sample analysis are available
upon request.
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This suggests that more sophisticated GARCH-type models like APARCH and FIA-

PARCH should be utilized in order to capture the aforementioned stylized facts. By

incorporating processes with different memory structure, the MMGARCH is able to

depict long memory in the variance. With its dynamic and flexible mixture proportion,

it also covers asymmetric news impact.

The MMGARCH reveals the existence of different volatility structures. This finding

supports results of previous research on regime switching models, for example. In ad-

dition to different volatility levels, we detect that these different structures also feature

different shock persistence, which has not yet been reported. As for WTI, we find the

extreme case of infinite persistence, the so-called IGARCH effect. Comparing the two

blends, Brent and WTI, we identify significant differences in structure of the variance

components.

In the context of applications in risk management, we find that MMGARCH fea-

tures the best over-all performance in variance forecasting for different and widely-used

models tested. We also find that the long memory models for WTI and Brent tend

to over-predict variances yielding very conservative VaR-forecasts. Regarding WTI the

MMGARCH performs best in predicting the short-sided VaR. For the long position, it

tends to slightly under-predict the VaR yielding an elevated coverage. Results for Brent

differ little. The MMGARCH outperforms for short-sided VaR predictions. There is no

model to be preferred for the long side, however. In general, we find that MMGARCH

tends to cluster less than the models in comparison. We conclude that the differences

in VaR prediction might also be caused by the structural difference of the WTI and

Brent which has a significant impact on the models performance.

The MMGARCH is a suitable candidate for further research regarding oil price

dynamics. Extending the model could include but is not limited to: alteration of

distribution of the errors, e.g. from Normal to Student’s t-distribution or generalized

error distribution as well as substituting the components with asymmetric processes,

e.g. a mixture of Asymmetric Power ARCH and Fractional Integrated Asymmetric

Power ARCH to capture the gain/loss asymmetry in returns and therefore avoiding

clustering in VaR predictions.
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VaR level WTI
pos. p GARCH RiskMetrics EGARCH APARCH FIGARCH HYGARCH FIAPARCH MMGARCH

1
d
a
y
-a

h
e
a
d

C
o
v
e
ra

g
e

short
0.01 0.0032 0.0103 0.0040 0.0032 0.0040 0.0040 0.0024 0.0071
0.05 0.0214 0.0429 0.0254 0.0214 0.0238 0.0270 0.0159 0.0421

long
0.01 0.0151 0.0262 0.0135 0.0135 0.0159 0.0183 0.0119 0.0278
0.05 0.0413 0.0611 0.0421 0.0405 0.0389 0.0444 0.0333 0.0595

U
C

K
u
p short

0.01 8.0799∗∗∗ 0.0127 6.0036∗∗ 8.0799∗∗∗ 6.0036∗∗ 6.0036∗∗ 10.6632∗∗∗ 1.1539
0.05 27.3179∗∗∗ 1.4192 19.4425∗∗∗ 27.3179∗∗∗ 22.3853∗∗∗ 16.7563∗∗∗ 41.6304∗∗∗ 1.7620

long
0.01 2.8411∗ 23.0810∗∗∗ 1.3991 1.3991 3.7254∗ 6.9696∗∗∗ 0.4352 27.1203***
0.05 2.1441 3.0677∗ 1.7620 2.5664 3.5343∗ 0.8492 8.3072∗∗∗ 2.2737

U
C

Z
ig short

0.01 3.9985 13.0003 5.0015 3.9982 4.9991 5.0011 3.0012 9.0001
0.05 26.9997 54.0018 32.0012 26.9997 29.9993 34.0007 19.9995 52.9974

long
0.01 19.0004∗∗ 32.9999∗∗∗ 16.9998 17.0012∗ 19.9997∗∗ 22.9996∗∗∗ 14.9992 35.0000∗∗∗

0.05 51.9992 77.0004∗∗ 52.9994 51.0001 49.0004 55.9991 41.9998 75.0011∗

C
C

C
h
r short

0.01 8.1118∗∗ 2.4381 6.0514∗∗ 8.1118∗∗ 6.0514∗∗ 6.0514∗∗ 10.6823∗∗∗ 1.2978
0.05 28.5448∗∗∗ 1.7100 20.8123∗∗∗ 28.5448∗∗∗ 23.8983∗∗∗ 18.6987∗∗∗ 42.3081∗∗∗ 8.9855∗∗

long
0.01 3.4538 26.6200∗∗∗ 1.8917 1.8917 4.4031 7.8625∗∗ 0.8209 27.1774∗∗∗

0.05 5.3140∗ 10.4399∗∗∗ 9.2628∗∗∗ 5.9860∗ 4.1982 1.0477 8.6189∗∗ 3.8080

C
C

Z
ig short

0.01 0.1835 0.5254 0.2277 0.1852 0.2773 0.2812 0.1191 0.3571
0.05 0.2143 0.4286 0.2541 0.2143 0.2381 0.2699 0.1587 0.4310

long
0.01 0.7540∗ 1.3310∗∗∗ 0.7229 0.6747 0.8120∗∗ 0.9749∗∗ 0.6053 1.3889∗∗∗

0.05 0.5072 0.6195∗ 0.4919 0.4663 0.3889 0.4484 0.3718 0.5982

5
d
a
y
-a

h
e
a
d

C
o
v
e
ra

g
e

short
0.01 0.0048 0.0127 0.0040 0.0040 0.0056 0.0056 0.0024 0.0088
0.05 0.0207 0.0430 0.0239 0.0239 0.0239 0.0271 0.0175 0.0414

long
0.01 0.0111 0.0263 0.0135 0.0127 0.0135 0.0143 0.0088 0.0255
0.05 0.0342 0.0629 0.0414 0.0374 0.0350 0.0366 0.0287 0.0613

U
C

K
u
p short

0.01 4.2895∗∗ 0.8758 5.9551∗∗ 5.9551∗∗ 2.9603∗ 2.9603∗ 10.6019∗∗∗ 0.2043
0.05 28.8668∗∗∗ 1.3599 22.1680∗∗∗ 22.1680∗∗∗ 22.1680∗∗∗ 16.5652∗∗∗ 36.8273∗∗∗ 2.0715

long
0.01 0.1608 23.2132∗∗∗ 1.4275 0.8758 1.4275 2.0986 0.2043 21.2795∗∗∗

0.05 7.3538∗∗∗ 4.0808∗∗ 2.0715 4.5664∗∗ 6.5873∗∗ 5.1946∗∗ 14.1341∗∗∗ 3.1626∗

U
C

Z
ig short

0.01 6.0004 15.9992 5.0002 5.0016 7.0001 6.9987 3.0007 11.0007
0.05 25.9993 53.9974 29.9997 29.9992 29.9993 33.9994 21.9996 52.0001

long
0.01 14.0004 33.0011∗∗∗ 16.9999 15.9988 17.0004 18.0000∗ 10.9996 32.0014∗∗∗

0.05 42.9984 79.0002∗∗ 51.9998 47.0002 44.0019 45.9991 36.0010 76.9998∗∗

C
C

C
h
r short

0.01 4.3567 2.5710 6.0031∗∗ 6.0031∗∗ 3.0500 3.0500 10.6210∗∗∗ 3.2476
0.05 34.7869∗∗∗ 6.0267∗∗ 23.8687∗∗∗ 26.6072∗∗∗ 26.6072∗∗∗ 19.8176∗∗∗ 40.4673∗∗∗ 3.5561

long
0.01 0.4991 23.2868∗∗∗ 1.9217 1.3147 1.9217 2.6513 0.4164 21.3721∗∗∗

0.05 10.6798∗∗∗ 12.7214∗∗∗ 9.9561∗∗∗ 6.9600∗∗ 6.7926∗∗ 7.8031∗∗ 14.1934∗∗∗ 8.5499∗∗

C
C

Z
ig short

0.01 0.3423 0.6369 0.2312 0.2872 0.4478 0.4485 0.1195 0.7393
0.05 0.2303 0.4299 0.2405 0.3046 0.3239 0.3659 0.3999 0.4140

long
0.01 0.6720 1.3137∗∗∗ 0.7257 0.6910 0.7744∗ 0.8458∗∗ 0.6915 1.2835∗∗∗

0.05 0.4110 0.6721∗∗ 0.4875 0.4032 0.4189 0.4537 0.3476 0.6265∗

2
0

d
a
y
-a

h
e
a
d

C
o
v
e
ra

g
e

short
0.01 0.0032 0.0145 0.0040 0.0040 0.0040 0.0040 0.0024 0.0097
0.05 0.0177 0.0451 0.0177 0.0193 0.0161 0.0185 0.0113 0.0363

long
0.01 0.0105 0.0330 0.0121 0.0105 0.0105 0.0121 0.0073 0.0210
0.05 0.0346 0.0629 0.0395 0.0346 0.0355 0.0387 0.0258 0.0548

U
C

K
u
p short

0.01 7.8198∗∗∗ 2.2328 5.7740∗∗ 5.7740∗∗ 5.7740∗∗ 5.7740∗∗ 10.3725∗∗∗ 0.0138
0.05 35.8219∗∗∗ 0.6410 35.8219∗∗∗ 31.7205∗∗∗ 40.2940∗∗∗ 33.7269∗∗∗ 56.3435∗∗∗ 5.4304∗∗

long
0.01 0.0279 41.4862∗∗∗ 0.5119 0.0279 0.0279 0.5119 1.0465 11.4298∗∗∗

0.05 6.8665∗∗∗ 4.0046∗∗ 3.1041∗ 6.8665∗∗∗ 6.1249∗∗ 3.6198∗ 18.4784∗∗∗ 0.5832

U
C

Z
ig short

0.01 4.0009 17.9997∗ 5.0006 4.9998 4.9992 5.0006 3.0002 12.0009
0.05 22.0022 56.0012 21.9988 23.9999 19.9998 23.0007 14.0023 45.0008

long
0.01 12.9998 41.0015∗∗∗ 15.0000 12.9992 13.0019 14.9991 8.9997 25.9991∗∗∗

0.05 43.0010 78.0001∗∗ 48.9990 43.0003 43.9998 48.0004 32.0008 68.0020

C
C

C
h
r short

0.01 7.8521∗∗ 12.3281∗∗∗ 5.8225∗ 5.8225∗ 5.8225∗ 5.8225∗ 10.3919∗∗∗ 2.7071
0.05 39.4222∗∗∗ 2.8449 36.5549∗∗∗ 38.4532∗∗∗ 44.5666∗∗∗ 37.0243∗∗∗ 56.6860∗∗∗ 8.2052∗∗

long
0.01 0.3244 41.8416∗∗∗ 0.9036 0.3244 0.3244 0.9036 1.1926 12.5859∗∗∗

0.05 8.2268∗∗ 8.9389∗∗ 9.3664∗∗∗ 8.2268∗∗ 6.3195∗∗ 3.7102 18.5671∗∗∗ 4.9638∗

C
C

Z
ig short

0.01 0.1959 1.0010∗∗∗ 0.2428 0.3170 0.3067 0.3053 0.1209 0.8583∗∗

0.05 0.4117 0.6071 0.1773 0.3320 0.3493 0.2998 0.5687 0.5087

long
0.01 1.2746∗∗∗ 1.7754∗∗∗ 0.6451 1.2770∗∗∗ 1.3697∗∗∗ 1.6219∗∗∗ 0.8492∗∗ 1.2544∗∗∗

0.05 0.5318 0.7129∗∗ 0.4591 0.5354 0.5837 0.5829 0.3728 0.8025∗∗∗

Table 6: WTI out-of-sample forecast Value-at-Risk test results for GARCH, RiskMetrics, EGARCH,
APARCH, FIGARCH, HYGARCH, FIAPARCH, and MMGARCH. The values given represent the
test statistics of the Value-at-Risk tests by Kupiec (1995) (UCKup), Christoffersen (1998) (CCChr) and
Ziggel et al. (2014) (UCZig and CCZig) at a given Value-at-Risk level (p) for short and long trading
positions. Rejection of the null hypothesis is displayed by ∗, ∗∗, ∗∗∗ for 10%, 5% and 1% significance
level.
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VaR level Brent
pos. p GARCH RiskMetrics EGARCH APARCH FIGARCH HYGARCH FIAPARCH MMGARCH

1
d
a
y
-a

h
e
a
d

C
o
v
e
ra

g
e

short
0.01 0.0032 0.0088 0.0048 0.0040 0.0048 0.0064 0.0024 0.0120
0.05 0.0239 0.0398 0.0223 0.0247 0.0239 0.0279 0.0167 0.0470

long
0.01 0.0135 0.0239 0.0104 0.0112 0.0135 0.0175 0.0088 0.0263
0.05 0.0542 0.0693 0.0430 0.0502 0.0470 0.0598 0.0327 0.0805

U
C

K
u
p short

0.01 8.0113∗∗∗ 0.2018 4.2789∗∗ 5.9430∗∗ 4.2789∗∗ 1.9122 10.5866∗∗∗ 0.4547
0.05 22.1138∗∗∗ 2.9223∗ 25.3137∗∗∗ 20.6175∗∗∗ 22.1138∗∗∗ 15.2742∗∗∗ 38.9705∗∗∗ 0.2405

long
0.01 1.4347 17.6348∗∗∗ 0.0161 0.1631 1.4347 5.8702∗∗ 0.2018 23.2464∗∗∗

0.05 0.4506 8.8510∗∗∗ 1.3452 0.0010 0.2405 2.3757 8.9963∗∗∗ 20.8848∗∗∗

U
C

Z
ig short

0.01 4.0015 11.0005 5.9993 4.9987 6.0017 7.9993 2.9986 15.0008
0.05 29.9996 49.9993 28.0000 31.0005 29.9999 35.0008 21.0008 59.000

long
0.01 17.0000 30.0008∗∗∗ 13.0004 14.0001 17.0004 22.0026∗∗∗ 10.9989 32.9981∗∗∗

0.05 68.0001 87.0009∗∗∗ 54.0002 63.0022 59.0007 75.0004∗ 40.9998 100.9996∗∗∗

C
C

C
h
r short

0.01 8.0433∗∗ 0.4141 4.3462 5.9910∗ 4.3462 2.0277 10.6057∗∗∗ 0.8420
0.05 23.6330∗∗∗ 3.4862 27.4026∗∗∗ 22.1406∗∗∗ 23.6330∗∗∗ 17.3409∗∗∗ 39.7196∗∗∗ 0.3563

long
0.01 1.9293 17.7876∗∗∗ 0.3093 0.5017 1.9293 6.6914∗∗ 0.4141 23.3198∗∗∗

0.05 0.5910 11.5729∗∗∗ 4.0276 0.3312 0.3563 3.8879 9.1636∗∗ 22.9928***

C
C

Z
ig short

0.01 0.1594 0.4383 0.3220 0.2137 0.2391 0.3187 0.1195 0.5976
0.05 0.2391 0.4535 0.2231 0.2470 0.2391 0.2789 0.1673 0.5769

long
0.01 1.0041∗∗∗ 1.2243∗∗∗ 0.6754 0.7104 1.0197∗∗∗ 1.0828∗∗∗ 0.7884∗ 1.3744∗∗∗

0.05 0.5419 0.7154∗∗∗ 0.4303 0.5020 0.4741 0.6306∗ 0.3910 0.8164∗∗∗

5
d
a
y
-a

h
e
a
d

C
o
v
e
ra

g
e

short
0.01 0.0032 0.0128 0.0048 0.0032 0.0032 0.0048 0.0024 0.0136
0.05 0.0216 0.0344 0.0224 0.0232 0.0216 0.0240 0.0120 0.0464

long
0.01 0.0112 0.0224 0.0096 0.0112 0.0136 0.0152 0.0072 0.0272
0.05 0.0432 0.0703 0.0424 0.0392 0.0448 0.0488 0.0264 0.0839

U
C

K
u
p short

0.01 7.9565∗∗∗ 0.9038 4.2369∗∗ 7.9565∗∗∗ 7.9565∗∗∗ 4.2369∗∗ 10.5253∗∗∗ 1.4636
0.05 26.7860∗∗∗ 7.1900∗∗∗ 25.0842∗∗∗ 23.4554∗∗∗ 26.7860∗∗∗ 21.8973∗∗∗ 54.1401∗∗∗ 0.3567

long
0.01 0.1726 14.3324∗∗∗ 0.0213 0.1726 1.4636 2.9347∗ 1.1025 25.3837∗∗∗

0.05 1.2873 9.7302∗∗∗ 1.6151 3.3276∗ 0.7472 0.0408 17.6245∗∗∗ 25.4134∗∗∗

U
C

Z
ig short

0.01 4.0009 16.0007 6.0008 3.9998 4.0010 5.9977 2.9985 17.0004
0.05 26.9995 43.0027 28.0014 28.9999 27.0030 30.0007 15.0005 57.9984

long
0.01 14.0018 28.0002∗∗∗ 11.9998 13.9991 16.9991 18.9996∗∗ 9.0017 33.9990∗∗∗

0.05 53.9998 88.0017∗∗∗ 52.9994 49.0003 55.9998 61.0008 33.0014 104.9995***

C
C

C
h
r short

0.01 7.9886∗∗ 1.3445 4.3044 7.9886∗∗ 7.9886∗∗ 4.3044 10.5446∗∗∗ 1.9598
0.05 28.0219∗∗∗ 7.4383∗∗ 27.1640∗∗∗ 25.3336∗∗∗ 28.0219∗∗∗ 23.4215∗∗∗ 54.5286∗∗∗ 3.8690

long
0.01 0.5123 14.5754∗∗∗ 0.2732 0.5123 1.9598 3.5518 1.2475 25.4451∗∗∗

0.05 3.9513 13.4943∗∗∗ 4.5044 5.3077∗ 0.9385 4.6508∗ 17.6972∗∗∗ 30.0078∗∗∗

C
C

Z
ig short

0.01 0.1599 0.6395 0.3237 0.1599 0.1599 0.2397 0.1198 0.6795
0.05 0.2158 0.3438 0.2238 0.2318 0.2159 0.2398 0.1199 0.5037

long
0.01 0.9785∗∗∗ 1.2085∗∗∗ 0.6027 0.6397 1.0269∗∗∗ 1.0505∗∗∗ 0.5995 1.4935∗∗∗

0.05 0.4723 0.7696∗∗∗ 0.4237 0.4442 0.5545 0.5471 0.3705 0.9065∗∗∗

2
0

d
a
y
-a

h
e
a
d

C
o
v
e
ra

g
e

short
0.01 0.0032 0.0121 0.0024 0.0040 0.0032 0.0024 0.0008 0.0129
0.05 0.0162 0.0388 0.0170 0.0146 0.0138 0.0210 0.0097 0.0542

long
0.01 0.0121 0.0251 0.0089 0.0097 0.0113 0.0121 0.0065 0.0324
0.05 0.0364 0.0736 0.0380 0.0372 0.0364 0.0421 0.0235 0.0850

U
C

K
u
p short

0.01 7.7516∗∗∗ 0.5332 10.2963∗∗∗ 5.7139∗∗ 7.7516∗∗∗ 10.2963∗∗∗ 17.7962∗∗∗ 0.9908
0.05 39.9438∗∗∗ 3.5021∗ 37.6675∗∗∗ 44.8067∗∗∗ 47.4045∗∗∗ 27.6586∗∗∗ 62.3469∗∗∗ 0.4488

long
0.01 0.5332 20.0157∗∗∗ 0.1570 0.0107 0.2108 0.5332 1.7751 39.3022∗∗∗

0.05 5.2876∗∗ 12.7583∗∗∗ 4.0527∗∗ 4.6476∗∗ 5.2876∗∗ 1.7250 22.6246∗∗∗ 26.5212∗∗∗

U
C

Z
ig short

0.01 4.0022 15.0005 3.0004 5.0016 4.0004 3.0010 0.9996 15.9996
0.05 20.0002 48.0009 21.0005 18.0001 16.9995 25.9995 12.0007 67.0012

long
0.01 15.0000 30.9984∗∗∗ 10.9980 11.9999 14.0015 14.9981 8.0009 39.9980∗∗∗

0.05 44.9990 90.9995∗∗∗ 46.9995 46.0004 44.9993 51.9986 29.0003 105.0003∗∗∗

C
C

C
h
r short

0.01 7.7841∗∗ 2.4200 10.3158∗∗∗ 5.7627∗ 7.7841∗∗ 10.3158∗∗∗ 17.7994∗∗∗ 2.6602
0.05 40.9264∗∗∗ 5.6189∗ 41.5787∗∗∗ 54.8795∗∗∗ 47.9068∗∗∗ 28.0175∗∗∗ 65.0331∗∗∗ 0.6002

long
0.01 0.9265 21.6631∗∗∗ 0.3726 0.2657 0.5546 0.9265 1.8924 39.4458∗∗∗

0.05 5.4418∗ 14.5869∗∗∗ 4.8773∗ 4.7727∗ 5.6712∗ 2.1067 24.0669∗∗∗ 32.3411∗∗∗

C
C

Z
ig short

0.01 0.1619 0.6570 0.4158 0.2190 0.1618 0.1214 0.0404 0.6672
0.05 0.1618 0.4441 0.1699 0.1868 0.1375 0.2104 0.2354 0.6251∗

long
0.01 0.9209∗∗ 1.4271∗∗∗ 0.5370 0.8828∗∗ 1.1020∗∗∗ 0.9322∗∗ 0.5473 1.9702∗∗∗

0.05 0.5480 0.8251∗∗∗ 0.4774 0.5629 0.5625 0.7340∗∗∗ 0.5925 0.9573∗∗∗

Table 7: Brent out-of-sample forecast Value-at-Risk test results for GARCH, RiskMetrics, EGARCH,
APARCH, FIGARCH, HYGARCH, FIAPARCH, and MMGARCH. The values given represent the
test statistics of the Value-at-Risk tests by Kupiec (1995) (UCKup), Christoffersen (1998) (CCChr) and
Ziggel et al. (2014) (UCZig and CCZig) at a given Value-at-Risk level (p) for short and long trading
positions. Rejection of the null hypothesis is displayed by ∗, ∗∗, ∗∗∗ for 10%, 5% and 1% significance
level.
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