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ABSTRACT 

The resistance of room temperature cured geopolymer mortars (GPM) against chemical 

attacks, i.e. sodium and magnesium sulfate solutions, and sulfuric and hydrochloric acid 

solutions, was evaluated.  GPMs were formulated using a lithomarge precursor (low-purity 

kaolin) to achieve 28-day characteristic compressive strengths of 37.5 and 60 MPa.  Their 

performance was compared with those of equivalent Portland cement mortars (PCMs) 

having the same paste volume and strength grade.  GPMs with both strength grades showed 

superior performance against sulfate attack when compared to PCMs.  No visual 

deterioration was observed in GPMs, the mass and length changes were relatively small, and 

no changes to the microstructure were detected – in contrast to severely deteriorated PCMs.  
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As confirmed by visual observations and lower mass loss, GPMs showed better resistance to 

attack by both acids than PCMs.  GPMs provided a better quality (lower permeability) of an 

acid-degraded layer, lowering the degree of further deterioration.  The main mechanisms of 

the matrix deterioration of GPMs in both acids was dealumination of the hardened binder, 

with a higher degree of changes detected for sulfuric acid.   

 

Keywords: Lithomarge; Geopolymer mortars; Portland cement mortars; Durability; 

Sulfate attack; Sodium sulfate; Magnesium sulfate; Acid attack; Sulfuric acid; 

Hydrochloric acid;  

 

1 INTRODUCTION 

Portland cement based concrete, being the most versatile and widely used 

construction material, frequently operates in environments where it is exposed to aggressive 

aqueous media.  Contact of highly alkaline (pH > 12.5) hardened cement paste (hcp) with 

water carrying aggressive ions can cause chemical as well as physical degradation [1, 2].  

Three common types of chemical degradation mechanisms are: an ion exchange reaction 

between aggressive medium and the hardened binder, reaction leading to leaching of ions 

from the hcp, and reaction causing growth of expansive products within the pore structure of 

hcp [1].  These chemical processes often occur simultaneously and are directly responsible 

for physical changes to the hcp microstructure, i.e. altering porosity, permeability and 

integrity of the concrete [2].  With respect to the aggressive species, two common types of 

chemical attack are external sulfate attack and acid attack [3-6].   

External sulfate attack is associated with applications where a structural element is in 

contact with sulfate-rich environments such as contaminated soil or ground water, sea water 

or wastewater treatment infrastructure [4, 5].  Severity and extent of the attack depends on 
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factors related to concrete itself, such as the type of cement used and the overall quality of 

concrete, but also on the properties of the aggressive medium, e.g. sulfate ion concentration 

and mobility, type of the cation (most common being Na+, K+, Mg2+ and Ca2+), or pH. [4, 5].  

In the majority of sulfate attacks, the most vulnerable compounds to react with waterborne 

sulfate ions are calcium hydroxide (CH) and phases containing aluminium, such as AFm (e.g. 

monosulfate) and unreacted C3A [5-7].  Reactions will result in the formation of expansive 

salt crystals, such as ettringite and gypsum (with ettringite being more devastating than 

gypsum [8]), within the hcp pore structure [9].  Consequently, expansion and cracking result 

in severely compromised structural integrity of the attacked concrete.  Cracking also leads to 

further propagation of the attack. 

Concrete can be exposed to a wide range of attacks caused by both organic and 

inorganic acids [5, 10].  Acidic media can originate from agriculture, urban and industrial 

human activities, as well as occurring naturally [5, 10].  The severity of acid attack, in 

addition to composition and quality of the concrete, depends on: the acid type; concentration 

and pH of the acid solution; on the availability of acid solution to react with concrete; and 

finally – on the medium surrounding the concrete (whether it flows and/or contains abrasive 

particles) [11, 12].  The focus of this work is on strong mineral acids, namely sulfuric acid 

(H2SO4) and hydrochloric acid (HCl).  Their actions lead to strong decalcification of the hcp, 

and then (at lower pH) to removal of Al3+ and Fe3+ [5, 10].  The order of dissolution of 

calcium bearing phases is as follows: CH > AFm > AFt > C-S-H [12, 5].  In the course of 

decalcification new compounds are precipitated and, depending on their solubility in water, 

they may leach out or remain in the pore structure [12].  The action of H2SO4 is especially 

severe because the acid attack is coupled with the sulfate attack [5].  Progression of the acid 

attack front causes loss of alkalinity coupled with an increase in porosity and permeability, 

thus leading to mass and strength loss [12].  Inability to maintain Ca2+ ion concentration in 
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the hcp and a more open microstructure of the altered zone causes further ingress of the 

attack front [12].   

As a result of the typically low resistance of Portland cement based materials to the 

actions of sulfate and acid attack, the service life of the exposed structure is reduced.  This 

has multifaceted consequences: financial, social and environmental, associated with costly 

maintenance or replacement of the damaged structure.  The problem of chemical attack may 

be addressed by applying layers of sealants or coatings on the concrete surface, or creating a 

physical barrier between concrete and the aggressive environment via protective overlays 

[13-15].  This should limit/prevent ingress of aggressive media into the concrete 

microstructure.  Whilst effective, these solutions proved to be costly and labour intensive [16].  

An alternative approach is to improve the performance of concrete by modifying its 

composition; however, such solutions vary in effectiveness.  Typically, to improve sulfate 

resistance of concrete, either cements with reduced C3A content are used (sulfate resistant 

cements) or reduced CH content and permeability of hcp are sought after, for instance by 

using blended cements [5, 17-19].  The resistance of cement-based materials to acid attack 

strongly depends on the content and type of calcium bearing hydration products [11], intrinsic 

permeability of undamaged concrete [11] and most importantly – on the permeability of the 

acid-degraded layer [12].  To improve these features, investigations were conducted into the 

use of blended cements, partial replacement of Portland cement with additions (also called 

supplementary cementitious materials) or use of polymer modified cements.  However, 

conflicting reports on their effectiveness to provide acid resistance are reported [20-26].  

Recently, a promising solution has emerged in the form of geopolymer binders which have 

been reported to have improved resistance to sulfate [27-33] and acid attack [21, 27, 30, 31, 

34-39] due to their ceramic-like microstructure.   
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Geopolymers are a low-carbon alternative to Portland cement-based binders in mortar 

and concrete.  They typically consist of a powder precursor, primarily composed of 

amorphous alumino-silicates, and a liquid chemical activator containing an alkali source, 

providing elevated pH, in the form of hydroxides, silicates, or their blends [40].  When mixed, 

the two components undergo a dissolution/condensation reaction to form a ceramic-like 

amorphous microstructure [40].  Geopolymers are a sub-group of a much wider group of 

materials, called alkali activated materials [41]. 

As the definition currently stands [40, 42], there is a wide range of potential 

precursors and activators that may be used and which would produce geopolymers of varying 

quality.  In terms of the precursor, the most common candidates are high purity kaolin [43, 

44] and different types of clays [45-47], or waste/by-product materials, such as slags [40] and 

ashes [40, 48-50].  However, some of these materials may not be readily available across the 

globe or are too expensive.  It is well known that in the UK and Europe, the supply of good 

quality fly ash for concrete applications is limited [51] and will become more so due to the 

move away from fossil fuels for electricity generation [52].  While almost all of the UK 

produced slag is used in cement production, a continuous demand of fly ash for use in 

blended cements or as partial replacement of Portland cement will cause increased pressure 

on its supplies [51].  Heath et al. [53] anticipated that current global production of fly ash and 

slag cement meets only 20% of PC demand and will most likely fall below 10% by 2050.  It 

is estimated that, despite being limited, the UK has larger resources of kaolin than fly ash 

[51].  However, high costs involved in the production of high purity metakaolin (made from 

clays containing at least 85% kaolin [54]), render it uneconomical for use in the majority of 

geopolymer concrete and mortar applications [55].  Consequently, locally available clays 

with lower kaolin content are of interest.  Some of them have already been reported to 

produce geopolymer binders with compressive strength of at least 50 MPa upon calcination 
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[56-61].  In Northern Ireland, a large deposit of metamorphose lateritic lithomarge forms a 

part of the Interbasaltic Formation (IBF) [62].  Lithomarge is a soft rock, primarily containing 

kaolinite (Al2Si2O5(OH)4), gibbsite (Al(OH)3), goethite (FeO(OH)), hematite (Fe2O3) and 

various smectite minerals [63].  Geopolymer binders with strength exceeding 50 MPa were 

successfully formulated with calcined lithomarge obtained from rocks containing at least 

60% w/w of kaolinite [60]. 

Sulfate and acid attack on clay based geopolymer binder systems has previously been 

investigated using geopolymers formulated with pure metakaolin [27, 33, 36, 38, 39].  In 

order to encourage the use of less expensive kaolin geopolymer binders, this research aimed 

to assess and directly compare the resistance of lithomarge-based geopolymer and neat 

Portland cement mortars to chemical attack by sulfate (Na2SO4 and MgSO4) and mineral acid 

(H2SO4 and HCl) solutions.  Mortars were formulated with characteristic compressive 

strengths of 37.5 and 60 MPa, to additionally assess the influence of strength grades on the 

resistance to chemical attack.   

 

2 EXPERIMENTAL PROGRAMME 

The methodology of the research will be outlined, followed by the description of 

materials and mix proportions used.  Mortar mixing and sample preparation will then be 

described, followed by the presentation of testing procedures.  

 

2.1 Methodology  

To allow for a like-for-like comparison, two geopolymer mortar (GPM) mixes and 

two Portland cement mortar (PCM) mixes were selected from work reported elsewhere [61].  

Mortars with both binders were optimised to have equivalent paste volumes of 500 L/m3 and 
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characteristic 28-day compressive strengths to satisfy normal (37.5 MPa) and high strength 

concrete (>60 MPa) applications.   

In order to determine resistance of mixes to sulfate attack, 28-day old bar samples 

were stored in 0.352 mol/L solutions of sodium sulfate (Na2SO4) or magnesium sulfate 

(MgSO4) for a total duration of 52 weeks.  To assess the degree of sulfate attack, the 

following properties were tested periodically: visual appearance, mass change and length 

change.  In addition, pH of sulfate solutions used for storing the samples was measured.  

Microstructural changes were determined after 56 weeks of testing by X-ray diffraction 

(XRD) and FTIR spectroscopy, on sulfate exposed and control (stored in water) samples of 

the high strength GPM and PCM mixes.  

 Resistance to acid attack was determined by immersing 28-day old cube samples in 

either H2SO4 or HCl solutions for 8 weeks.  Three concentrations of each acid solution were 

used, i.e. 0.10, 0.31 and 0.52 mol/L.  Samples were tested weekly for visual appearance and 

mass change.  The pH of acid solutions was measured on regular intervals throughout the 

week, and the solution was replenished on weekly basis.  Microstructural changes were 

evaluated by comparing the high strength samples exposed to 0.52 mol/L acid solutions with 

control samples stored in water, using both XRD and FTIR spectroscopy. 

 

2.2 Materials  

The geopolymer binder was a two-part system produced by banah UK Ltd [64].  It 

comprised a powder component, based on a calcined kaolinite-rich clay (here called calcined 

lithomarge), and a liquid component, i.e. chemical activator – see Figure 1.  The ferruginous 

kaolinitic clay, which was an altered basalt (lithomarge), was sourced from the IBF of the 

Antrim Lava Group (Northern Ireland) [59-61].  It was calcined at 750 °C to achieve 

dehydroxylation of the clay minerals and milled to a particle size distribution with d90 passing 
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a 56 μm sieve.  Portland cement CEM I 42.5N produced in Northern Ireland and conforming 

to the requirements of BS EN 197-1:2011 [65] was used.  Chemical compositions 

(determined using X-ray fluorescence spectrometry), crystal structure (determined with X-ray 

powder diffraction spectrometry) and particle size distribution of calcined lithomarge and 

Portland cement are given in Table 1, Figure 2 and Figure 3, respectively.  The main peaks in 

the XRD pattern of calcined lithomarge are due to hematite (H), which is present as a result 

of calcination of goethite and magnetite in the original kaolinite clay [59].  Crystalline phases 

including alite (AE), belite (BE), aluminate (AL), brownmillerite (BR) and gypsum (G) are 

present in Portland cement.  

 

  

Figure 1: Liquid activator and powder component produced by banah UK Ltd.  

 
Table 1: Oxide composition and physical properties of calcined lithomarge and Portland cement. 

Oxide composition [%] Calcined lithomarge Portland cement 

SiO2 32.04 20.21 

Al2O3 24.99 4.79 

Fe2O3 25.21 2.78 

CaO 7.78 63.01 

MgO 1.71 1.93 

MnO 0.37 0.08 

TiO2 3.17 0.27 

Na2O 0.36 0.19 

K2O 0.15 0.59 

SO3 0.22 2.60 

P2O5 0.14 0.12 

LOI [%] 3.08 3.16 

Specific gravity 2.89 3.13 
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Figure 2: XRD patterns of calcined lithomarge, Portland cement and sand. 

 

 

Figure 3: Particle size distribution of calcined lithomarge, Portland cement and sand. 
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A proprietary chemical activator was an aqueous solution of alkali silicate with a 

water content of 41.2% and specific gravity of 1.57.  Water from the mains supply (17 ±1 °C) 

was used as the mixing water.   

Sand, with oven-dry particle density of 2695 kg/m3 was sourced from Creagh’s quarry 

(Creagh Concrete Products Ltd., Draperstown, Northern Ireland).  Water absorption of sand 

at 1-hour and 24-hours was 0.92% and 1.1%, respectively.  Both density and water absorption 

were determined according to BS 812-2:1995 [66].  The aggregate particle size distribution 

was determined according to BS 812-103.1:1985 [67] and is shown in Figure 3.  As 

demonstrated in Figure 2, sand was abundant in quartz (Q) and also contained albite (A), 

muscovite (M) and clinochlore (CL).  

 Laboratory reagent grade chemicals, i.e. anhydrous sodium sulfate (Na2SO4), 

anhydrous magnesium sulfate (MgSO4), concentrated sulfuric acid (95-97% H2SO4) and 

hydrochloric acid (≥37% HCl), were used to prepare testing sulfate and acid solutions by 

mixing in various proportions with distilled water.   

 

2.3 Mortar proportions  

The proportions of all mortars are shown in Table 2.  They were selected from the 

range of mixes previously reported by Kwasny et al. [61].  Mortars were designed following 

the recommendation of the absolute volume method [68].   

 

Table 2: Mix proportions of GPM and PCM mixes. 

Mix ID 
w/s 

ratio 
w/c 

ratio 

Paste 
volume 
[L/m3] 

 Material quantity per cubic metre [kg/m³] 

Calcined 
lithomarge 

Chemical 
activator 

Portland 
cement 

Sand 
Absorption 

water 

Total 
added 
water 

Free 
water 

GPM-37.5 0.375 - 500 482 342 - 1347 12.4 128 256 

GPM-60 0.275 - 500 559 396 - 1347 12.4 67 218 

PCM-37.5 - 0.600 500 - - 544 1347 12.4 339 326 

PCM-60 - 0.420 500 - - 676 1347 12.4 296 284 
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2.4 Mix preparation   

Sand, after oven drying for at least 48 hours at 105 ±5 °C, was stored in plastic bags 

until mixing.  All constituent materials were stored in dry locations at room temperature (20 

±2 °C) prior to batching, to ensure that no other parameters influenced the results.   

Mortars were prepared in a 10 L capacity planar-action high-shear mixer, in 6 L 

batches.  The mixing procedure consisted of six steps.  Sand was placed in a mixer’s pan with 

half of the total water (free + absorption water) and mixed for approximately 1 minute (Step 

1).  Step 1 was initiated approximately 15 minutes before Step 2.  The dry portion of binding 

material, i.e. calcined lithomarge or Portland cement, was introduced into the mixing bowl 

followed by 1 minute of mixing at low speed (Step 2).  The remaining half of the total water 

and, in the case of GPMs, the chemical activator, were added to the mixing bowl and mixed 

for 2 minutes at low speed (Step 3).  The mixer was stopped for 1 minute to crush any lumps 

of remaining solids (Step 4).  Afterwards, mixing resumed for 2 minutes at a high speed (Step 

5), followed by 1 minute at a low speed (Step 6).   

 

2.5 Sample casting, demoulding and conditioning   

The following mortar samples were cast for each mix: twenty six 50×50×50 mm 

cubes and six 25×25×285 mm bars.  Samples were cast in two layers, with each layer 

compacted on a vibrating table.  Afterwards, they were wrapped with cling film to prevent 

water evaporation and placed in the conditioning room (RH >95% and 20 ±1 °C).  Samples 

were demoulded at 24 ±0.5 hours, counting from the beginning of step 3 of the mixing 

procedure, and placed in curing containers on 15 mm height spacers.  The curing containers 

were filled with water to the height of 5 mm, then covered with tightly fitting lids and stored 

in the conditioning room (20 ±1 °C).  This procedure allowed the conditioning of the samples 
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at RH of >95% and prevented unintentional carbonation of the samples, and leaching of 

alkalis.  After 21 days of curing, the samples were transferred to a water bath (20 ±1 °C) until 

28-day, in order to ensure full water saturation before starting sulfate and acid testing.  At 28-

day, two control (unexposed) cube samples were left in the water bath for further testing.  

Separate water baths were used for each mix in order to avoid cross contamination due to 

leaching.   

 

2.6 Testing procedures 

Resistance to sulfate attack was tested in similar way to the procedure described in 

ASTM C1012 [69] by measuring the length change of mortar samples immersed in sulfate 

solutions.  The samples were 25×25×285 mm mortar bars equipped with 6 mm diameter 

stainless steel balls at each end.  The length of the bars was measured initially at 28-day after 

casting, and then sets of three bars from each mix were placed vertically in airtight plastic 

storage containers filled with 0.352 moles of Na2SO4 or MgSO4 per litre of solutions 

(equivalent to 5% and 4.24% concentrations, respectively).  The proportion of sulfate 

solution volume to samples volume in a storage container was kept at approximately 4.4 (i.e. 

800 mL of solution per mortar bar).  Samples were kept in the sulfate solutions (20 ±1 °C) for 

a total of 52 weeks, during which their length and mass were measured at specific intervals 

(every week for the duration of the first 4 weeks, then every two weeks for the duration of 8 

weeks, and 4 weeks for the remaining 40 weeks).  At the same time, the pH of the sulfate 

solutions was also measured.  Before the length and mass measurements were determined, 

samples were visually inspected and their surface was gently dried by hand with a moist 

paper towel to achieve saturated and surface-dry condition.  During the first 12 weeks of 

testing, sulfate solutions were renewed every 2 weeks, and every 4 weeks afterwards.  The 

length change, expressed in microstrain, was calculated for the nominal gauge length of 
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280 mm (innermost distance between stainless steel balls) and is reported as an average of 

three measurements.  In addition, the relative mass change of bars, given in % of the 28-day 

mass, was calculated and the average is reported.  After 52 weeks of testing, samples were 

collected from the outermost surface layer of the mortar bars exposed to sulfate solution (no 

deeper than 0.5 mm) and from the middle of the fractured control cube sample kept in water 

bath.  These samples were transferred to airtight bottles and then further processed, as 

indicated below, for XRD and FTIR spectroscopy analysis. 

Resistance to inorganic H2SO4 and HCl acid attack was determined using an 

accelerated method, based on the general guidelines provided in ASTM C267 [70].  Mass 

loss of mortar samples, i.e. 50 mm size cubes, immersed in acid solution, was investigated.  

At 28-day the mass of each cube was measured and sets of four cubes from each mix were 

placed in plastic boxes containing acid solutions (20 ±1 °C) with concentrations of 0.10, 0.31 

and 0.52 moles of H2SO4 (i.e. 1%, 3% and 5%) or HCl (i.e. 0.37%, 1.12% and 1.86%) per 

litre of solution.  The volume proportion of acid solution to samples in a storage container 

was approximately 0.9.  Every 7 days, any loose material was removed from each sample by 

gentle brushing under a stream of tap water.  Then, surface of each sample was gently dried 

by hand with a moist paper towel to achieve saturated and surface-dry condition.  Visual 

inspection was subsequently carried out and the mass of each cube was recorded.  Before 

disposing, the used acid solutions were filtered to collect the debris material remaining in the 

storage boxes.  Cube samples were returned to the boxes, filled with fresh acid solutions.  

This procedure was repeated for 8 consecutive weeks.  An average cumulative mass loss is 

reported.  In addition, pH of the acid solution was recorded at suitable intervals, i.e. at 1, 5 

and 7-day after the acid solution was replenished.  Collected debris material from storage 

boxes, and that from the middle of the fractured control cube sample kept in water bath, were 

placed in airtight bottles for further processing prior to XRD and FTIR examination. 
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After collection, samples for XRD and FTIR spectroscopy studies were transferred to 

a desiccator and stored for ca. 24 hours under vacuum at 40 ±1 °C to evaporate the moisture.  

Then, dried samples were powdered using mortar and pestle to pass a 63 µm sieve.  

Immediately after grinding, the powdered samples were placed in sealable plastic bags and 

stored in the desiccator under vacuum at 20 ±1 °C until testing.   

Powdered samples were analyzed using XRD, with a PANalytical X’Pert PRO 

diffractometer, to identify the crystalline components and observe potential changes caused 

by either sulfate or acid attack.  Diffraction patterns were collected between 5° and 65° 2θ 

with a step size of 0.016°. PANalytical X’Pert Highscore software with the Powder 

Diffraction File database was used to identify the mineralogy of the samples based on the 

diffraction patterns. 

To qualitatively identify bond degradation due to sulfate and acid attack, powdered 

samples were analyzed using FTIR spectroscopy.  A Jasco 4100 series FTIR Spectrometer 

with Attenuated Total Reflectance attachment (germanium crystal) was used.  The spectra 

were recorded between 650 and 4000 cm-1.   

Mercury intrusion porosimetry (MIP) was used to assess the pore structure of mortars.  

At 28 days mortar fragments measuring approximately 8×8×20 mm, were extracted from the 

core of each cube.  Hydration/reaction was stopped by oven drying the samples for 24 hours 

in 60 ±1 °C and then immersing them in acetone for 4 hours and subsequent drying in a 

desiccator (20 ±1 °C) for further 24 hours.  The pore structure of the samples was then 

determined using a Pascal 140/240 mercury intrusion porosimeter from Thermo Scientific.  

The mercury contact angle was taken to be 140°.   
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3 RESULTS AND DISCUSSION 

The porosity and the pore structure of geopolymer and Portland cement based mortars 

are first compared, as they are expected to affect the resistance to chemical attack.  The effect 

of sulfate and acid attacks on physical and microstructural features of these mortars are then 

discussed.   

 

3.1 Pore structure and porosity 

The pore size distribution and the pore structure properties of mortar samples are 

shown in Figure 4 and summarised in Table 3.  It is worth noting that, due to MIP test 

limitations, its use to characterise the pore size distribution of cementitious materials has been 

criticised [71].  However, here the MIP was used mainly to compare between the tested 

materials.   

It can be seen that for GPMs most of the pores have diameter below 0.050 μm while 

for PCMs they were between 0.020 and 0.200 μm (Figure 4).  It is clear that geopolymer 

mixes had lower threshold pore diameter and porosity, and higher total pore surface area than 

their cement counterparts (Table 3).  This is similar to findings reported elsewhere [33].   

When strength grade is compared for mixes made with the same binder type, mixes 

with higher compressive strength (lower w/s ratio for GPMs or w/c ratio for PCMs) showed 

lower threshold pore diameter, porosity and total surface area of pores.  Therefore, in this 

respect, GPMs were similar to typical Portland cement systems, where porosity and size of 

pores are mainly controlled by w/c ratio. These trends are in good agreement with data found 

in the literature for both geopolymers formulated with metakaolin [33, 72, 73] and Portland 

cement systems [74, 75].   
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Figure 4: Differential volume of intruded mercury versus pore diameter for mortar at the age of 28 days. 
 

 

Table 3: Pore structure properties of mortars at the age of 28 days. 

Binder type Geopolymer-based PC-based 
Characteristic strength class 37.5 MPa 60 MPa 37.5 MPa 60 MPa 

Mix ID GPM-37.5 GPM-60 PCM-37.5 PCM-60 
Threshold pore diameter [μm] 0.027 0.025 0.155 0.115 

Porosity [%] 8.6 7.3 12.0 10.1 
Total surface area [m2/g] 9.99 6.55 6.64 4.51 
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The resistance of PCM and GPM samples to sulfate attack is presented in this section. 

Description of the changes in visual appearance of samples immersed in Na2SO4 and MgSO4 

solutions is followed by changes in the pH of sulfate solutions, mass changes of samples, 

length changes of samples, microstructural changes of samples determined by XRD analysis 

and FTIR spectroscopy, and finally a summary of the findings is presented. 

 

3.2.1. Visual appearance 

The visual appearance of samples after 52 weeks of exposure to solutions of 0.352 
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expansion or cracking on the surface of any of the GPM samples.  In contrast, PCM samples 

showed variable degree of deterioration.  Surfaces of PCM samples stored in Na2SO4 

solutions were covered with a net of microcracks (Figure 5a).  The samples were curled, 

broken, and longitudal and lateral expansion was easily noticeable.  Surfaces of PCM 

samples exposed to MgSO4 solution were coated with a layer of white precipitates (Figure 

5b), which has been confirmed as magnesium sulfate hydrate (section on XRD).  Edges of 

PCM samples became rounded, due to loss of degraded material.  Although PCM samples 

showed visible expansion, they maintained their initial shape. 

In general, no effect of strength grade was detected for geopolymer mixes, while for 

PCMs the normal strength mixes showed higher deterioration in both solutions.  The PCM-

37.5 samples exposed to Na2SO4 fragmented, due to expansion, expansive spalling and 

cracking, after week 24 of the test and their colour changed to light grey (PCM-37.5 sample 

shown in Figure 5a was carefully reassembled to illustrate the degree of deterioration and 

expansion).  The visual degradation of PCMs is in good agreement with the literature [76, 77]. 

 

 

Figure 5: Visual appearance of GPM and PCM samples after 52 weeks of exposure to 0.352 mol/L 
solutions of a) Na2SO4 and b) MgSO4. 
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3.2.2. pH of sulfate solution 

The change in pH of Na2SO4 and MgSO4 solution used for storing the GPM and PCM 

bar samples is shown in Figure 6.  The pH values of fresh Na2SO4 and MgSO4 solutions were 

around 6.9 and 7.4, respectively.  When mortar samples were immersed in the solutions, the 

pH of the solutions increased, which is reflected by relatively high pH measured after the first 

week of the test.  The increase in pH was caused by leaching of alkalis from the samples to 

the solutions.   

For GPMs the pH of both sulfate solutions gradually decreased during the duration of 

the test, due to decreasing availability of basic ions that could be leached out from the 

samples.  For Na2SO4 solution the pH decreased from above 11 to below 10, while for 

MgSO4 solution it decreased from around 9.5 to below 8.   

In comparison to results obtained for GPMs, pH of sulfate solutions used for PCM 

mixes was higher.  For the first 28 weeks of the test, the pH of the Na2SO4 solution was 

above 12.5, while for MgSO4 solution it was above 10.  The pH of these two solutions 

decreased slightly (to around 12 and 9.5, respectively) by week 52.  These trends are in good 

agreement with literature [78] and can be explained as follows.  The initial Na2SO4 reaction 

with calcium hydroxide from hcp results in the formation of gypsum and sodium hydroxide.  

Consequently, due to high solubility of sodium hydroxide in water, the pH of hcp increases to 

above 13.5.  Initially, the MgSO4 attack on calcium hydroxide causes the formation of 

gypsum and magnesium hydroxide (brucite).  This process continues until calcium hydroxide 

becomes depleted.  As brucite is poorly soluble in water, its presence decreases the pH of the 

hcp to around 10.5.   

Where strength grade is concerned, the Na2SO4 solution used to store GPM-60 

samples had lower pH than that used for GPM-37.5.  In all other cases, the pH of the 
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solutions was almost the same between mixes made from the same binder, but with different 

strength grade.   

 

 

 

Figure 6: pH changes of a) Na2SO4 solution and b) MgSO4 solution during 52 weeks of mortar bars 
immersion (diamonds represent time of solution replenishment). 
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increased slightly (to a maximum of 0.12% of their mass at 28-day) after being exposed to 

the sulfate solutions.  Then it progressively decreased, reaching a minimum of -0.30% and -

0.17% for Na2SO4 and MgSO4, respectively.  The initial mass gain is believed to be due to 

small absorption of the solution into the microstructure of the samples.  The reason for the 

mass loss is not clear, but it was assumed that due to relatively frequent replenishment of the 

sulfate solution, significant leaching of alkalis from the GPM samples occurred.  It is in 

agreement with the observed decrease in pH of solutions used for storing the samples (Figure 

6).  

Mass of PCM samples increased as a result of the sulfate attack, which was caused by 

sulfate uptake.  In the case of Na2SO4 solution, the mass of samples increased gradually to 

5.1% and 2.9% for PCM-37.5 and PCM-60, respectively.  Measurements for PCM-37.5 

stopped at week 24 as the samples fragmented.  Mass of PCM-37.5 and PCM-60 stored in 

MgSO4 solution increased steadily up to week 24 (reaching an increase in mass of 2.8% and 

1.8%, respectively) and then the increase rate was lower for mix PCM-37.5 (reached 4.3% 

increase in mass at the end of the testing), while mix PCM-60 started to loose mass (at 52 

weeks the mass increase was only 0.3%).  For both PCM mixes stored in MgSO4 solutions, 

crumbling of the edges was observed after week 24 (Figure 5), hence leading to changes in 

the initial trends.  As a result, for mix PCM-60, the mass gain associated with sulfate uptake 

was offset by the mass loss related to edge crumbling.   

The influence of compressive strength grade of GPMs on the samples’ mass change 

was insignificant.  PCM samples with higher strength showed lower mass change.  As the 

porosity of the PCM-60 samples was lower than that of PCM-37.5, they accumulated less 

sulfate attack products.   
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Figure 7: Mass change of GPM and PCM mixes exposed to a) Na2SO4 solution and b) MgSO4 solution. 
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clear what caused the shrinkage of the samples stored in Na2SO4, but it was most probably 

related to relatively larger mass loss observed for Na2SO4 than for MgSO4 (Figure 7).   

As expected, PCM samples exposed to sulfate ions showed considerably larger 

expansion than similar GPM samples.  This was due to transport of sulfate ions into hcp pore 

structure and then reaction with hcp to form expansive salts [79].  At the same age, PCM 

samples exposed to Na2SO4 had larger expansion than those stored in MgSO4 solution.  This 

was linked to the type of expansive salts formed, and is discussed in the section on XRD.  

Samples of mix PCM-37.5 immersed in Na2SO4 started disintegrating before week 28 of the 

test and for the last measurement at week 24 had expansion exceeding 20600 microstrain 

(shown in the enlarged graph).  Expansion of PCM-60 reached nearly 4300 microstrain by 

the end of the test.  For MgSO4 solution, PCM-37.5 and PCM-60 mortar bars had expansion 

exceeding 15500 and 5900 microstrain, respectively.  For all PCMs, expansion occurred in 

two stages, where ‘induction’ period characterized by low expansion value was followed by 

steady increase in expansion [80].   In the case of Na2SO4 attack the transition between these 

two stages occurred earlier and was sharper [80].    

No influence of strength grade was observed for GPMs, while it was evident that 

higher strength PCM mixes had lower expansion.  Lower expansion of PCM-60 can be 

attributed to relatively slower intake of sulfate ions caused by denser microstructure and 

lower content of pores, which are obviously related to lower w/c ratio of this mix [76].  
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Figure 8: Length change of GPM and PCM mixes exposed to a) Na2SO4 solution and b) MgSO4 solution. 

 
 

3.2.5. XRD 

Figure 9 shows the XRD spectra for the material collected from the outermost surface 

layer of GPM-60 and PCM-60, which were subjected to sulfate attack by Na2SO4 and MgSO4.  

The spectra obtained from the center of the samples unexposed to sulfate attack (stored in 

water) are shown for comparison.   

The main crystalline phase present in the control (unexposed) GPM-60 sample was 

hematite (H) with the main peaks observed at 2θ of 24.1, 33.2, 35.6 and 54.1°.  In the 

‐500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 4 8 12 16 20 24 28 32 36 40 44 48 52

Le
n
gt
h
 c
h
an

ge
 [
m
ic
ro
st
ra
in
]

Exposure time [weeks]

GPM‐37.5 GPM‐60 PCM‐37.5 PCM‐60

Shrinkage

Expansion Na2SO4

a)

‐2500

2500

7500

12500

17500

22500

0 13 26 39 52

PCM‐37.5

0

‐500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 4 8 12 16 20 24 28 32 36 40 44 48 52

Le
n
gt
h
 c
h
an

ge
 [
m
ic
ro
st
ra
in
]

Exposure time [weeks]

GPM‐37.5 GPM‐60 PCM‐37.5 PCM‐60

Shrinkage

Expansion

b)
MgSO4

‐2500

2500

7500

12500

17500

0 13 26 39 52

PCM‐37.5

0



 24 
 

unexposed PCM-60, calcium hydroxide (CH) was identified by peaks at 2θ of 18.1, 28.7, 

34.1, 47.1 and 50.8°.  Both mortars contain quartz (Q), albite (AB), muscovite (M) and 

clinochlore (CL) due to the presence of sand (XRD pattern of sand is shown in Figure 2).  

The main quartz peaks are observed at 2θ of 20.9, 26.7, 36.6, 39.5, 42.5, 50.2 and 60.0°.  The 

peaks at 2θ of 28.0 and 8.8° correspond to albite and muscovite, respectively.  Finally, the 

peaks due to clinochlore are observed at 2θ of 6.3 and 12.5°. 

After 52 weeks of either Na2SO4 or MgSO4 attack, XRD patterns of the GPM-60 

samples showed no significant change when compared with unexposed samples, proving the 

stability of the geopolymer mixes in sulfate environments.   

For the PCM-60 samples, major changes to XRD patterns were observed.  Calcium 

hydroxide (CH) was not present after exposure to both Na2SO4 and MgSO4 solutions, which 

suggests its dissolution.  Exposure of PCM-60 to Na2SO4 caused the formation of ettringite 

(E) and gypsum (G).  Ettringite was observed by peaks at 2θ of 9.1, 15.8, 17.8, 18.9, 22.9, 

32.4, 35.0 and 40.9°.  The peaks at 2θ of 11.7, 20.7 and 29.2 are attributed to gypsum.  Also 

calcite (C) was observed in the sample exposed to Na2SO4 by peaks at 2θ of 29.4, 36.0, 39.4, 

43.2, 47.5 and 48.5°.  Exposure to MgSO4 resulted in the formation of an increased amount 

of gypsum highlighted by peaks at 2θ of 11.7, 20.7, 23.4, 29.2, 31.1, and 33.4°.  Magnesium 

hydroxide, brucite (B), also formed, and resulted in peaks at 2θ of 18.6, 38.1, 50.9 and 58.7°.  

The above results for PCM exposed to both sulfate solutions are in good agreement with the 

literature [79].  Since ettringite is not stable below a pH of approximately 10.6, it was not 

detected in samples exposed to MgSO4, but was present in samples exposed to Na2SO4.  As 

discussed previously, the pH of sulfate solutions was governed by the products of sulfate 

attack reactions, i.e. sodium hydroxide and brucite, for Na2SO4 and MgSO4 attacks, 

respectively.  It is well known that ettringite occupies larger volume than gypsum [8].  As 

ettringite was predominantly detected in samples exposed to Na2SO4, this explained their 
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larger length change discussed in previous section.  In addition, lower expansion of PCMs 

exposed to MgSO4 may be attributed to the precipitation of brucite in the outmost surface 

layer of samples, which temporarily restricted penetration of Mg2+ into the pore structure [81].  

As shown in Figure 5, a white precipitate formed on the outside of the PCMs exposed to 

MgSO4.  This precipitate was carefully collected and processed for XRD analysis as other 

samples.  It was established that this layer mainly consisted of magnesium sulfate hydrate 

(MG) with peaks at 2θ of 16.3, 20.2, 22.0, 30.4 and 30.8°.   

  

 
Figure 9: XRD patters of GPM-60 and PCM-60 control (unexposed) samples compared with samples 

exposed for 52 weeks to Na2SO4 and MgSO4 solutions with concentration of 0.352 mol/L. 
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3.2.6. FTIR spectroscopy 

Figure 10 shows the FTIR spectra for the outermost surface layer of GPM-60 and 

PCM-60 samples exposed to Na2SO4 and MgSO4 solutions.  They are compared to the 

spectra of inner section of the control (unexposed) samples, which were stored in water.  

The unexposed sample of GPM-60 had a characteristic sharp band located at 

approximately 996 cm-1, assigned to asymmetric T-O stretching (T = Si or Al), and a 

shoulder at approximately 860–890 cm-1, related to M-O vibrations (M = K) [38].  The peak 

at approximately 1640 cm-1 and broad band centered at approximately 3400 cm-1 can be 

assigned to bending and stretching vibrations of water, respectively [38].  After the exposure 

of geopolymer samples to either of the sulphate solutions, there was very little change in the 

spectra, except for the main band located at around 996 cm-1, which increased its intensity, 

but did not change the position.   

In the case of both PCMs, intensity of a band observed in unexposed sample at 985 

cm-1, attributed to asymmetric Si-O stretching vibrations in C-S-H, reduced when samples 

were exposed to sulphate solutions [82].  A band at 3640 cm-1, corresponding to O-H 

stretching vibrations in calcium hydroxide was not present in both samples exposed to sulfate 

solutions.  The intensity of a broad shoulder near 1105 cm-1, corresponding to asymmetric 

stretching vibrations of SO4
2- in ettringite, became higher for samples stored in sulfate 

solutions [82, 83].  Presence of gypsum was detected in MgSO4 sample, (shoulder at 1130 

cm-1, weak peak at 1620 cm-1 due to in plane bending vibrations of O-H∙∙∙O group, and weak 

peak at 3405 cm-1 due to stretching vibrations of O-H [84, 85].  Presence of brucite 

(Mg(OH)2) in a sample exposed to MgSO4 solution was confirmed by a strong O-H vibration 

at 3694 cm-1 [86].  For samples exposed to Na2SO4 higher intensity of CaCO3 was observed 

at wavenumber 874 cm-1 (out of plane bending of CO3
2-), and broad band centered around 

1412 cm-1 (asymmetric stretching of CO3
2-).   
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Figure 10: FTIR spectra of GPM-60 and PCM-60 control (unexposed) samples compared with samples 

exposed for 52 weeks to Na2SO4 and MgSO4 solutions with concentration of 0.352 mol/L. 
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Sulfate attack by both Na2SO4 and MgSO4 solutions caused visible deterioration, and 

large expansion of PCMs, making them unsuitable for use in sulfate rich environments.  

During the course of the test, samples exposed to Na2SO4 solutions progressively gained 

mass and expanded, which led to their expansive spalling and cracking.  Although the mass 

gain and expansion of samples exposed to MgSO4 solution was slightly lower than in those 

immersed in Na2SO4, they showed larger surface deterioration, which to some extent offset 

the mass gain.  As confirmed by XRD and FTIR results, attack by both sulfate salts caused 

depletion of calcium hydroxide from the attacked portion of the samples.  The presence of 

expansive salts was detected: gypsum and ettringite for Na2SO4 solutions, and gypsum for 

MgSO4 for solutions.  Samples attacked by MgSO4 solution revealed the presence of brucite.   

Strength grade had no influence on the results of sulfate attack on GPM samples.  In 

contrast, high strength PCM mix showed lower degree of degradation and expansion than the 

normal strength mix.  This was linked to lower porosity and denser microstructure of the 

former mix.  

 

 

3.3 Resistance to acid attack  

The resistance of PCM and GPM samples to acid attack is presented in this section. 

Description of the changes in visual appearance of samples immersed in H2SO4 and HCl 

solutions is followed by mass changes of samples, changes in the pH of acid solutions, 

microstructural changes of samples determined by XRD analysis and FTIR spectroscopy, and 

finally a summary of the findings is presented. 

 

3.3.1. Visual appearance 

The visual appearance of samples after 8 weeks of exposure to a range of solutions of 

H2SO4 and HCl acids are shown in Figure 11.   
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Regardless of the acid type and concentration, GPM samples showed less surface 

deterioration than the PCM samples.  Where the strength class for the same binder type is 

concerned, mixes with lower strength had larger deterioration.  PCM mixes showed relatively 

larger differences between the strength grades than GPMs.   

In general, all samples exposed to H2SO4 solutions deteriorated more than those 

attacked by HCl solutions.  This was particularly visible with higher acid concentrations, 

where part of the binder was removed from the surface layer and sand particles became 

exposed.  For PCM mixes, the edges of samples exposed to H2SO4 solutions became rounded, 

while they were relatively well preserved in HCl solutions.  However, the acid type did not 

have a significant effect on the edge deterioration of GPM samples.  PCM samples exposed 

to H2SO4 acid solutions had white precipitation on the surface, while the surface of samples 

stored in the HCl solutions turned light brown in parts.  The white precipitation was identified 

as gypsum (as discussed in the XRD section).  The light brown discoloration is likely related 

to precipitation of loosely bound ferric hydrates at pH above 2 [87, 88].  In contrast, neither 

of these two acids resulted in a colour change of the GPM samples.   

The degree of deterioration of all samples increased with the increase in the 

concentration of the acid solutions.  The surface of sand particles became visible at high 

concentrations whilst at 0.10 mol/L of H2SO4 only GPM samples had small imperfections.  

No sand particles were detached from the GPM binder matrix.  For PCMs exposed to 0.10 

mol/L of H2SO4 solutions, parts of the samples lost an outer layer, exposing the surface of 

sand particles.  At higher concentrations, a part of the hardened binder and some of the sand 

particles were removed.  Similar pattern, but to a lesser extent, was observed for HCl 

solutions.   
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Figure 11: Visual appearance of GPM and PCM samples after 8 weeks of exposure to different H2SO4 
and HCl acid solutions. 

 

3.3.2. Mass change 

Mass changes in mortar samples during 8 weeks of immersion in H2SO4 and HCl 

solutions are shown in Figure 12 and Figure 13, respectively.  The rate of mass loss in GPM 

samples exposed to H2SO4 was decreasing from one cycle to the next during the 8 weeks of 

the test.  Sample GPM-37.5 reached maximum mass loss of 2.4, 5.5 and 7.9% at week 8 

when exposed to H2SO4 solutions with concentrations of 0.10, 0.31 and 0.52 mol/L, 

respectively.  In contrast, PCM samples gained mass initially (except for PCM-60 immersed 

in 0.52 mol/L H2SO4 solution), and then they started to loose mass.  In all cases, the mass 

gain was below 1.4% of the initial samples’ mass.  As evidenced by the colour change of the 

samples’ surface, the mass gained was most probably related to decalcification of hcp and 

formation of a layer of sulfate rich salts, gypsum and ettringite [88], on the surface of samples.  

Most likely, these salts also formed in the pores of the outermost surface layer of the samples.  
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At this stage no degradation was observed.  The mass loss was the result of a high degree of 

hcp decalcification and, most importantly, the result of progressive degradation of the surface 

layer caused by pressure exerted by expansive crystals of the salts formed inside the pore 

structure. The presence of gypsum was confirmed with XRD studies [8].  A layer-by-layer 

degradation of the sample surface caused by the expansive spalling offset the increase in 

mass [88].  At the end of the test, the maximum mass loss of 13.2 and 24.9% was recorded 

for PCM-60 exposed to solutions with concentrations of 0.31 and 0.52 mol/L, respectively.   

When exposed to HCl solutions, the rate of mass loss of the GPM mixes during the 8 

weeks of the test was decreasing from one cycle to the next during.  At the end of the test the 

maximum mass loss observed for mix GPM-37.5 was 1.6, 3.6 and 5.5% for HCl 

concentrations of 0.10, 0.31 and 0.52 mol/L, respectively.  The rate of mass loss of PCM 

samples exposed to HCl solutions was increasing from one cycle to the next, due to 

decalcification of the samples and, to a lesser extent, to release of aluminium and iron [88].  

At the end of the test, the maximum mass loss was recorded for mix GPM-37.5, i.e. 1.3, 5.3 

and 12.3% for HCl concentrations of 0.10, 0.31 and 0.52 mol/L, respectively.   

Irrespective of the acid type, it appears that for GPM mixes the mass loss rate 

decreased during the course of the test (and in some cases stabilised somewhere between the 

third and the fifth week of the test), while for PCMs it accelerated.  It also depended on the 

acid solution concentration; the decrease (GPMs) or increase (PCMs) in mass loss rate 

happened earlier for high acid concentrations.  This suggests that the degraded layer of the 

material in GPM mixes acted as a buffer zone and slowed down further progression of the 

acid attack, thus providing better overall resistance against the acid attack than the PCM 

counterparts.   

The higher strength GPM samples exposed to H2SO4 and HCl solutions and high 

strength PCM samples exposed to HCl solutions exhibited lower mass loss than the normal 
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strength mixes.  It was most probably related to lower porosity of the high strength mix.  For 

GPM mixes, the difference in the cumulative mass loss between high and normal strength 

mixes exposed to either acid type was not significant (up to 0.9%).  In the case of PCM mixes 

exposed to HCl, the difference in the cumulative mass loss between high and normal strength 

mixes increased with exposure time.  Moreover, mass loss of samples exposed to HCl 

increased with an increase in acid concentration (at 8 weeks exceeding 0.5, 1.1 and 2% for 

the HCl solution with concentration of 0.10, 0.31 and 0.52 mol/L, respectively – see Figure 

13c and d).  High strength PCMs exposed to H2SO4 solutions with concentrations of 0.31 and 

0.52 mol/L showed higher mass loss than the normal strength mixes.  Also, the difference in 

mass loss between strength classes was significantly higher.  Rahmani and Ramazanianpour 

[24] attributed this behaviour to the difference in pore size.  Specifically, for low w/c ratio 

(mix PCM-60) the ingress of H2SO4 acid is hindered to some extent by lower porosity and 

pore size of the matrix, hence the acid reacts with hcp in the outermost surface layer of the 

sample.  Decalcification of the hcp is accompanied by build-up of expansive salts in the acid 

degraded zone.  As the pores of the high strength mix are comparatively smaller (Table 3), 

the pressure exerted by the expansive salts leads to relatively quicker degradation of the 

surface and advances the acid attack front deeper into the matrix.  In the case of higher w/c 

ratio, due to more porous hcp, acid is able to penetrate deeper into the hcp.  However, 

pressure related to build-up of the expansive salts is relatively lower due to the more porous 

matrix.  The expansive products form a layer on the acid attack front, which to some extent 

decreases the degree of the attack.  Also, as the PCM-60 contained more cement (Table 2), 

there were more cement hydration products to react with H2SO4.   

Where acid type is concerned, GPMs exposed to all three concentrations of H2SO4 

and PCM mixes immersed in 0.31 and 0.52 mol/L solutions of H2SO4 lost relatively more 

mass than comparable mixes stored in HCl solutions.  In contrast, PCM samples exposed to 
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0.10 mol/L H2SO4 solution gain mass, while mass loss was observed for the samples stored in 

corresponding solution of HCl.  

Irrespective of the binder and acid types, an increase in acid solution concentration 

caused greater mass change [11, 88].  

 

 

 

 
Figure 12: Mass loss of GPM and PCM mixes exposed to different concentrations of H2SO4 solutions over 

a period of eight weeks. 
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Figure 13: Mass loss of GPM and PCM mixes exposed to different concentrations of HCl solutions over a 

period of eight weeks. 
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Figure 14: pH changes of H2SO4 solutions with different concentrations over a period of eight weeks. 

 
 

  

 
Figure 15: pH changes of HCl solutions with different concentrations over a period of eight weeks. 
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mol/L HCl and 0.10 mol/L of H2SO4.   Typically, the pH values were the highest before the 

first renewal of the solutions, due to the outermost layer of the samples being attacked by the 

acids.  Subsequently, the acid had to diffuse through the already degraded layer to react with 

the unattacked material, which resulted in smaller increases in pH over the subsequent weeks.  

Importantly, pH of solutions in which GPM mixes were immersed were in general lower than 

the PCM counterparts, which likely resulted from lower pH of the geopolymer mortars and/or 

the lower reaction with/dissolution of material from the specimens. 

The strength grade of GPMs exposed to both H2SO4 and HCl solutions, and PCMs 

exposed to HCl solutions, did not have a significant effect on the pH (Figure 16).   In contrast, 

high strength PCMs samples immersed in 0.31 and 0.52 mol/L H2SO4 solutions, caused the 

pH to be higher than normal strength PCMs. This could be related to higher degradation rate 

of high strength PCMs, as already mentioned in the section on mass change.  The pH of the 

0.10 mol/L H2SO4 solution used for PCM-60 was initially lower than that for PCM-37.5, but 

after the fourth replenishment of the solution it became higher.  This correlated well with the 

mass change results.  For PCM-37.5, there was a constant increase in mass until week six of 

the test (Figure 12c), while for PCM-60 the mass gain stopped after week four (Figure 12d).  

This corroborates with changes in the pH trends for these samples, supporting the hypothesis 

that the acid started penetrating the protective layer of the precipitated salts, on the surface or 

inside the outermost layer of the samples.   

Regardless of the strength grade of either GPM or PCM mixes, the post-immersion 

H2SO4 solutions had slightly lower pH than the corresponding HCl solutions (Figure 16).     

The discrepancy was much larger for PCM samples, especially for those stored in 0.10 mol/L 

solutions. In the first 3 weeks of the exposure, the pH of 0.10 mol/L H2SO4 solution dropped 

below 3, while for HCl solution it almost did not change during the 8 weeks of testing.  
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Using acid solutions with higher concentration caused lower rise in acid solutions pH, 

with the exception of PCM samples immersed in 0.10 mol/L of H2SO4 solution, as discussed 

above.   

 

 

 
Figure 16: Influence of binder type and strength grade on evolution of pH values of H2SO4 and HCl acid 

solutions with different concentrations over a period of eight weeks (measurements made before 
replenishing with a fresh solution). 
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3.3.4. XRD 

The XRD patterns of the materials collected from the center of unexposed GPM-60 

and PCM-60 samples are compared with the patterns recorded for the degraded layer, 

collected from samples exposed for 8 weeks to H2SO4 and HCl solutions (0.52 mol/L) in 

Figure 17.  The unexposed samples used in acid attack testing (Figure 17) have very similar 

XRD patterns to the unexposed samples used for sulfate attack Figure 9, hence, the 

discussion of their XRD results is not repeated here.  

Very little change upon the acid attack was observed in GPM-60, particularly for HCl 

acid attack, which is in agreement with results reported by Bouguermouh et al. [39] for 

metakaolin based geopolymers.  Following the H2SO4 attack, a small peak corresponding to 

gypsum was identified at 2θ of 11.7° in the XRD pattern, revealing that calcium in the 

calcined lithomarge reacted with H2SO4 to form gypsum.   

The XRD patterns of the PC mortars showed greater changes after acid attack.  

Calcium hydroxide was no longer identified after attack by either HCl or H2SO4, suggesting 

it had reacted with the respective acid.  After H2SO4 attack, gypsum was identified by peaks 

at 2θ of 11.7, 20.7, 23.4, 29.2, 31.1, 33.4 and 43.3°. 
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Figure 17: XRD patterns of GPM-60 and PCM-60 control (unexposed) samples compared with samples 

exposed for 8 weeks to HCl and H2SO4 solutions with concentration of 0.52 mol/L. 
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ratio due to the removal of aluminium from the binder [36].  Bernal et al. [37] reported that 

the extent of the shift to higher wavenumbers can be related to the degree of structural 

damage to the binder.  In this case, H2SO4 acid caused a larger shift of the peak and also 

caused a larger mass loss than HCl (Figure 12a,b and Figure 13a,b, respectively).  Of notice 

is that the FTIR spectrum for the unreacted calcined lithomarge featured a strong signal at 

1036 cm-1, similarly to acid attacked samples.  It suggests that, in addition to the degraded 

(dealuminated) binder and sand, the corroded samples contained unreacted calcined 

lithomarge particles [36].  A shoulder at 900–980 cm-1 appeared for samples attacked by 

either acid, which can be attributed to the removal of K+ ions and the incorporation of H3O+ 

ions in the degraded structure [36].  This suggests that dealumination of the binder is the 

main mechanism of failure of GPM to acid attack.  In contrast to XRD results, gypsum was 

not found in GPM-60 sample attacked by H2SO4.  No further significant changes to the FTIR 

spectra were observed.  

In the case of the PCMs, the main peak was centred at 985 cm-1 and shifted to 1039 

cm-1 after the HCl attack, likely due to decalcification of C-S-H gel formed in Portland 

cement systems [37].  A band at approximately 3640 cm-1, corresponding to O-H stretching 

vibrations in calcium hydroxide, was not present in samples exposed to the acid attack.  Also, 

a peak at 870 cm-1 (out of plane bending of CO3
2-) and a broad band at approximately 1420 

cm-1 (asymmetric stretching of CO3
2-), both corresponding to CaCO3, were absent from the 

FTIR spectra of acid attacked samples.  A broad shoulder near 1105 cm-1, corresponding to 

asymmetric stretching vibrations of SO4
2- in ettringite, was no longer present in acid attacked 

samples.  The degraded material after sulphuric acid attack was mainly gypsum, with a very 

strong signal at 1115 cm-1 [89].  Further peaks at approximately 669 (the bending vibration of 

the SO4 tetrahedron), 1620, 1685, (both in plane bending vibrations of O-H∙∙∙O group), 3405 
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and 3536 cm-1 (both the stretching vibrations of O-H∙∙∙O group) can also be related to the 

presence of gypsum [84, 85]. 

 

 
Figure 18: FTIR spectra of GPM-60 and PCM-60 control (unexposed) samples compared with samples 

exposed for 8 weeks to HCl and H2SO4 solutions with concentration of 0.52 mol/L. 
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mixes provided a better quality (lower permeability) of acid-degraded layer, which restricted 

to some extent the diffusion of acid into the microstructure, hence lowering the degree of 

deterioration. 

XRD results did not show any major changes to geopolymer microstructure caused by 

acid solutions.  Based on FTIR spectroscopy results, dealumination of the geopolymer 

hardened binder accounted for the main mechanisms of the matrix deterioration of GPMs in 

both acids, with higher degree of changes detected for H2SO4.  Also, FTIR spectra suggests 

that in the degraded matrix, K+ ions were substituted with H3O+ ions.    

Where PCMs are concerned, both acids had a dissolution effect on hcp caused by 

hydrogen ions (primarily dissolution of calcium hydroxide and decalcification of C-S-H and 

ettringite).  In addition, H2SO4 acid caused precipitation of gypsum on the samples’ surface 

and within pores of the already degraded near-surface layer, leading to expansive spalling 

caused by induced tensile stresses.   

Due to their lower porosity, the high strength grade GPM samples exposed to 

solutions of both acids and high strength PCM samples exposed to HCl solutions, exhibited 

lower mass loss than the normal strength mixes.  The opposite trend was observed for PCMs 

exposed to H2SO4 solutions with concentrations of 0.31 and 0.52 mol/L, which was attributed 

to faster build-up of expansive salts in less porous mixes causing expansive spalling.   

Irrespective of the binder type and strength grade, solutions of H2SO4 induced more 

surface degradation and mass loss than the corresponding HCl solutions.  The exception to 

this trend were PCM samples exposed to 0.10 mol/L H2SO4 solution which gained mass due 

to the precipitation of gypsum in the outermost surface layer of the samples.    

For both binders, exposure to acid with a higher concentration caused a higher degree 

of surface deterioration and mass loss.   
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4. CONCLUSIONS 

On the basis of the presented results, the following conclusions have been drawn: 

 Irrespective of the sulfate solution used (Na2SO4 and MgSO4) and the mortars’ strength 

grade (37.5 and 60 MPa), GPM mixes showed superior sulfate resistance when compared 

with PCM mixes.  No changes to the geopolymer microstructure were detected. Sulfate 

attack by both Na2SO4 and MgSO4 solutions caused visible deterioration, and large 

expansion of PCMs, making them unsuitable for the use in sulfate rich environments.   

 GPMs showed better resistance to attack by H2SO4 and HCl solutions than PCMs, i.e. 

lower surface deterioration and lower mass loss.  Main mechanism of GPM deterioration 

was dealumination of the geopolymer microstructure.  H2SO4 solutions caused higher 

degree of surface deterioration, mass loss and microstructural changes than corresponding 

HCl solutions.  Due to lower microstructure porosity high strength GPMs performed 

better than normal strength ones.   

 

Sulfate and acid attack on concrete structures is of great concern, in particular for 

wastewater transport and treatment infrastructure and agricultural applications.  The currently 

used measures to minimise/reduce such deterioration are costly and in many cases require 

periodic renewal.  This work has allowed greater understanding of the performance of a 

commercial geopolymer binder system in harsh sulfate and acid environments and will assist 

in the design of alternative concrete solutions. By using these more resistant geopolymer 

materials, maintenance costs will be reduced and service life increased.   
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