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Abstract. During last decades, studies on asset pricing models witnessed a par-

adigm shift from rational expectation and representative agent to an alternative,

behavioral view, where agents are heterogeneous and boundedly rational. In this

paper, we model the financial market as an interaction of two types of boundedly

rational investors - fundamentalists and chartists. We examine the dynamics of

the market price and market behavior, which depend on investors’ behavior and

the interaction of the two types of investors. Numerical simulations of the cor-

responding stochastic model demonstrate that the model is able to replicate the

stylized facts of financial time series, in particular the long-term dependence (long

memory) of asset return volatilities. We further investigate the source of the long

memory according to asset pricing mechanism of our model, and provide evidences

of long memory by applying the modified R/S analysis. Our results demonstrate

that the key parameter that has impact on the long memory is the speed of the

price adjustment of the market maker at the equilibrium of demand and supply.
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1. Introduction

The explanatory power of heterogeneous agent models (HAMs) in finance to var-

ious stylized facts and anomalies in financial markets has been evidenced by rapidly

growing literature. With different groups of traders having different expectations

about future prices, asset price endogenously fluctuates. For instance, by consider-

ing two types of traders, typically fundamentalists and chartists, Beja and Goldman

(1980), Day and Huang (1990), Chiarella (1992) and Lux (1995) were amongst the

first to have shown that interaction of agents with heterogeneous expectations may

lead to market instability. HAMs have successfully explained various types of mar-

ket behavior, such as the long-term swing of market prices from the fundamental

price, asset bubbles and market crashes, showing a potential to characterize and ex-

plain the stylized facts (LeBaron, 2006 and Gaunersdorfer and Hommes, 2007) and

various power law behavior (Alfarano et al., 2005 and He and Li, 2008) observed in

financial markets1.

Aa a salient stylized facts, long memory in volatility has been extensively studied.

This paper extends the literature examining the source of long memory. We intro-

duce a parsimonious asset pricing model with boundedly rational agents including

fundamentalists, chartists using percentage retracement strategies, and a market

maker adjusting market price proportional to previous price in a nonlinear fashion.

We find that price limitation mechanism of the market maker is essential to control

the fluctuation amplitude of the market price, and the speed of the price adjustment

of the market maker can be a source of the volatility persistence.

In related HAMs literature on the explanation of long memory in volatility, ex-

planatory mechanisms have been proposed based on the underlying deterministic

dynamics, i.e., He and Li (2007, 2015, 2017), Gaunersdorfer et al. (2008) and He,

Li and Wang (2016)2. The first mechanism is based on the local stability and Hopf

bifurcation, explored in He and Li (2007). Essentially, on the parameter space of

the deterministic model, near the Hopf bifurcation boundary, the fundamental price

can be locally stable but globally unstable. Due to the nature of Hopf bifurcation,

such instability leads to periodic oscillations around the fundamental price. Then

triggered by fundamental and market noises, He and Li (2007) show that the inter-

action of fundamentalists and trend followers chasing risk-adjusted trends and the

interplay of the noises and the underlying deterministic dynamics can be the source

of power-law behavior in return volatility. The estimated models with and without

1Early comprehensive survey papers include: Hommes (2006), LeBaron (2006), Chiarella et al.

(2009), Lux (2009b), Chen et al. (2012), He (2014) and Westerhoff and Franke (2014). For the

latest survey, see Dieci and He (2018).
2Other mechanisms are also discussed in Lux and Alfarano (2016) including stochastic herding

(Alfarano et al. 2005), and stochastic demand (Franke and Westerhoff, 2011, 2012).
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switching share the same underlying deterministic mechanism. However, economi-

cally, they provide different behavioral mechanisms. In He and Li (2015), a constant

market fraction model is used to examine the potential mechanism. The estimated

parameters show that, with the dominance of trend followers (about 60%), the model

is able to match closely the power-law behavior of the DAX30. With both switching

and no-switching investors, the estimated model in He and Li (2017) shows that

the market is dominated by these traders (about 70%) who consistently switch be-

tween two strategies. It is traders’ adaptive behavior that generates the power-law

behavior. The second mechanism proposed in Gaunersdorfer et al. (2008) is char-

acterized by the coexistence of two locally stable attractors with different size. The

interaction of the deterministic dynamics and noise processes can then trigger the

switching between the two attractors and endogenously generate volatility clustering

and long memory in volatility. Dieci et al. (2006) show that the extended market

fraction model with switching investors can display such co-existence of locally sta-

ble fundamental price and periodic cycle. More recently, He et al. (2016) provide

the conditions on the coexistence of a locally stable steady state and a locally stable

invariant circle of the underlying nonlinear deterministic model.

In this paper, we introduce a parsimonious asset pricing model with boundedly

rational agents who are specified as using simple heuristics in their decision making

in the market maker scenario. The difference from the existing literature is that the

price adjustment by the market maker is a proportion based on the previous prices

rather than an absolute amount. Within this price adjustment mechanism, the level

of the fundamentals can affect the whole system. The impact of the bounded ratio-

nality of investors on the volatility of a risky asset becomes complex, which triggers

the intrinsic characteristics of market volatility. The long-term dependence of asset

return volatilities has been ubiquitous in the financial markets. We identify the

sources of the long memory according to asset pricing mechanism of our model. For

the empirical testing of long memory, there exist various methods in the literature.

It is well-known that the classical R/S test is weak and Lo’s rescaled R/S test is

stringent (see, for instance, Lillo and Farmer, 2004). We adopt Lo’s modified R/S

test for long-memory in our study.

The framework of the paper is following. Section 2 introduces the model and dis-

cusses characteristics of the corresponding deterministic system. Section 3 considers

the stochastic model and the impacts of model parameters on the market price.

Section 4 presents results of Lo’s modified R/S test. Some conclusions are stated in

Section 5.
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2. Model

In building of HAMs, one of the key aspects is the expectation feedback mecha-

nism: agents’ decisions are based upon predictions of endogenous variables whose

actual values are determined by the behavior of agents (Brock and Hommes, 1998).

Within this framework, adaptation, evolution, heterogeneity, and even learning can

be incorporated (Hommes, 2001; Chiarella and He, 2002, 2003; Chiarella et al.,

2002, 2006 and Zheng et al., 2017). The promising perspectives of HAMs have been

testified by many empirical studies of HAMs3.

Following on HAMs literature, we consider a market with one risky asset (e.g.

stock, index or fund) and one risk free asset. Let Pt denote the price (ex dividend) per

share of the risky asset at time t, and let yt be the stochastic dividend process of the

risky asset. The risk free asset is perfectly elastically supplied at gross return R ≥ 14.

At the same time, the market consists of different types of heterogeneous traders

whose excess demands are based on different trading rules. In this paper, we consider

two types of heterogeneous traders5, that is fundamental analysts (fundamentalists)

and technical analysts (chartists).

Fundamentalists - In the market, fundamentalists (denoted by agent f) know the

fundamental information of the risky asset, such as the fundamental price. So the

decision of the fundamentalists is depended upon the fundamental information and

further their excess demand Df
t is based on the spread between the actual price Pt

and the fundamental price Ft, which can be expressed as

Df
t = α(Ft − Pt)

where α > 0 is the reaction coefficient of the fundamentalists, which denotes the

slope of the downward-sloping demand function and represents the mean-reverting

belief of the fundamentalists. When Ft > Pt, the fundamentalists believe that the

3They include commodity markets (Baak, 1999 and Chavas, 2000), stock markets (Boswijk et

al., 2007; Franke, 2009; Franke and Westerhoff, 2011, 2012; Chiarella et al., 2012, 2014; Schmitt

and Westerhoff, 2014 and He and Li, 2015, 2017), foreign exchange markets (Westerhoff and Reitz,

2003; Manzan and Westerhoff, 2005; De Jong et al., 2010; Dieci and Westerhoff, 2010 and ter Ellen

et al., 2013), housing market (Dieci and Westerhoff, 2016 and Zheng et al., 2017), mutual funds

(Goldbaum and Mizrach, 2008), option markets (Frijns et al., 2010), oil markets (ter Ellen and

Zwinkels, 2010), and CDS markets (Chiarella et al., 2015). Also, HAMs have been estimated with

contagious interpersonal communication by Gilli and Winker (2003), Alfarano et al. (2005), Lux

(2009a, 2012), and other works reviewed in Li et al. (2010) and Chen et al. (2012).
4Usually, the gross return is R = 1+r/K where r stands for a constant risk-free rate per annual

and K stands for the frequency of trading period per year. Typically, K = 1, 12, 52 and 250 for

trading period of year, month, week and day, respectively.
5The model can be extended to three or more agents.
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risky asset is undervalued and so they like to hold a long position. Contrarily, the

price is regarded as overvaluation and so they hold a short position.

Chartists - Chartists (denoted by agent c) don’t know the fundamental informa-

tion and they believe that the charting signals from the past prices can discover

some information about the spot price of the risky asset. So they prefer the cheaper

thumb strategies, such as simple moving average, percentage retracement, corre-

lation analysis, and other popular technical methods in financial market. In our

paper, we mainly analyze the effect of percentage retracement (PR) because it is

seldom studied in the previous HAMs literature. A retracement is a countertrend

move. Retracements are based on the thought that prices will reverse or “retrace” a

portion of the previous movement before resuming their underlying trend in the orig-

inal direction. For example, 33%, 50% and 66% retracement rates are well-known as

illustrated in Figure 1. In particular, when the chartists believe 50% retracement,

then if the short down-adjustment of the market during the rise trend of the price

is not across the line of 50% PR, the chartists think that the down-trend hasn’t

made, the market is just in a temporary adjustment and it will go up after the

adjustment; otherwise the down-adjustment crosses 50% PR, then they think that

the down-trend of the price is doomed and the rise move is over. In addition, some

chartists draw similarities between 33%, 50%, and 66% and the Fibonacci numbers

of 38.2%, 50%, and 61.8%, this is Fibonacci retracement.

t−2 t−1
p

t−2

p
t−1

33%PR,  (1−33%)p
t−1

+33%p
t−2

50%PR,  (1−50%)p
t−1

+50%p
t−2

66%PR, (1−66%)p
t−1

+66%p
t−2

Figure 1. Percentage Retracement (PR)

Therefore, the reference price of the percentage retracement strategy adopted by

the chartists can be expressed by the weighted average of historical prices, that is

P̂t = (1− ω)Pt−1 + ωPt−2,
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which is called the expectation price of the chartists and where ω ∈ [0, 1] repre-

sents the coefficient of the retracement strategy. In particular, if ω = 0, then the

expectation of the chartists to the price is the previous price, that is P̂t = Pt−1,

which is so-called naive expectation. If ω = 1, then P̂t = Pt−2, which means that

the chartists regard the lag-2 price as their expectation price. If ω = 0.5, P̂t is the

simple moving average of length 2. Thus, a trading signal to the chartists is defined

as the difference (δt) between the current price Pt and the expectation price P̂t, that

is δt = Pt− P̂t. When δt > 0, the chartists believe it indicates that the price is in the

increasing trend and then they want to hold a long position; otherwise, they like to

take a short position. By mathematical expression, the excess demand (Dc
t ) of the

chartists can be written as

Dc
t = g(δt),

where g(δ) is a nonlinear smooth function of the price difference δ. In the financial

market, technical analysts have different actions to different information and they

are cautious for the big rise or fall of the market price. So g should have the following

general properties6: ∃δ∗ < 0, δ∗∗ > 0 such that

0

g
u

δ**

g
l

δ*

δ

g

Figure 2. g-function

g(0) = 0, δg(δ) > 0 for δ 6= 0; (2.1a)

g′(δ) > 0 for δ∗ < δ < δ∗∗, g′(δ) < 0 for δ < δ∗ or δ > δ∗∗; (2.1b)

6Usually g is assumed to be an S-shape function, e.g. g(δ) = u tanh(vδ)(u > 0, v > 0). Note

that under the assumption, g(·) is symmetric and lim
δ→±∞

|g(δ)| = u < ∞, which means that the

actions of the chartists to the positive and negative trading signals are completely equally reverse

operations and the chartists are cautious but not very cautious when the price difference δ is large

(either positive or negative).
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lim
δ→δ∗

g(δ) = gl < +∞, lim
δ→δ∗∗

g(δ) = gu > −∞. (2.1c)

In particular, in this paper, we take g(δ) = aδ
1+bδ+c2δ2

where a > 0, c > 0, b ∈

(−2c, 2c) and then g satisfies the characteristics in (2.1) and other features as follows:

(1) g(0) = 0, δg(δ) > 0 for δ 6= 0,

gu ≡ gmax = g(
1

c
) =

a

2c+ b
,

gl ≡ gmin = g(−
1

c
) = −

a

2c− b
.

These mean that when the price has no trend (that is δt = 0), the chartists

do nothing and only wait and see. But when there is positive (negative)

trend, they will increase a long (short) position and the position is limited

because of the wealth constraint.

(2) g′(δ) > 0 for |δ| <
1

c
and g′(δ) < 0 for |δ| >

1

c
.

The parameter c measures the confident level of the chartists to extrapolate.

For |δ| < 1
c
, the chartists’ demand increases as the price difference δ in-

creases. However, for |δ| > 1
c
, the chartists’ demand decreases as δ increases.

The maximum demand amount achieves when |δ| = 1
c
. In other words, the

chartists are confident for their strategies when the changes in |δ| are up to

the level of 1
c
. However, the chartists become less confident and cautious for

their strategies when the changes in |δ| excess the level of 1
c
. In particular,

as c → 0, the chartists’ demand tends to increase for all δ while when c is

far away from zero, the chartists’ demand increases sharply as δ are small

and then decreases.

(3) lim
δ→±∞

g(δ) = 0 which means that when the price difference δ between the

current price and the expectation price of the chartists is becoming large,

the chartists become cautious and reduce their demand.

(4) The parameter a = g′(0) > 0 measures the chartists’ extrapolation when δ

is small. For small (large) values of a, the chartists’ demand is insensitive

(sensitive) to small values of δ, which may characterize unwillingness (will-

ingness) of the chartists to get into the market when the real price is deviated

from its expectation price.

(5) The parameter b measures the symmetry of the chartists’ response to the

changes of δ. For b = 0, the chartists’ long and short positions are sym-

metric with respect to the changes of δ. However, for b 6= 0, the position of

the chartists for positive and negative information is not symmetric, which

represents that the chartists have no equal actions toward good news and

bad news. The phenomenon is called the asymmetric effect. In particular,

for b < 0, the chartists believe a bull market by increasing (decreasing) their
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maximum long (short) position when δ is positive (negative) and for b > 0,

the chartists believe a bear market by decreasing (increasing) their maximum

long (short) position when δ is positive (negative). We call b the bull-bear

coefficient, in brief B-coefficient.

Price adjustment mechanism - In line with Beja and Goldman (1980), Chiarella,

He and Hommes (2006), we assume that the risky asset price is set period by period

via a market maker mechanism upon the aggregate excess demand Dt which is given

by

Dt = nf,tD
f
t + nc,tD

c
t

where nq,t (q ∈ {f, c}) is the market fraction of agent q at time t and nf,t +nc,t = 1.

But it is necessary to point out that the market maker mechanism in the previous

studies updates the price based on the absolute amount of the price, which cannot

avoid the case of the negative price. In addition, the difference of price is independent

of fundamental price, which is not realizable. Here we adopt the mechanism to adjust

the price in the relative instead of absolute amount. That is to say,

Pt+1 = Pt

(
1 + S(Dt)

)
, (2.2)

where S(d) is a nonlinear smooth function of the excess demand d, satisfying

S(0) = 0, S ′(d) > 0, lim
d→±∞

S ′(d) = 0, (2.3a)

lim
d→+∞

S(d) = Su < +∞, lim
d→−∞

S(d) = Sl ≥ −1. (2.3b)

Thus, the relative amount of the price adjustment is bounded, which is consistent

with the fact that the price has the boundary. Denote µ = S ′(0) which measures

the speed of price adjustment of the market maker to the excess demand at the

equilibrium of demand and supply. When µ is small, the market maker adjusts

cautiously the price change at the equilibrium of demand and supply.

In this paper, we take S(d) = k tanh(γd) where 0 < k < 1 and γ > 0. Then

the price adjustment speed of the market maker µ is determined by the adjustment

amplitude k and the reaction speed γ, that is µ = kγ. Therefore, if the market

maker wants to cautiously adjust the price change, then he needs to decrease his

price adjustment speed µ (that is to decrease his price adjustment amplitude and/or

reaction speed).

Fitness Measure and Fraction Evolution - At time t, agent q has the fitness mea-

sure πq,t(q = f, c) as their realized net profit:

πq,t = (Pt + yt − RPt−1)D
q
t−1 − Cq, (2.4)
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where Cq ≥ 0 is the cost of agent q. Since fundamental information is expensive,

the fundamentalists should pay no less than the chartists to obtain information. So

we assume that C = Cf − Cc ≥ 0.

More generally, one can introduce additional memory into the performance mea-

sure Uq,t, by considering a weighted average of net realized profit, as follows:

Uq,t = πq,t + ηUq,t−1,

where the parameter η ∈ [0, 1) represents the memory of the cumulated fitness

function.

Each agent has survival risk. To avoid the risk, all agents prefer a better strategy

in order to gain more profit. Hence, similarly to Brock and Hommes (1998) and

Chiarella, He and Hommes (2006), the market fraction nq,t of agent q (q = f, c) is

given by the discrete choice probability

nq,t =
eβUq,t

Nt
, (2.5)

where Nt = eβUf,t + eβUc,t and the parameter β(≥ 0) measures the sensitivity of

performance, that is how fast different type agents in the market switch each other.

In particular, as β = ∞, the total fraction is held by the investors choosing the

optimal strategy in each period whilst as β = 0, the fundamentalists and chartists

take the even market fractions at all times. See Brock and Hommes (1997, 1998)

for a more extensive discussion of the discrete choice setup for predictor selection.

Summarizing the above analysis, we can get the following dynamical system:




Pt+1 = Pt

[
1 + S(nf,tD

f
t + nc,tD

c
t )
]
,

nf,t =
eβUf,t

eβUf,t + eβUc,t
, nc,t = 1− nf,t,

Uq,t = (Pt + yt − RPt−1)D
q
t−1 − Cq + ηUq,t−1, q ∈ {f, c},

Df
t = α(Ft − Pt), Dc

t = g
(
Pt − (1− ω)Pt−1 − ωPt−2

)
.

(2.6)

Let Ut = Uf,t − Uc,t = (πf,t − πc,t)−C + ηUt−1. Then system (2.6) can be rewritten

into




Pt+1 = Pt

[
1 + S

(
eβUt

eβUt + 1
α(Ft − Pt) +

1

eβUt + 1
g(Pt − (1− ω)Pt−1 − ωPt−2)

)]
,

Ut+1 = (Pt+1 + yt+1 −RPt)
[
α(Ft − Pt)− g

(
Pt − (1− ω)Pt−1 − ωPt−2

)]
− C + ηUt.

(2.7)

When we assume that the fundamental price and dividend both follow constant

processes, that is Ft ≡ F ∗ > 0 and yt = Ft(R− 1) ≡ F ∗(R− 1) denoted by ȳ. Then

system (2.7) can be written into the following deterministic 4-dimensional dynamical
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system7:




Pt+1 = Pt

[
1 + S

(
eβUt

eβUt + 1
α(F ∗ − Pt) +

1

eβUt + 1
g
(
Pt − (1− ω)Pt−1 − ωPt−2

))
]

Ut+1 = (Pt+1 + ȳ −RPt)
[
α(F ∗ − Pt)− g

(
Pt − (1− ω)Pt−1 − ωPt−2

)]
− C + ηUt.

(2.8)

The dynamics of the deterministic model (2.8) is analyzed in Zheng et al. (2009),

and the properties of (2.8) are as follows.

Proposition 2.1. For the deterministic dynamical system (2.8), assume η ∈ [0, 1).

Denote U∗ = − C
1−η

, n∗

f = eβU∗

eβU∗+1
, n∗

c = 1 − n∗

f , ᾱ := F ∗µn∗

fα and ā := F ∗µn∗

ca.

Then

(1) there always exist two steady states (P ∗

1 , U
∗

1 ) = (0, αF
∗ȳ−C
1−η

), and (P ∗

2 , U
∗

2 ) =

(F ∗, U∗).

(2) (P ∗

1 , U
∗

1 ) is unstable for all parameters (ā, ᾱ, ω).
(3) (P ∗

2 , U
∗

2 ) is locally asymptotically stable(LAS) for (ā, ᾱ, ω) ∈ D, where

D =

{

(ā, ᾱ, ω) : 0 < ω ≤ 1, 0 < ā <
1

ω
, max

{

0,
(ωā+ 1)

(

(1 + ω)ā− 1
)

āω

}

< ᾱ < 2 + 2ā(1− ω);

ω = 0, 0 < ā < 1, 0 < ᾱ < 2 + 2ā

}

.

(4) At ᾱ = 2 + 2ā(1− ω), (P ∗

2 , U
∗

2 ) undergoes a flip bifurcation.

(5) At ᾱāω = ā+ ā2(ω+ω2)−1, (P ∗

2 , U
∗

2 ) can have one pair of complex conjugate

eigenvalues on the unit cycle and in addition,

(i) when (1 + ω)ā + 1 − ᾱ 6= 2 cos(2π/q) (q = 2, . . . , 6), a (generalized)

Neimark-Sacker bifurcation occurs;

(ii) when 0 < ω < 1

2
(
1−cos(2π/q)

) (q = 2, 3, . . .), 1 : q-resonance occurs at

(ā, ᾱ) =

(
1

1−ω+2ω cos(2π/q)
,
2
(
1−cos(2π/q)

)(
2ω cos(2π/q)+1

)
1−ω+2ω cos(2π/q)

)
;

(iii) when ω = 0, 1 : q-resonance (q = 2, 3, 4) occurs at (ā, ᾱ) = (1, 2 −

2 cos(2π/q)).

7Note, taking log in (2.8), the log price dynamic is given by

pt+1 = pt + s(Dt), (∗)

where pt = logPt and s(·) = log(1 + S(·)). System (∗) seems consistent with the absolute amount

of price adjustment, but in fact, if the price follows the absolute adjustment rule, that is,

Pt+1 = Pt + S(Dt),

then the fundamental value will not affect the dynamic by a transformation xt = Pt−F ∗. However,

in (∗), the fundamental value always exists explicitly and plays the important role in the evolution

of prices.
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Figure 3. (a) The stable region of the steady state (P ∗

2 , U
∗

2 ) in the

parameter space of (ā, ᾱ, ω). (b) Dω∗ is denoted as the projection of

D onto the plane ω = ω∗. (c) Time series when the parameters pass

the boundary ᾱāω = ā + ā2(ω + ω2) − 1. (d) Time series when the

parameters pass the boundary ᾱ = 2 + 2ā(1− ω).

System (2.8) has two steady states. The price of the first steady state (P ∗

1 , U
∗

1 )

is zero. For this steady state, it is always unstable. This is because the product

with zero price has no value and this type product will die out. This phenomenon is

consistent with the real market. For the second steady state (P ∗

2 , U
∗

2 ), the price is the

fundamental value F ∗ of the risky asset and we call (P ∗

2 , U
∗

2 ) the fundamental steady

state. The stability property of the fundamental steady state (P ∗

2 , U
∗

2 ) depends
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on the parameters ω, ᾱ = F ∗µn∗

fα and ā = F ∗µn∗

ca. Here the market maker’s

price adjustment speed µ and the fundamental price F ∗ both are scaling factors8 for

(ā, ᾱ) and can change the stability of the fundamental steady state. Given the scaling

factors, ᾱ and ā are determined by the fraction weighted (at the fundamental steady

state) reaction coefficients of the fundamentalists and chartists, respectively. By

Proposition 2.1, we can see if the chartists’ retracement strategy (ω) and the scaled

reaction coefficients of the fundamentalists and chartists (ᾱ, ā) balance each other

such that (ā, ᾱ, ω) ∈ D, then the fundamental steady state is stable, as illustrated

in Figure 3 (a-b). Otherwise, the fundamental steady state will lose its stability and

complex phenomena will happen, as shown in Figure 3 (c-d). Therefore, when the

heterogeneous beliefs exist in the financial market, they can let the price deviate

from and fluctuate around the fundamental information and furthermore, increase

the complexity of the whole system. Proposition 2.1 describes the deterministic

evolution when there is no noise. If we consider some random factors in the market,

then the system could be more complex. In the following sections, we will analyze

the properties of system (2.8) with random noises and study its explanatory power

to the stylized facts of financial time series.

3. Stochastic Model

In Section 2, under the deterministic assumption, we show the impacts of the

reaction coefficients (α, a) of the fundamentalists and chartists, the switching speed

(β) between the two types of investors, the strategy (ω), confident level (c) and

B-coefficient (b) of the chartists, the fundamental price (F ∗) and the price adjust-

ment amplitude (k) and reaction speed (γ) of the market maker in (2.8). We find

that the market price exhibits very rich dynamical characteristics when any of those

parameters changes. However, in the real market, the fundamental price usually is

not constant but has stochastic fluctuation and moreover, the market is disturbed

frequently by the indefinite factors. Therefore, in this section, we will attempt to

gain some insights into the different behavior of the corresponding nonlinear sto-

chastic model of (2.8) with randomness arising from noise created by the stochastic

fundamental price and/or the market noise.

Stochastic markets repeatedly switch between periods of relative calm and periods

of relative turmoil. This feature remains one of the most robust and curious in all

of finance. Although much is known about the structure of volatility persistence,

8In this paper, besides the price adjustment speed of the market maker, the fundamental price

is also a scaling factor to affect the stability of the steady state because the market maker adjusts

a proportion of the price based on the previous prices. However, in the existing literature, the

fundamental price usually does not affect the stability of the steady state because the market

maker adjusts the absolute amount of the price.
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little is known about its causes. In what follows, the analysis is conducted to explore

possible source of volatility persistence. In so doing, we provide some insights into

the interplay between deterministic forces and stochastic elements, specially, the

potential mechanism in generating realistic time series properties.

In particular, we are interested in the statistical properties of time series, especially

in the autocorrelation functions (ACFs) of the returns, and absolute and squared

returns. In real financial data, autocorrelation functions of returns are roughly zero

at all lags. Autocorrelation functions of volatility measures, such as absolute or

squared returns, are positive decaying for all lags. This is the well-known stylized

fact known as long memory.

As follows, we want to use a special noise form to probe the stylized fact. Consider

the following stochastic dynamical system
{

Pt+1 = Pt(1 + S( eβUt

eβUt+1
α(Ft − Pt) +

1
eβUt+1

g(Pt − (1− ω)Pt−1 − ωPt−2))) ·mt

Ut+1 = (Pt+1 + ȳ −RPt)[α(Ft − Pt)− g(Pt − (1− ω)Pt−1 − ωPt−2)]− C + ηUt.
(3.1)

Here the log fundamental price follows the random walk logFt+1 = logFt+σF εt and

F0 = F ∗, where σF ≥ 0 is a constant measuring the volatility of the fundamental

return, εt follows a standand normal distribution N (0, 1) and E(logFt) = logF ∗.

Note that this specification ensures that the log fundamental price changes are

stationary. mt is a market noise, which represents the fact that this deterministic

model is too simple to capture all dynamics of a financial market. One can interpret

this noise term also as coming from noise traders, that is traders whose behavior is

not explained by the model but considered as exogenously given. We consider the

market noise mt has the form mt = eσmδt with σm ≥ 0 and δt follows N (0, 1) which

is independent with εt. If we take returns defined as log price changes, then we can

get

rt+1 = log
Pt+1

Pt
= r∗t + σmδt, (3.2)

where r∗t = log(1 + S( eβUt

eβUt+1
α(Ft − Pt) +

1
eβUt+1

g(Pt − (1− ω)Pt−1 − ωPt−2))).

In what follows, we take the parameters as follows unless specifically stated:

Table 1. Parameter settings

ω k γ F ∗ a b c α R β η C σF σm

0.5 0.1 0.1 166 0.966 0 1 1.2 1.001 1 0.2 0.1 0.03 0.00538

From Figure 4, we can see that given the suitable parameters, our model (3.1)

can show some characteristics appearing in the real time series. Note that in system

(3.1), the deterministic skeleton and random noises interact each other. To clarify

the roles of different parameters, first we analyze the dynamic property of the cor-

responding deterministic system of (3.1) when the parameters vary, and then study
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Figure 4. Simulation results and the corresponding autocorrelation

under the parameters given in Table 1.

the effects of different parameters on the whole system (3.1) in Section 4. In what

follows, we respectively analyze the impacts of the parameters9 b, c, k, γ, F ∗, ω and

β.

3.1. The impact of b. The parameter b measures the symmetry of the chartists’

response to the trend of the price. When b > 0, it means that the chartists think

that the market is bearish so that they prefer selling/buying more/less when a

decreasing/increasing price signal appears. Otherwise, when b < 0, the chartists

believe in a bullish market so that an up/down trend of the price triggers a more/less

buying/selling demand of the chartists.

We let b change and keep the other parameters as Table 1. Under the parameters

given by Table 1, for system (2.8), the Neimark-Sacker bifurcation occurs at a∗ =

9The impact of the fundamentalists and chartists on the system are relative. Here we fix the

behavior of the fundamentalists, that is a fixed value of α, to analyze the role of the chartists for

different parameter values. The impact of fundamentalists’ behavior can be similarly analyzed.
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0.9671 for any b. Especially, at b = 1.4691, or −1.4651, P ∗ = F ∗ undergoes a

Chenciner bifurcation. It means when −1.4651 < b < 1.4691, at a∗ = 0.9671,

there is a supercritical Neimark-Sacker bifurcation which corresponds to a negative

Lyapunov coefficient. Otherwise, there is a subcritical Neimark-Sacker bifurcation

which implies two attractors coexist, the stable fundamental steady state F ∗ and a

stable limit cycle because of the positive Lyapunov coefficient.

Therefore, similar to He and Li (2007), we take a = 0.966 near the Neimark-Sacker

bifurcation boundary and let b change from −1.6 to 1.6 to analyze the impact of

investors’ asymmetric belief on the market price in Section 4.

3.2. The impact of c. The parameter c(> 0) measures the confident level of the

chartists. When the price difference between the actual price and the chartists’ ex-

pectation price is in the range of [−1/c, 1/c], the chartists are confident about their

strategies so that they like to increase their demand if the price difference increases.

Otherwise, if the price difference is beyond [−1/c, 1/c], then the chartists are cau-

tious and think that in the market, there exists the possibility of the price reversal

so that they prefer decreasing their demand when the price difference increases.

We let c change and keep the other parameters as Table 1. Under the parameters

given by Table 1, for system (2.8), the Neimark-Sacker bifurcation occurs at a∗ =

0.9671 for any c. This means c cannot affect the bifurcation point a∗ while it

determines the range of b because of b ∈ (−2c, 2c). Only b = 0 is always in the

range for any c.

In Section 4, we still take the value of a near the Neimark-Sacker bifurcation

boundary, that is a = 0.966 as shown in Table 1 and let c change from 0.2 to 1.8 to

analyze the impact of c.

3.3. The impact of k. Note that maxd S(d) = k and mind S(d) = −k. In addition,

µ = kγ = S ′(0) measures the speed of the price adjustment of the market maker at

the equilibrium of demand and supply. So the parameter k not only determines the

maximum level of the price adjustment but also affects its speed.

We let k change and keep the other parameters as Table 1. Note that the value

of k can change the bifurcation point a∗ of system (2.8) by Proposition 2.1. To

analyze the impact of k, we fix the value of a at 0.966 as shown in Table 1 but we

should be careful of the bifurcation points of system (2.8) corresponding to different

values of k shown in Table 2 and illustrated by Figure 5, which means that under the

parameter assumption of Table 1, the fundamental steady state of the corresponding

deterministic system of (3.1) is unstable when k exceeds 0.1. In Section 4, we will

analyze the impact of increasing k on System (3.1).

3.4. The impact of γ. Note that µ = kγ = S ′(0), so the parameter γ affects the

speed of the price adjustment of the market maker.
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Table 2. Bifurcation values of system (2.8) for different k

k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

a∗ 0.9671 0.6302 0.5490 0.5301 0.5324 0.5419 0.5532 0.5645 0.5748 0.5841

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

k

a*

Figure 5. For the deterministic system (2.8), the relationship be-

tween the bifurcation point a∗ and the parameter k.

We let γ change and keep the other parameters as Table 1. Similarly to k, even

though we keep a = 0.966, the bifurcation value of a∗ of system (2.8) changes with

the increase of γ shown in Table 3 and illustrated by Figure 6. In Section 4, the

impact of increasing γ on System (3.1) will be analyzed.

Table 3. Bifurcation values of system (2.8) for different γ

γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

a∗ 0.9671 0.6302 0.5490 0.5301 0.5324 0.5419 0.5532 0.5645 0.5748 0.5841

3.5. The impact of F ∗. The parameter F ∗ represents the level of the fundamental

price. We let F ∗ change and keep the other parameters as Table 1. The fundamental

value F ∗ is an important factor for the dynamics of the system because it can affect

the bifurcation point a∗ of the corresponding deterministic system (2.8) as shown

in Table 4 and illustrated by Figure 7, which means that if we fix a = 0.966 for

the statistical study in Section 4, the fundamental steady state of the corresponding

deterministic system of (3.1) changes from stable to unstable when the fundamental

value of F ∗ increases from 100 to 200.

Table 4. Bifurcation values of system (2.8) for different F ∗

F ∗ 100 110 120 130 140 150 160 170 180 190 200

a∗ 1.4514 1.3395 1.2466 1.1683 1.1016 1.0441 0.9940 0.9502 0.9115 0.8771 0.8465
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Figure 6. For the deterministic system (2.8), the relationship be-

tween the bifurcation point a∗ and the parameter γ.

100 120 140 160 180 200
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

F*

a*

Figure 7. For the deterministic system (2.8), the relationship be-

tween the bifurcation point a∗ and the parameter F ∗.

3.6. The impact of ω. The parameter ω ∈ [0, 1] represents the coefficient of the

retracement strategy, which determines the level of chartists’ expectation price. The

closer to 0 the parameter ω, the closer to the previous price the expectation price

and the closer to 1 the parameter ω, the closer to the lag-2 price the expectation

price.

We let ω change and keep the other parameters as Table 1. For the corresponding

deterministic system (2.8), the relationship between the bifurcation point a∗ and ω

shown in Table 5 and illustrated by Figure 8. It shows that if we fix a = 0.966 in

Section 4, the fundamental steady state of the corresponding deterministic system

of (3.1) changes from stable to unstable when ω increases from 0 to 1.
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Table 5. Bifurcation values of system (2.8) for different ω

ω 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

a∗ 1.1340 1.1173 1.0870 1.0493 1.0085 0.9671 0.9265 0.8876 0.8507 0.8159 0.7833

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

ω

a*

Figure 8. For the deterministic system (2.8), the relationship be-

tween the bifurcation point a∗ and the parameter ω.

3.7. The impact of β. The parameter β measures the performance sensitivity.

The bigger β, the faster different type agents switch each other.

We let β change and keep the other parameters as Table 1. For the corresponding

deterministic system (2.8), the fundamental steady state becomes unstable when β

exceeds 1 if we fix a = 0.966, as shown in Table 6 and illustrated by Figure 9. Given

the parameter values as shown in Table 1, the impact of increasing β on System

(3.1) will be analyzed in Section 4.

Table 6. Bifurcation values of system (2.8) for different β

β 1 3 5 7 9 11 13 15 17 19

a∗ 0.9671 0.8381 0.7388 0.6622 0.6032 0.5577 0.5226 0.4954 0.4744 0.4582

4. Lo’s modified R/S analysis

The R/S analysis was firstly introduced by Hurst (1951), later refined by Mandel-

brot and Wallis (1969), and Mandelbrot and Taqqu (1979). It is based on a heuristic

graphical approach. Formally, a time series is divided by equal length of subperiods

of zt (t = 1, . . . , T ) and the range R of a time series {zt}Tt=1 is defined as:

RT = max
T∑

t=1

(zt − z̄)−min
T∑

t=1

(zt − z̄). (4.1)
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Figure 9. For the deterministic system (2.8), the relationship be-

tween the bifurcation point a∗ and the parameter β.

Here z̄ is the standard estimate of the mean. The range is then rescaled by the

sample standard deviation (S), yielding the widely used R/S statistic. Applying

Hurst’s empirical law with different subperiod sample sizes of T :

log (R/S)T = C +H · log(T ), (4.2)

We obtain the Hurst exponent H by running an ordinary least square (OLS) regres-

sion. Figure 10 provides an illustration of the Hurst exponent H for the S&P500

index.

Figure 10. The Hurst exponent of the S&P500 index based on the

R/S analysis.

However, the traditional R/S analysis has two main weaknesses which have been

demonstrated by Davies and Harte (1987) and Lo (1991): (1) the distributional

properties of the rescaled range are affected by the presence of short-term memory;

(2) though there are vast applications of the traditional R/S approach in diverse
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fields, it turned out that no asymptotic distribution theory could be derived for the

Hurst exponent H itself. Hence, no explicit hypothesis testing can be performed

and the significance of point estimates H > 0.5 or H < 0.5 rests on subjective

assessment.

In order to obtain robust and convincing results, we adopt the widely used Lo’s

R/S approach. Lo (1991) proposes a stringent R/S statistic by revising the rescaled

range Qτ (τ being the time lag) which adjusts for possible short memory effects by

applying the Newey-West heteroscedasticity and autocorrelation consistent estima-

tor in place of the sample standard deviation S with Qτ = RT/Sτ , and

S2
τ = S2 +

2

T

τ∑

j=1

ωj(τ)

{
T∑

i=j+1

(zi − z̄)(zi−j − z̄)

}
, (4.3)

with weights defined as

ωj(τ) = 1−
j

τ + 1
.

Lo (1991) standardizes the test statistic by introducing a modified R/S statistic

VT , and derives its explicit distribution function. Under the null hypothesis of no

long term memory, the distribution of the random variable VT = T−0.5Qτ converges

weakly to the range of a Brownian bridge.10 At the 5% significance level, the fractiles

of the distribution of VT are given as

lim
T→∞

Prob {VT ∈ [0.809, 1.862]} = 0.95.

More critical values of this distribution are tabulated in Lo (1991, Table II).

We firstly conducte the Lo’s R/S analysis for empirical stock markets indices,

which are the S&P 500 index (01/07/1996 - 31/08/2016), the Chinese CSI 300

index (08/04/2005 - 28/02/2017),11 and the German DAX 30 index (01/07/1996 -

22/08/2016). Returns are computed as log price changes rt = log(Pt/Pt−1), with

Pt denoting daily stock indices. Figure 11 presents the empirical plots including

the daily level indices and returns. The bottom panel of Figure 11 shows the ACFs

of the returns and the absolute values of returns (as proxy of volatilities) for three

stock markets. We observe that there are no long memory for return data, but

significant hyperbolic decay of the ACF of the absolute values of returns with time

lags increasing, which is the typical symbol of long memory in the return volatilities.

The Lo’s R/S test results for the empirical data are reported in Table 7. The

left panel reports the Lo’s R/S test statistics for different truncation lags τ =

1, 10, 50, 100, 150, 250, respectively. We find that the values are varying with different

10Lo (1991) provides the detailed asymptotic distribution and proof.
11The CSI 300 index is compiled by the China Securities Index Company, Ltd. The index is

normalized relative to a base of 1000 on 31/12/2004 and has been calculated and published since

08/04/2005.
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Figure 11. Empirical plots of stock markets indices.

truncation lag values, and more specifically, that they are monotonic decreasing.

The right panel of Table 7 reports the Hurst exponents H computed based on Lo’s

modified R/S method. We observe the empirical values of H are decreasing when

τ increases. The results are consistent with the empirical plots, i.e., there exists

apparently long memory in the return volatilities, and the strength of the long

memory is diminishing with increasing time lags.

We then perform the modified rescaled range (R/S) analysis with simulated data

from our model (3.1) based on the parameter values given in Table 1. Table 8

presents mean and standard deviation of Lo’s statistics for simulated 250 time series

for different parameter values of {b, k, c, β, γ, F ∗, ω} and for different truncation lags

τ from 1 up to 250. We find that the values are varying with different truncation

lags and they are decreasing with increasing τ , which show the similar pattern

as reported for the empirical statistics. In addition, we observe that, given each

individual parameter value of {b, c, β, F ∗, ω}, the test statistic values do not vary

much for the same truncation lag τ . However, for each individual parameter value
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of {k, γ}, we find that the Lo’s R/S statistics are decreasing with increasing the

parameter values of k from 0.1 to 0.9, and γ from 0.2 to 1 for a given time lag τ .

Table 9 reports the number of rejections of the null hypothesis of short-range

dependence at the 95% confidence levels. The rejection numbers for each single

parameter value are decreasing as the truncation lag τ increases, and the proportion

of rejections remains relatively high for even τ = 250. Analogously, there are not

much variations for the number of rejections with different individual parameter

values of {b, c, β, F ∗, ω}, but there are less frequent rejecting the null hypothesis of

short-range dependence when the parameter values of k and γ increase for a given

time lag τ , which is consistent with the results found in Table 8.

The corresponding Hurst exponent H estimates are given in Table 10. As similar

behavior observed for the empirical Hurst exponent H reported in Table 7, the

values of H for the simulated data are decreasing when τ increases. Again we find

the similar Hurst exponent H values reported across different parameter values of

{b, c, β, F ∗, ω}, but H values decreases with increasing the parameter values of k

and γ.

Overall, our findings demonstrate that the model is able to mimic the long memory

of return volatility which is pervasively found in financial time series. Our results

also reveal that the measurement of the symmetry for the chartists’ response to the

price trend (b), the confident level of the chartists (c), the level of the fundamental

price (F ∗), the coefficient of the retracement strategy (ω), and the performance

sensitivity parameter (β) have no impacts on the long memory of volatility, but

only k and γ, which measure the speed of the price adjustment of the market maker

at the equilibrium of demand and supply, have the impact on the long memory of

volatility.

Table 7. Lo’s R/S statistic for the empirical data.

Lo’s statistic Lo’s Hurst exponent

S&P 500 CSI 300 DAX 30 S&P 500 CSI 300 DAX 30

τ = 1 3.301 3.72 4.048 0.64 0.663 0.664

τ = 10 2.469 3.022 3.08 0.606 0.638 0.632

τ = 50 1.55 2.045 1.968 0.551 0.589 0.58

τ = 100 1.253 1.657 1.606 0.526 0.563 0.556

τ = 150 1.118 1.448 1.436 0.513 0.546 0.543

τ = 250 0.988 1.236 1.256 0.499 0.526 0.527

Note: This table presents Lo’s statistics and the Hurst exponent for the empirical data

with different τ .
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Table 8. Lo’s R/S statistic for the simulated data.

b = 0 b = 0.4 b = 0.8 b = 1.2 b = 1.6 b = −0.4 b = −0.8 b = −1.2 b = −1.6 k = 0.1 k = 0.3 k = 0.5 k = 0.7 k = 0.9

τ = 1 8.222 8.351 8.257 7.979 8.120 8.181 8.136 8.300 7.898 8.420 7.327 6.212 5.151 3.973

(3.180) (3.033) (3.198) (3.248) (3.029) (3.425) (3.216) (3.474) (3.231) (3.296) (4.298) (4.547) (5.158) (4.572)

τ = 10 5.752 5.820 5.720 5.583 5.580 5.709 5.668 5.739 5.330 5.836 5.013 4.427 3.541 2.986

(1.721) (1.656) (1.743) (1.761) (1.695) (1.865) (1.749) (1.884) (1.874) (1.749) (2.227) (2.562) (3.042) (2.991)

τ = 50 3.346 3.362 3.300 3.266 3.335 3.328 3.292 3.324 3.221 3.384 2.977 2.702 2.128 1.875

(0.703) (0.692) (0.725) (0.728) (0.711) (0.772) (0.725) (0.780) (0.799) (0.703) (0.938) (1.160) (1.442) (1.532)

τ = 100 2.527 2.532 2.488 2.474 2.554 2.520 2.487 2.511 2.493 2.555 2.291 2.110 1.679 1.493

(0.454) (0.453) (0.468) (0.473) (0.456) (0.496 ) (0.471) (0.505) (0.505) (0.453) (0.618) (0.782) (0.987) (1.092)

τ = 150 2.136 2.138 2.102 2.095 2.169 2.133 2.104 2.125 2.127 2.159 1.960 1.819 1.466 1.306

(0.351) (0.353) (0.361) (0.366) (0.348) (0.381) (0.365) (0.389) (0.385) (0.349) (0.481) (0.616) (0.784) (0.892)

τ = 250 1.734 1.734 1.705 1.706 1.767 1.735 1.711 1.727 1.737 1.751 1.615 1.511 1.245 1.107

(0.253) (0.257) (0.258) (0.263) (0.244) (0.269) (0.263) (0.278) (0.273) (0.251) (0.347) (0.453) (0.587) (0.691)

c = 0.2 c = 0.6 c = 1.0 c = 1.4 c = 1.8 β = 1 β = 5 β = 9 β = 13 β = 17 γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8 γ = 1.0

τ = 1 7.917 8.046 8.118 8.187 8.220 8.195 8.068 8.410 8.057 7.870 7.688 6.591 6.535 4.866 4.745

(3.442) (3.328) (3.322) (3.304) (3.324) (3.242) (3.322) (3.321) (3.233) (3.176) (3.695) (4.250) (4.724) (4.222) (4.492)

τ = 10 5.244 5.630 5.649 5.719 5.707 5.710 5.655 5.813 5.645 5.529 5.390 4.659 4.558 3.585 3.449

(1.894) (1.808) (1.820) (1.789) (1.789) (1.781) (1.835) (1.795) (1.803) (1.766) (2.020) (2.380) (2.627) (2.425) (2.585)

τ = 50 3.098 3.293 3.288 3.335 3.310 3.318 3.315 3.367 3.307 3.261 3.190 2.864 2.808 2.379 2.287

(0.820) (0.749) (0.747) (0.731) (0.728) (0.740) (0.761) (0.723) (0.756) (0.731) (0.835) (1.008) (1.133) (1.097) (1.178)

τ = 100 2.415 2.494 2.489 2.522 2.500 2.508 2.513 2.542 2.504 2.478 2.434 2.236 2.204 1.930 1.867

(0.524) (0.487) (0.482) (0.471) (0.466) (0.478) (0.490) (0.461) (0.489) (0.471) (0.530) (0.638) (0.724) (0.720) (0.775)

τ = 150 2.079 2.111 2.107 2.134 2.114 2.121 2.127 2.147 2.120 2.102 2.070 1.928 1.906 1.701 1.653

(0.397) (0.378) (0.371) (0.362) (0.357) (0.367) (0.375) (0.353) (0.376) (0.362) (0.404) (0.482) (0.547) (0.553) (0.595)

τ = 250 1.719 1.717 1.713 1.734 1.717 1.725 1.730 1.741 1.724 1.714 1.692 1.602 1.590 1.450 1.421

(0.277) (0.273) (0.265) (0.259) (0.255) (0.262) (0.265) (0.252) (0.266) (0.258) (0.285) (0.335) (0.378) (0.392) (0.419)

F ∗ = 100 F ∗ = 120 F ∗ = 140 F ∗ = 160 F ∗ = 200 ω = 0 ω = 0.2 ω = 0.4 ω = 0.6 ω = 1

τ = 1 8.292 8.487 8.756 8.017 8.607 8.434 8.076 8.510 8.256 8.576

(3.327) (3.347) (3.235) (3.288) (3.207) (3.347) (3.198) (3.073) (3.407) (3.436)

τ = 10 5.719 5.857 5.986 5.604 5.938 5.824 5.670 5.869 5.696 5.877

(1.826) (1.810) (1.712) (1.780) (1.735) (1.801) (1.787) (1.638) (1.855) (1.874)

τ = 50 3.307 3.383 3.423 3.272 3.416 3.357 3.308 3.371 3.286 3.373

(0.754) (0.746) (0.698) (0.725) (0.709) (0.745) (0.756) (0.672) (0.772) (0.773)

τ = 100 2.499 2.550 2.573 2.480 2.571 2.529 2.505 2.535 2.482 2.540

(0.487) (0.484) (0.454) (0.464) (0.456) (0.485) (0.489) (0.438) (0.496) (0.499)

τ = 150 2.115 2.154 2.169 2.101 2.171 2.136 2.121 2.138 2.100 2.144

(0.375) (0.374) (0.352) (0.356) (0.351) (0.376) (0.376) (0.341) (0.380) (0.384)

τ = 250 1.719 1.748 1.754 1.712 1.759 1.732 1.726 1.731 1.707 1.738

(0.268) (0.267) (0.254) (0.254) (0.250) (0.271) (0.268) (0.248) (0.271) (0.275)

Note: This table presents the mean and standard deviation of Lo’s statistics based on the corresponding 250 simulated time series with different τ . Simulations

are based on various parameters values of {b, k, c, β, γ, F ∗, ω}.
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Table 9. Lo’s R/S statistic test rejections.

b = 0 b = 0.4 b = 0.8 b = 1.2 b = 1.6 b = −0.4 b = −0.8 b = −1.2 b = −1.6 k = 0.1 k = 0.3 k = 0.5 k = 0.7 k = 0.9

τ = 1 245 249 248 246 249 244 249 245 247 248 229 195 127 112

τ = 10 243 249 246 246 246 242 249 245 241 248 229 197 128 115

τ = 50 243 241 238 239 242 238 245 238 230 243 226 190 122 112

τ = 100 230 225 222 217 230 221 221 220 219 233 195 172 102 97

τ = 150 197 198 189 187 205 193 176 192 194 198 155 145 86 78

τ = 250 85 82 76 76 94 94 87 90 95 91 63 50 50 48

c = 0.2 c = 0.6 c = 1.0 c = 1.4 c = 1.8 β = 1 β = 5 β = 9 β = 13 β = 17 γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8 γ = 1.0

τ = 1 245 247 245 246 246 246 244 247 243 247 238 209 192 178 155

τ = 10 243 246 245 246 243 242 244 247 242 245 237 207 190 176 153

τ = 50 234 237 238 242 237 239 239 242 239 240 229 197 184 159 141

τ = 100 203 217 222 229 224 226 220 226 216 222 215 179 170 129 121

τ = 150 177 194 187 194 192 198 194 204 194 189 180 150 147 100 91

τ = 250 94 82 83 89 78 82 89 83 86 87 75 69 65 41 39

F ∗ = 100 F ∗ = 120 F ∗ = 140 F ∗ = 160 F ∗ = 200 ω = 0 ω = 0.2 ω = 0.4 ω = 0.6 ω = 1

τ = 1 249 248 250 246 245 245 241 248 242 245

τ = 10 249 247 249 244 245 245 241 248 242 245

τ = 100 243 242 243 241 241 239 236 245 236 240

τ = 150 219 224 227 225 229 226 224 226 223 224

τ = 250 185 195 198 189 204 195 190 195 182 190

τ = 250 87 100 92 78 99 94 85 85 79 98

Note: This table presents the number of Lo’s R/S statistic test rejections at the 5% level for the corresponding 250 simulated time series with different τ (the

interval is [0.809, 1.862] as reported in Lo (1991) Table II). Simulations are based on various parameters values of {b, k, c, β, γ, F ∗, ω}.
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Table 10. Lo’s R/S Hurst exponents for the simulated data.

b = 0 b = 0.4 b = 0.8 b = 1.2 b = 1.6 b = −0.4 b = −0.8 b = −1.2 b = −1.6 k = 0.1 k = 0.3 k = 0.5 k = 0.7 k = 0.9

τ = 1 0.736 0.740 0.736 0.732 0.736 0.733 0.735 0.735 0.730 0.739 0.705 0.667 0.601 0.543

(0.055) (0.052) (0.058) (0.057) (0.052) (0.063) (0.054) (0.062) (0.059) (0.054) (0.094) (0.123) (0.167) (0.191)

τ = 10 0.699 0.701 0.698 0.695 0.695 0.696 0.697 0.697 0.687 0.701 0.672 0.644 0.584 0.537

(0.042) (0.040) (0.044) (0.044) (0.042) (0.048) (0.041) (0.048) (0.050) (0.041) (0.073) (0.100) (0.140) (0.169)

τ = 50 0.639 0.639 0.637 0.636 0.638 0.637 0.637 0.637 0.633 0.640 0.620 0.599 0.550 0.511

(0.028) (0.027) (0.029) (0.029) (0.028) (0.032) (0.028) (0.032) (0.034) (0.027) (0.051) (0.074) (0.109) (0.141)

τ = 100 0.607 0.607 0.605 0.604 0.608 0.606 0.605 0.605 0.605 0.608 0.591 0.575 0.531 0.496

(0.023) (0.023) (0.024) (0.024) (0.023) (0.026) (0.024) (0.027) (0.026) (0.023) (0.042) (0.063) (0.095) (0.128)

τ = 150 0.587 0.587 0.585 0.585 0.589 0.587 0.585 0.586 0.586 0.589 0.574 0.560 0.520 0.486

(0.021) (0.021) (0.022) (0.022) (0.021) (0.023) (0.022) (0.024) (0.023) (0.021) (0.038) (0.057) (0.088) (0.120)

τ = 250 0.563 0.563 0.561 0.561 0.566 0.563 0.562 0.562 0.563 0.564 0.553 0.540 0.506 0.474

(0.018) (0.019) (0.019) (0.019) (0.017) (0.020) (0.019) (0.021) (0.020) (0.018) (0.032) (0.049) (0.079) (0.111)

c = 0.2 c = 0.6 c = 1.0 c = 1.4 c = 1.8 β = 1 β = 5 β = 9 β = 13 β = 17 γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8 γ = 1.0

τ = 1 0.729 0.732 0.733 0.735 0.735 0.735 0.732 0.738 0.732 0.730 0.721 0.689 0.679 0.640 0.628

(0.061) (0.059) (0.061) (0.058) (0.059) (0.060) (0.061) (0.057) (0.061) (0.057) (0.073) (0.095) (0.108) (0.108) (0.116)

τ = 10 0.685 0.695 0.695 0.697 0.697 0.697 0.695 0.700 0.695 0.693 0.687 0.661 0.652 0.620 0.610

(0.049) (0.045) (0.047) (0.045) (0.045) (0.046) (0.048) (0.044) (0.048) (0.045) (0.056) (0.074) (0.086) (0.088) (0.095)

τ = 50 0.628 0.636 0.636 0.638 0.637 0.637 0.637 0.639 0.637 0.635 0.631 0.614 0.609 0.587 0.579

(0.035) (0.031) (0.031) (0.030) (0.029) (0.031) (0.032) (0.029) (0.033) (0.031) (0.036) (0.049) (0.059) (0.062) (0.068)

τ = 100 0.600 0.605 0.604 0.606 0.605 0.605 0.606 0.607 0.605 0.604 0.601 0.589 0.585 0.568 0.562

(0.028) (0.026) (0.026) (0.025) (0.024) (0.025) (0.026) (0.024) (0.027) (0.025) (0.029) (0.039) (0.047) (0.051) (0.055)

τ = 150 0.584 0.586 0.585 0.587 0.586 0.586 0.587 0.588 0.586 0.585 0.583 0.573 0.570 0.555 0.550

(0.024) (0.024) (0.023) (0.022) (0.022) (0.023) (0.023) (0.021) (0.024) (0.023) (0.025) (0.034) (0.040) (0.044) (0.048)

τ = 250 0.562 0.562 0.562 0.563 0.562 0.562 0.563 0.564 0.562 0.562 0.560 0.552 0.550 0.539 0.535

(0.020) (0.021) (0.020) (0.019) (0.019) (0.020) (0.019) (0.018) (0.020) (0.019) (0.021) (0.028) (0.033) (0.037) (0.039)

F ∗ = 100 F ∗ = 120 F ∗ = 140 F ∗ = 160 F ∗ = 200 ω = 0 ω = 0.2 ω = 0.4 ω = 0.6 ω = 1

τ = 1 0.736 0.740 0.745 0.732 0.742 0.738 0.732 0.742 0.734 0.739

(0.057) (0.056) (0.051) (0.058) (0.057) (0.059) (0.062) (0.052) (0.063) (0.062)

τ = 10 0.697 0.701 0.704 0.695 0.702 0.700 0.696 0.702 0.696 0.700

(0.044) (0.043) (0.039) (0.044) (0.044) (0.045) (0.049) (0.039) (0.049) (0.048)

τ = 50 0.637 0.640 0.642 0.636 0.641 0.639 0.637 0.640 0.636 0.639

(0.030) (0.029) (0.027) (0.029) (0.029) (0.031) (0.033) (0.026) (0.033) (0.032)

τ = 100 0.605 0.608 0.609 0.604 0.609 0.606 0.605 0.607 0.604 0.607

(0.025) (0.025) (0.023) (0.024) (0.024) (0.026) (0.027) (0.022) (0.027) (0.026)

τ = 150 0.586 0.588 0.589 0.585 0.589 0.587 0.586 0.588 0.585 0.587

(0.022) (0.022) (0.021) (0.021) (0.021) (0.023) (0.024) (0.020) (0.024) (0.023)

τ = 250 0.562 0.564 0.565 0.562 0.565 0.563 0.562 0.563 0.561 0.563

(0.020) (0.019) (0.018) (0.019) (0.018) (0.020) (0.020) (0.018) (0.020) (0.020)

Note: This table presents the mean and standard deviation of Lo’s Hurst exponent based on the corresponding 250 simulated time series with different τ .

Simulations are based on various parameters values of {b, k, c, β, γ, F ∗, ω}.
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5. Conclusions

We have introduced a parsimonious asset pricing model with boundedly rational

agents who are specified as using simple heuristics in their decision making. Sup-

porting the explanatory power of HAMs, the contributions of this paper are twofold.

First, by analyzing the dynamical characteristics and stochastic simulations, we

study the impact of the investors’ behavior on the return volatility of a risky asset

and provide additional support to the study of return volatility by using the theory

of nonlinear dynamic systems, which describes the intrinsic characteristics of mar-

ket volatility determined by the bounded rationality of investors. For example, we

find that price limitation mechanism is essential to control the fluctuation ampli-

tude of the market price, the level of the fundamentals affects the dynamics of the

whole market, and the strategy and reaction intensity of the speculative behavior

determine the stability of the market.

Second, in addition to the demonstrated ability of explaining the stylized facts

of financial time series, we have examined the sources of the long memory, the

phenomenon which has been ubiquitous in the financial markets, but very few studies

on where the long memory comes from. We have applied the modified R/S analysis

to the simulated data according to our model, and found the speed of the price

adjustment of the market maker can be a source of the volatility persistence.

Further study directions may include the validation of the boundedly rational

agent model, which provides an avenue to a broader range of empirical applica-

tions, such as economic significance of difference trading strategies and volatility

forecasting.
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