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Prediction of Transonic Limit Cycle Oscillations

using an Aeroelastic Harmonic Balance Method

W. Yao[1] and S. Marques[2].

School of Mechanical and Aerospace Engineering,

Queen’s University Belfast, Belfast, UK, BT9 5AH

This work proposes a novel approach to compute transonic Limit Cycle Oscillations

(LCOs) using high fidelity analysis. CFD based Harmonic Balance (HB) methods have

proven to be efficient tools to predict periodic phenomena. This paper’s contribution

is to present a new methodology to determine the unknown frequency of oscillations,

enabling HB methods to accurately capture LCOs ; this is achieved by defining a fre-

quency updating procedure based on a coupled CFD/CSD (Computational Structural

Dynamics) HB formulation to find the LCO condition. A pitch/plunge aerofoil and

delta wing aerodynamic and respective linear structural models are used to validate

the new method against conventional time-domain simulations. Results show con-

sistent agreement between the proposed and time-marching methods for both LCO

amplitude and frequency, while producing at least one order of magnitude reduction

in computational time.
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NOMENCLATURE

A = Harmonic Balance frequency domain matrix

b, c = aerofoil semi-chord and chord, respectively

CFL = Courant-Friedrichs-Lewy

D = Harmonic Balance operator matrix

E = energy

E = Transformation matrix between frequency and time domains

f = fluid force acting on structure

F,G,H = convective fluxes for fluid equations

h = plunge coordinate

I = HB residual

K = structure stiffness matrix

L = frequency updating figure of merit

M = structure mass matrix

p = pressure

R = vector of fluid and/or structural equation residual

t = time step

U∞ = free-stream velocity

u, v, w = fluid cartesian velocity components

V, Vs = reduced velocity and velocity index

W = vector of fluid unknowns

x,y = vector of structural unknowns

α = angle of attack

ω, κ = frequency and reduced frequency, κ = 2ω
U∞c

ρ = density

τ = pseudo-time step
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I. Introduction

Industry standard practices to solve aeroelastic problems rely heavily upon linear aerodynamic

theory. This has well known limitations in the transonic regime and where other sources of aero-

dynamic non-linearities are present (e.g., unsteady viscous flows), hence a clear need for physics

based modeling tools has emerged as identified by Noll et al.[3]. When nonlinearities are present,

aeroelastic instabilities can lead to oscillations that become limited and LCOs are observed. This

is a problem of considerable practical interest and is well documented for in-service aircraft [4, 5].

The presence of nonlinearities, either structural or aerodynamic, poses additional challenges both

in terms of complexity and computational resources, by requiring higher-fidelity analysis. Such

requirements can be exacerbated by the need to quantify the uncertainty due to unknown or vari-

able parameters[6, 7]. Hence, several efforts have been made to address both issues of retaining

the required level of fidelity to capture the relevant physics, while at the same time limiting the

computational resources required for such analysis.

To overcome these restrictions, CFD methods can be coupled with CSD tools in the time

domain; however this type of analysis is used as a last resort tool due to the high computational

cost. For several years, the research community has developed Reduced Order Models (ROM) to

avoid the penalty of full order time domain analysis. Several methods have been proposed and

used, for example: Proper Orthogonal Decomposition (POD)[8, 9], Volterra Series[10–12], Neural

Networks[13]. Typically, ROMs lack generality as their application is dependent on the original

parameters used in building the ROM.

To avoid such restrictions, model reduction based on centre manifold theory has shown the

ability to predict LCOs without compromising the underlying physics of the problem[7, 14]. An

alternative to ROM and full time domain analysis of aeroelastic oscillatory problems is to employ

the non-linear HB method. New Harmonic Balance methods have been developed for CFD time

periodic flows[15, 16]; in such methods, the periodicity of the flow is exploited and represent time

dependent flow variables as Fourier series and recast the problem in terms of Fourier coefficients.

These methods have been successful in predicting unsteady flows efficiently in diverse applications:

forced motions[17, 18], helicopter rotors[19], turbomachinery[15, 20, 21]. Thomas et al.extended

3
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the HB formulation to predict LCOs for fixed wing aircraft[5]. Ekici and Hall further reduced

the computational cost of predicting LCOs with HB methods, by proposing a one-shot method to

analyze a one degree-of-freedom (DOF) LCO in turbomachinery flows[20].

As far as the authors are aware, only the method proposed by Thomas et al.[5] has been able

to predict LCOs for fixed wing aircraft using a CFD based HB formulation. This paper presents an

alternative method to compute nonlinear aeroelastic instabilities (LCOs) using a coupled CFD-CSD

HB formulation. The main source of nonlinearities of interest in this work are moving shocks, hence

the Euler equations for fluid dynamics are solved in conjunction with linear structural models. The

paper will first describe the details of the CFD and HB implementations; this will be followed by

presenting a novel formulation for predicting LCO amplitudes and frequencies of coupled aeroelastic

systems. The method described will be first validated using experimental data from forced motion

test cases, then the new Aeroelastic Harmonic Balance (A-HB) method will be used to predict

LCOs in 2D and 3D test cases, results are assessed against time marching methods for accuracy

and efficiency.

II. Flow Solver

The semi-discrete form of an arbitrary system of conservation laws such as the three-dimensional

Euler equations can be described as:

∂W

∂t
= −R(W) (1)

where R is the residual error of the steady-state solution:

R =
∂F

∂x
+

∂G

∂y
+

∂H

∂z
(2)

Here W is the vector containing the flow variables and F, G, H are the fluxes, which are given by:

W =
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ρw

ρE

































, F =

































ρu

ρuu+ p

ρuv

ρuw

u(ρE + p)
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, (3)
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The steady state solution of the Euler equations is obtained by marching the solution forward in

time by solving the following discrete nonlinear system of equations:

Wn+1 −Wn

∆t
= −Rn (4)

To discretize the residual convective terms a Roe flux function[22] together with MUSCL interpola-

tion is used[23], the Van Albada limiter is used to obtain 2nd order accuracy. The nonlinear system

of algebraic equations represented by eq.(4) is solved by an explicit, 4-stage, Runge-Kutta method.

III. Harmonic Balance Formulation

As discussed in the introduction, several authors have demonstrated the suitability of HB meth-

ods as an alternative to time marching CFD formulations for periodic flow problems. To obtain the

HB version of the flow solver, we follow the methodology presented by Thomas et al.[24], which is

summarised next. Consider the semi-discrete form as a system of ordinary differential equations

I(t) =
dW(t)

dt
+R(t) = 0 (5)

The solution of W and R in eq.(5) can be approximated to be a truncated Fourier series of NH

harmonics with a fundamental frequency ω:

W(t) ≈ Ŵ0 +

NH
∑

n=1

(Ŵ2n−1 cos(nωt) + Ŵ2n sin(nωt)) (6)

R(t) ≈ R̂0 +

NH
∑

n=1

(R̂2n−1 cos(nωt) + R̂2n sin(nωt)) (7)

Hence, eq.(5) can also be approximated by a truncated Fourier series,

I(t) ≈ Î0 +

NH
∑

n=1

(Î2n−1 cos(nωt) + Î2n sin(nωt)) (8)

which results in the following system of equations

Î0 = R̂0 (9)

Î2n−1 = ωnŴ2n + R̂2n−1 (10)

Î2n = −ωnŴ2n−1 + R̂2n (11)

5
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which results in a system of (2NH + 1) equations for the Fourier coefficients that can be expressed

in matrix form as

ωAŴ + R̂ = 0 (12)

where A is given by:

A =

























0

J1

. . .

JNH

























(2NH+1)×(2NH+1)

, Jn = n









0 1

−1 0









, n = 1, 2, . . . , NH (13)

To overcome the difficulties in expressing the Fourier coefficient in R̂ as functions of Ŵ, Hall et

al.[15] proposed to cast the system of equations back in the time domain, where the flow variables

and residual solutions are split into (2NH + 1), discrete, equally spaced intervals over the period

T = 2π
ω
.

Whb =

























W(t0 +∆t)

W(t0 + 2∆t)

...

W(t0 + T )

























, Rhb =

























R(t0 +∆t)

R(t0 + 2∆t)

...

R(t0 + T )

























, (14)

It is possible to define a transformation matrix, E that relates the frequency domain variables to

their HB time domain counterpart[15]

Ŵ = EWhb R̂ = ERhb (15)

Substituting the terms in eq.(15) in eq.(12), it becomes:

ωAŴ + R̂ = 0 = ωAEWhb +ERhb = ωE−1AEWhb +Rhb =

= ωDWhb +Rhb = 0 (16)

where D = E−1AE, the elements in matrix D are given by:

Di,j =
2

2NH + 1

NH
∑

k=1

k sin

(

2πk(j − i)

2NH + 1

)

(17)
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To solve eq.(16) a pseudo time step of the form is introduced:

dWhb

dτ
+ ωDWhb +Rhb = 0 (18)

To solve eq.(18), any steady-state CFD time marching method can be used. In this work an explicit

4-stage Runge-Kutta scheme is employed. The solution to eq.(18) corresponds to the flow solution

at 2NH + 1 equally spaced time sub levels. The Fourier coefficients can be obtained by applying

the transformation matrix E, and the flow field at any time level can be recovered by using Fourier

expansions on the flow variables.

IV. Aeroelastic Formulation

Consider a generic dynamic system without damping, whose behaviour can be described using

the equations of motion given by:

Mẍ+Kx = f (19)

where M, K, respectively, represent the mass and stiffness of the system and f is an external force

(in this work, this will be the aerodynamic force, f = f(w, ω,x)). This equation can be transformed

into a state-space form, giving:

ẏ = Asy +Bsf (20)

where:

As =









0 I

−M−1K 0









, Bs =









0

M−1









, y =









x

ẋ









(21)

Equation (20) has a similar form to the flow equations, hence it can be solved using the HB method

described in the previous section, resulting in the following HB format of eq.(20):

ωDyhb = Asyhb +Bsfhb (22)

where D is the same HB operator described in eq.(17). Equation (22) can be solved using the same

pseudo time technique previously presented, leading to the following system of equations[20]:

dyhb

dτ
+ ωDyhb − (Asyhb +Bsfhb) = 0 (23)

7
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Equation (18) together with eq.(23) represent the nonlinear coupled aeroelastic system; when solv-

ing the aeroelastic system of equations, at each iteration, the generalized aerodynamic forces are

computed using eq.(18), which will feed into eq.(23). The solution from eq.(23) will provide new

generalized displacements and velocities for eq.(18). The CFD grid is deformed using Transfinite

Interpolation and the mesh velocities are approximated by finite-differences[13].

A. Prediction of Limit-Cycle Oscillations

The prediction of LCO depends on determining a solution vector for [ω,y] (the subscript

hb is dropped for simplicity), that satisfies both the structural governing equation eq.(23) and

eq.(18). If the LCO frequency, ω, is given beforehand, then the coupling itself becomes a fixed

point iteration process which is extensively used for static aeroelastic problems in its time domain

counterpart[18]. A straightforward method to search for solutions for LCO is to employ a Newton-

Raphson method[25]. From eq.(22) define the following residual:

R(ω,y) = ωDy − (Asy +Bsf) (24)

Applying the Newton-Raphson method to eq.(24), we get:








ω

y









n+1

=









ω

y









n

− λJ−1R(ωn,yn) (25)

Where J is the Jacobian of R with respect to the solution vector [ω,y] and λ is a relaxation

parameter, usually equal to one; the expensive part is to approximate the derivatives of f with respect

to [ω,y] by finite differencing. If the number of harmonics used in eq.(18) is NH , the structural

degrees-of-freedom is Ns, then the fluid system needs to be evaluated (Ns[(2NH +1)× 2]+ 1) times

to form J. As long as the initial guess is good enough, the Newton-Raphson method usually achieves

converged solutions rapidly and efficiently. Thomas et al.[25] demonstrated the effectiveness of this

method for LCO prediction. For higher number of harmonics and structural DOF, the computational

cost of building the Jacobian J itself is significant[17], and thus makes the Newton-Raphson method

less attractive. Ekici and Hall[20] developed a one-shot determination approach by advancing the

structural and fluid system to convergence at the same time, with frequency updating. The authors

demonstrate that the overall computational cost is lower than the Newton-Raphson method for a

8
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2D turbomachinery problem, with a single DOF structural governing equation. As shown before, a

pseudo time marching strategy can be adopted to solve eq.(23) [20]:

∂y

∂τ
+ ωDy − (Asy +Bsf) = 0

The convergence of eq.(23) is highly dependent on the time step size, τ; in other words, τ should be

large enough to march eq.(23) rapidly to convergence and at the same time ensure numerical stability.

However, unlike the fluid system where local time step size can be used, for the HB system in eq.(23),

a constant value is required. However, as the structural DOF increases, a significant deterioration of

the convergence rate for eq.(23) was observed, even when using an implicit algorithm formulation.

To determine the LCO condition using eq.23, the frequency updating can be achieved by mini-

mizing the L2 norm of the residual R of eq.(24)[20]. First, define a figure of merit, in this case:

Ln =
1

2
RTR =

1

2
[ωDy − (Asy +Bsf)]

T
[ωDy − (Asy +Bsf)] (26)

Then derive the first order derivative with respect to ω:

∂Ln

∂ω
= (Dy)T [ωDy − (Asy +Bsf)] (27)

For a given vector [y, f ], the frequency can be solved directly by manipulating small matrices. It

is worth noting that eq.(27) is derived with the force vector f frozen. The results presented below

demonstrate that this assumption makes updating the frequency difficult and slow for multiple DOF

systems.

B. Proposed Approach for LCO Predictions

Inspired by the results of Blanc et al.[18], the present work aims to transform this LCO prediction

problem into a fixed point algorithm with frequency updating. As before, the basic idea is to solve

the linear eq.(22) for a given combination of [ω, f ], then transfer the displacement back to the fluid

system. As in eq.(26), the frequency is updated by minimizing the residual R but, critically, without

freezing the aerodynamic forces f , leading to:

∂Ln

∂ω
=

(

Dy −Bs

∂f

∂ω

)T

[ωDy − (Asy +Bsf)] (28)

9
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If the frequency ω is not at the LCO condition, the residual R for the displacement is not able to

converge. Therefore, the idea is to update the frequency at every ni iterations.

The new algorithm is represented in Algorithm 1. When compared to the standard fixed point

algorithm described by Blanc et al.[18], the new algorithm introduces some extra computational

effort to compute the gradient of the aerodynamic force with respect to the frequency. However,

the frequency is only updated every ni iterations (numerical experiments show that 10-15 iterations

are an adequate compromise between robustness and efficiency) and the perturbation is sufficiently

small, minimizing the computational cost. The additional computational cost of updating the

frequency is largely dependent on the approximation of the aerodynamic force gradient, adding

about 50% of the cost of solving eq.(18).

Algorithm 1: Aeroelastic Harmonic Balance

begin

[ω0,y0, f0]←− Initialize variables

while [ω,y, f ] not converged do

n←− n+ 1

y←− R(ω,y, f) ⊲ Linear Solve of eq.(22)

y←− λy ⊲ relax y

f ←− HB-CFD solver ⊲ march forward CFD solution, eq.(18)

if MOD(n, ni) == 0 then

ω ←− ωn ⊲ update ω

ω ←− λω ⊲ relax ω

end

end

end

V. Results

A. Code Validation

The AGARD CT5[26] case is chosen to validate the HB-CFD code. This case is a prescribed

pitching NACA 0012 aerofoil, the flow condition and motion parameters are detailed in Table 1.

10
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Case M∞ αm α0 k xm

CT5 0.755 0.016◦ 2.51◦ 0.0814 0.25

Table 1 CT5 Case Parameters

Fig. 1 O-grid over NACA 0012 aerofoil

An O-type grid as the one shown in Fig. 1 was used. A grid convergence study is carried out in

terms of lift and moment coefficients. Five harmonics are used for all the results shown in Fig. 2. It

is clearly shown in Fig. 2 that a 61× 21 grid captures the details of the unsteady lift and moment

coefficients adequately. The experimental data is also included for comparison. All numerical meth-

ods produce identical results; with respect to the experiment, the lift coefficient is consistently under

predicted and small discrepancies are observed for the moment coefficient at about 1◦ incidence.

These discrepancies are consistent with the results reported in the literature[27–29]. Additionally, a

convergence study concerning the number of harmonics required to accurately recreate the periodic

forces is also carried out and the results are shown in Fig. 3, which demonstrate that three harmon-

ics are sufficient to obtain converged lift and pitching moment coefficient predictions predictions. A

subsequent convergence study with respect to LCO amplitude and frequency is also performed.

B. LCO Predictions

In order to validate the coupling approach proposed in this paper, a pitch/plunge symmetric

NACA 64A010 aerofoil, shown in Fig. 4, is used to assess its efficiency and effectiveness. The

11
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Fig. 2 Grid Convergence Study for CT5 Case

Fig. 3 Number of Harmonics Convergence Study for CT5 Case - 61× 21 grid

Fig. 4 Diagrammatic representation of pitch/plunge, two-degree-of-freedom aerofoil
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Static unbalance, xα = Sα/mb 0.25

Radius of gyration about elastic axis, r2α = Iα/mb2 0.75

Frequency ratio, ωh/ωα 0.5

Mass ratio, µ = m/πρ∞b2 75

Table 2 Pitch/Plunge Aerofoil Parameters

equations of motion for this pitch-plunge aerofoil problem can be found in reference:[25]

mḧ+ Sαα̈+Kh = −q∞cCl (29)

Sαḧ+ Iαα̈+Kα = q∞c2Cm (30)

where m is the mass of the aerofoil, Sα, Iα are the first and second moment of inertia about the

elastic axis, respectively; q∞ represents the dynamic pressure and Cl, Cm are the lift and pitching

moment coefficient.

Following Thomas et al.[25], the non-dimensional form of eq.(29) and (30) is given by

Mÿ +
1

V 2
Ky =

4

πµ
f (31)

where

M =









1 xα

xα r2α









, K =









(

ωh

ωα

)2

0

0 r2α









, f =









−Cl

2Cm









, y =









h

b

α









, V =
U∞

ωαc
(32)

and the structural parameters are given in Table 2.

Besides the above parameters, the Mach number and the initial angle of attack are set to 0.8 and

0◦, respectively, the aeroelastic axis distance from the centre chord is: ah/b = −0.6. The velocity

index is used to set different conditions (e.g.: dynamic pressure, altitude) for the analysis. For a

given value of the velocity index, eq.(31) is solved using the procedure described in the section IVB,

determining the final amplitude and frequency of the periodic motion. The velocity index is defined

as:

Vs =
U∞

bωα
√
µ

(33)

Following the proposed algorithm 1, the Aeroelastic-HB solver needs to initialize the structural

and fluid systems [ω,y, f ]. The critical part is how to determine the initial frequency. Once the
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Fig. 5 Pitch/plunge aerofoil flutter response

frequency is determined the coupling algorithm becomes a fixed point problem, leading to a very

fast convergence of the coupled problem, as illustrated by Blanc et al.[18], even over relative large

margins of the initial values of the displacement y. The LCOs investigated in this work, occur in

a post-flutter regime, hence the initial frequency used for the LCO prediction will be close to the

flutter condition. Volterra series along with the ERA (Eigensystem Realization Algorithm) method,

as described in references [10, 30] is employed to construct a 20-DOF linear CFD-ROM coupled

with the 2-DOF structural model to determine the onset of flutter. The full-order CFD and ROM

prediction for this aerofoil case is shown in Fig. 5; full details of this method can be found in

reference[30]. The flutter condition using the reduced frequency is [κ, Vs] = [0.1089, 0.693].

Beyond the flutter point Vs, it is expected for the oscillations to become bounded and form

a finite amplitude oscillation or LCO, due to the nonlinear aerodynamic force. Without loss of

generality, the starting point is chosen to be [κ, Vs] = [0.1, 0.725], meaning an LCO at Vs = 0.725

needs to be computed with an initial reduced frequency guess κ = 0.1 which is very close to

the flutter condition. As described in the coupling algorithm, the fluid system is initialized with

[κ, Vs] = [0.1, 0.725] and an initial displacement given by: y = [0.2, 0.02rad]T . Figure 6 shows the

fluid system convergence history during the A-HB calculations. The residual drops monotonically,

note that once the residual is below the level of 10−5, the fluid force is no longer varying significantly.

The main purpose of this test case is to evaluate the solver, particularly the frequency updating

procedure. Figure 7-a) shows the frequency converging rapidly in fewer than 500 iterations for

Vs = 0.725 to a value of κ = 0.1055, approximately 5% above the initial value. Once the LCO is
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Fig. 6 Cumulative Runge-Kutta Iterations required to converge HB-CFD system

N. Harmonics ω/ωLCO (Vs = 0.725) ω/ωLCO (Vs = 0.80)

1 Harmonics 0.995738669 0.986594291

2 Harmonics 0.999688033 0.999869965

3 Harmonics 0.999636829 0.999097819

4 Harmonics 0.999963967 0.999147212

5 Harmonics 1.000048360 1.000074594

Table 3 Ratios between frequencies predicted by the A-HB and time-marching methods

captured, then the intuitive way to compute LCO at different conditions is to use [ω,y, f ]Vs=0.725 as

the initial guess. Therefore the frequency computed at Vs = 0.725 is used for LCOs predictions at

Vs = 0.8; the initial perturbation remains the same, y = [0.2, 0.02rad]T . Results are illustrated in

Fig. 7-b), it takes fewer than 400 iterations for the frequency to converge at the new velocity index.

Both these results converge to LCO frequency values computed using conventional time marching

methods, noted in the graphs as the fixed ω LCO. The impact of using additional harmonics is

given by Table 3; the values obtained with one-harmonic are, for most cases, within 1% of the

time-marching frequency prediction and retaining more harmonics gives virtually identical results

to the conventional approach.

The performance of the updating procedures using either eq.(27) or eq.(28) are assessed in Fig.

7-c) and 7-d). The results suggest that by including the aerodynamic force gradient with respect
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to ω, the overall computational cost is decreased; both LCO frequency and amplitude converge

significantly faster using the new procedure proposed in this paper. Figure 8 shows the displacement

convergence when using a fixed value for ω and when solving for ω using eq.(28). The displacement

converges faster when ω is fixed, as expected. It also indicates once the frequency converges, the

displacement should converge very rapidly.

(a) Frequency Convergence - Vs = 0.725 (b) Frequency Convergence - Vs = 0.80

(c) Frequency Updating - Vs = 0.8 (d) Displacement Convergence - Vs = 0.8

Fig. 7 A-HB Frequency and amplitude LCO convergence

This test case is also used to assess the impact of retaining different number of harmonics on the

LCO amplitudes. Figure 9 shows the position-velocity diagram for both plunge and pitch variables,

retaining up to five harmonics. The LCO cycle shown by the continuous line, is reconstructed by the

A-HB solution using 90 points. The difference between retaining two, three, four or five harmonics

is negligible. A detailed example of the reconstruction cycle by the A-HB for Vs = 0.8 is given in

Fig. 10, in this case retaining two harmonics slightly under-predicts the motion’s amplitudes, hence

subsequent calculations are performed retaining three harmonics.
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(a) - Displacement (b) Structural Residual

Fig. 8 Convergence of aeroelastic system, fixed ω - Vs = 0.80

∆t hmax αmax

1.0× 10−3 0.30815 0.04082

5.0× 10−4 0.30549 0.04054

2.5× 10−4 0.30437 0.04043

1.25× 10−4 0.30391 0.04038

Table 4 Time step size convergence at Vs = 0.80

A comparison between the LCO solutions, using position-velocity diagrams, obtained by the

A-HB method (using three harmonics) and time marching results using a time step of 2.5× 10−4, is

given in Fig. 11 and 12, showing a good level of agreement. The use of larger time steps still allows

for the capture of the LCO, however, it also led to over-predicting the amplitude of the motion,

hence not providing a reliable benchmark to the A-HB method. Table 4 provides the time-step size

convergence study used in this work.

A comparison of the transonic pressure field at the maximum and minimum positions during

the cycle are given in Fig. 13. The shock-wave motion captured by the A-HB method is clearly

visible and closely matches the time-marching predictions, there are small differences with respect to

time-marching results when using three harmonics, which vanish when five harmonics are retained.

The LCO amplitude growth predicted by the A-HB method, retaining three harmonics, is compared

against a time marching method in Fig. 14, showing consistent results for all conditions analysed.
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Fig. 9 Position - Velocity diagram at LCO condition - Vs = 0.725 - Harmonic Convergence

Fig. 10 Position - Velocity diagram at LCO condition - Vs = 0.80 - Harmonic Convergence

The effects of increasing the velocity index is shown in detail in Fig. 14-a)-b); increasing the velocity

index produces a supercritical LCO. The impact of increasing the frequency ratio of the normal

modes, shown in Fig. 14-c)-d), also produces a supercritical LCO, however the initial sensitivity of

the amplitude to this parameter is higher. In both parametric changes and for higher amplitudes,

the A-HB shows excellent agreement with time-marching results. Furthermore, the results for the

conditions tested here are consistent with the equivalent case reported in Thomas et al.[25]. Note

that the flutter point is under-predicted by the Volterra/ERA ROM, this is due to a larger time step
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Fig. 11 Comparison between A-HB and time marching LCO solutions - Vs = 0.775

Fig. 12 Comparison between A-HB and time marching LCO solutions - Vs = 0.80

(∆t = 1.0× 10−3) used when building the ROM, this has little or no impact on the performance of

the A-HB method as the flutter prediction is only used to provide the initial frequency input.

The increase in the number of harmonics retained to solve the unsteady problem can have a

significant impact on the computational effort required. Figure 15 shows the ratio of the wall clock

time required for the time marching calculations to converge with respect to the convergence time

when using different number of harmonics. Results include comparisons with two different time-step
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(c) Minimum Amplitude - 3 Harmonics
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(d) Minimum Amplitude - 5 Harmonics

Fig. 13 Pressure field at extremes of each period at Vs = 0.8, contours represent A-HB solu-

tions, solid lines represent time-marching solutions.

sizes used in the time-marching calculations, both curves show a large drop in performance when

increasing the number of harmonics retained from one to three. Increasing the number of harmonic

modes from three to five incurs a smaller penalty. Results indicate that up to this point, increasing

the number of harmonics has a smaller impact on the frequency and structural residual convergence

algorithm than, for example, on the cost of solving the CFD system alone. For calculations requiring

seven or more harmonics, the CFL number for the CFD calculation has to be reduced significantly,

resulting in long computational times, i.e. similar to those required by time-marching methods.
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(a) LCO amplitude vs. velocity (b) LCO amplitude vs. velocity

(c) LCO amplitude vs. frequency ratio (d) LCO amplitude vs. frequency ratio

Fig. 14 LCO amplitude comparison between A-HB and time marching methods.

Number of Harmonics

S
pe

ed
-U

p

1 2 3 4 5 6 7 8 9 10 11

100

101

102

∆t=2.5E-4
∆t=1.0E-3

Fig. 15 Relative computational cost with respect to number of harmonics and time-marching

method, Vs = 0.80

VI. Delta Wing

To further exercise the proposed method, a cropped-delta wing test case derived from reference

[13], is explored. The wing plan form is shown in Fig. 16, the wing has a leading edge sweep angle of
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4.11m

2.95m
3.95m

NACA 65A004

Fig. 16 Delta Wing Geometry and Dimensions

approximately 16◦, and a span of just under 4m. The wing uses a NACA 65A004 aerofoil. An O-H

type grid, shown in Fig. 17-b), was employed for the CFD calculations, a CFD flow-field solution

at the nominal conditions of this test case (M∞ = 0.91; α = 0◦) is shown in Fig. 17-c), where a

shock-wave is visible across the span of the wing.

To investigate LCOs, a structural model is coupled with the CFD mesh. The structural model is

built in MSC/NASTRAN, using 2D shell elements; the wing material is based on the AGARD 445.6

wing [31], this results in the first four normal modes retained for this analysis to have frequencies in

the range of 4Hz − 30Hz. The mode shapes and natural frequencies are given in Fig. 18. Infinite

a-) CFD grid - 81× 41× 41 b-) Pressure contours, M∞ = 0.91; α = 0◦

Fig. 17 Delta Wing CFD model - the grid contains 81× 41× 41 points, circumferential, radial

and span-wise direction, respectively
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Mode 1 - 3.94Hz Mode 2 - 12.88Hz Mode 3 - 15.82 Mode 4 - 27.56Hz

Fig. 18 Structural modes projected onto the CFD grid.

Fig. 19 Delta Wing Flutter response with Volterra Series 808th ROM

Plate Spline (IPS) is used to extrapolate structural modal displacements from the CSD model to

the CFD grid, as shown in Fig. 18. The starting point of this LCO investigation is the flutter

boundary, even though this is not always necessary, since the proposed HB method should deliver

a trivial solution below the flutter boundary. As before, the Volterra series along with the ERA

method is employed to construct a linear CFD-ROM, in this case retaining 80-DOF, coupled with

the structural model to form the ROM and predict the onset of flutter, as shown in Fig. 19. The

dynamic pressure corresponding to the onset of flutter at M∞ = 0.91, α = 0◦, predicted by the

ROM is q = 0.759qsl, where qsl is the dynamic pressure at sea level conditions. The CFD response

is included for comparison with the ROM results in Fig. 19, the ROM is able to replicate the CFD

accurately at flutter conditions.

The initial disturbances for the LCO prediction, in modal coordinates and for each mode are:

[1, 0.5, 0.1, 0.1]T , and the initial reduced frequency is: κ = 0.07. With the exception of Table 5, all
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LCO Frequency Convergence LCO Amplitude Convergence

Fig. 20 Delta Wing LCO Response Convergence with A-HB Method

results using the A-HB method presented in this section were obtained retaining one harmonic only.

Figure 20 shows the convergence of the A-HB method for the LCO frequency and displacement. The

frequency converges within 250 iterations, with the LCO amplitude requiring a further 50 iterations

to reach its final value. Two test cases at different free-stream pressures are conducted. The wing

undergoes significant oscillations at the wing tip, as indicated by the flow-fields shown in Fig. 21

and the amplitudes in Fig. 22, here η1 and η2 correspond to points at the wing tip’s leading and

trailing edges, respectively. Comparison of LCO responses using the A-HB method against time

marching results are also shown in Fig. 22. The flow-fields shown in Fig. 23 compare the time-

marching simulation to the A-HB result, the main flow features and patterns are well captured by

the A-HB, including the shock towards the trailing edge and the pressure drop at the tip’s leading

edge. Time-marching results required a time step of 10−5 to converge the cycle amplitude, taking

8.5 days on a single core. The current method is able to predict the LCO conditions accurately using

one harmonic, reducing the computational time to 8 hours. For this problem, retaining additional

harmonics has a small effect on accuracy, as illustrated by Table 5. The scaling of the method for 3D

problems is similar to the 2D case investigated, however this test case also exhibits faster convergence

rates for the structural residual, which will mitigate the impact of retaining more harmonics when

comparing it against the 2D problem investigated.
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(a) sub-level 1 (b) sub-level 2 (c) sub-level 3

Fig. 21 Delta Wing Pressure Contours snapshots during LCO cycle, q = 0.900qsl

N. Harmonics ω/ωLCO Speed-up

1 Harmonics 0.9933 25.5

2 Harmonics 1.0001 14.0

3 Harmonics 0.9994 9.7

Table 5 Ratios between frequencies predicted by the A-HB and time-marching methods,

q = 0.850qsl

VII. Conclusion

This paper presented a new formulation to predict LCOs for aerofoils and fixed wings, using

an A-HB methodology. A CFD and CSD system of equations were coupled and solved using a

nonlinear HB method. To determine LCO conditions, the coupled system was driven to convergence

by updating the aeroelastic system’s frequency of motion considering the influence of aerodynamic

forces. The new method showed promising results in predicting LCO amplitudes and frequencies for

multiple-degree-of-freedom aeroelastic systems, including 2D aerofoils and a delta wing at transonic

conditions. Results showed at least an order of magnitude reduction in computational time with

respect to conventional time marching methods, without compromising accuracy.
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LCO q = 0.850qsl

LCO q = 0.900qsl

Fig. 22 Delta wing LCO response with A-HB method
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(a) Time-Marching (b) A-HB

Fig. 23 Delta wing upper surface pressure contours snapshot during LCO cycle, q = 0.900qsl
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