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  
Abstract—This paper presents a contactless multi-point 

displacement measurement system using multiple synchronized 
wireless cameras. Our system makes use of computer vision 
techniques to perform displacement calculations, which can be 
used to provide a valuable insight into the structural condition and 
service behaviour of bridges under live loading. The system 
outlined in this paper provides a low cost durable solution which 
is rapidly deployable in the field. The architecture of this system 
can be expanded to include up to ten wireless vision sensors, 
addressing the limitation of current existing solutions limited in 
scope by their inability to reliably track multiple points on medium 
and long span bridge structures. Our multi-sensor approach 
facilitates multi-point displacement and additional vision sensors 
for vehicle identification and tracking that could be used to 
accurately relate the bridge displacement response to the load type 
in the time domain. The performance of the system was validated 
in a series of controlled laboratory tests. This research will 
significantly advance current vision-based Structural health 
monitoring (SHM) systems which can be cost prohibitive and 
provides a rapid method of obtaining data which accurately 
relates to measured bridge deflections. 
 

Index Terms— Computer Vision, Feature Extraction, HD 
Video, Image Motion Analysis, Image Processing, Motion 
Estimation.  

I. INTRODUCTION 

ACILITATING OVER 90% of motorized passenger travel and 
65% of domestic freight, the road network is the most 
popular means of transport in the United Kingdom (UK). 

Currently UK transport infrastructure is rated as second worst 
among the G7 countries and there is a bridge maintenance 
backlog valued at £3.9bn. According to the 2017 Infrastructure 
report card, the corresponding figure in the USA is $123bn 
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resulting in 188 million daily trips across structurally deficient 
bridges [1]. In the UK, the budget for core bridge maintenance 
has been reduced by up to 40% in recent years [2]. This 
budgetary shortfall means that cost effective and accurate 
structural information on bridge condition is becoming 
increasingly important. According to literature [3], the 
prevalent method for bridge monitoring continues to be visual 
inspections which can be highly subjective and differ 
depending on climatic conditions. This study goes into further 
detail on the efficacy of routine and in-depth inspections and 
determines that most inspection teams fail to determine bridge 
condition accurately. A recent study has indicated that bridge 
inspections vary in quality and are not always carried out by a 
senior engineer, with many companies outsourcing the 
inspections to untrained individuals [4]. 
Structural Health Monitoring (SHM) systems provide a 
valuable alternative to traditional inspections and overcome 
many of the previous limitations. SHM can provide an unbiased 
means of determining the true state of our ageing infrastructure.  
Sensor systems are used to monitor bridge deterioration and 
provide real information on the capacity of individual 
structures, hence extending the safe working life of bridges and 
improving safety. Monitoring of the displacement of a structure 
under live loading provides valuable insight into the structural 
behaviour and can provide an accurate descriptor of bridge 
condition. However, to monitor deterioration over time it is 
vital that the cause of displacement is also understood. Relating 
real time displacement along the span of a bridge to load type 
and location provides an opportunity to accurately identify 
localised damage within the structure.   
Displacement can be measured using traditional sensors such as 
LVDT’s. These instruments require contact with the bridge 
structure to obtain measurements, and an independent and rigid 
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support system, which can be difficult in in many field 
applications. Accelerometers provide a promising alternative. 
The drawback with the usage of accelerometers is that they can 
be vulnerable to numerical error from double integration and 
initial condition analysis [5]. Laser vibrometers can provide an 
accurate measurement at a single monitoring location, with the 
disadvantage of not providing the flexibility of measurement 
available in vision systems due to being required to be fixed at 
a single point throughout measurement. Global Position 
Systems (GPS) can also be used for displacement calculation, 
but the accuracy of the system is not comparable to that of other 
systems, with the majority of commercial systems only capable 
of obtaining a resolution at centimetre resolution and far away 
from sub millimetre [6]. Traditional sensors also have 
challenges in evaluating displacement of a structure as a 
reaction to live loading, or to be accurately synchronized to this 
loading due to sensor setup and LVDT or slide wire 
potentiometer internal mechanics.  

II. COMPUTER VISION BASED SENSORS FOR STRUCTURAL 

HEALTH MONITORING  

There are numerous examples in the literature of the efficacy of 
Computer Vision as a tool for SHM. In [7] the authors 
developed a low cost contactless system for the monitoring of 
displacement of a bridge structure; where results comparable to 
LVDT were obtained at distance of approximately 30 m. These 
readings are useful for displacement calculation but the 
requirement of having a laptop computer connected to the 
camera used for obtaining video images is restrictive in rural 
field applications. The capabilities of a Computer Vision 
system to monitor movement of a stadium structure under 
severe crowd loading has been proven, indicating its suitability 
to monitor structures under dynamic loading[8]. There are 
additional examples of vision-based displacement calculation 
in  [9] and [10].  
The work discussed above is all in single point displacement 
calculation, which is unsuitable for the monitoring of long span 
bridges when deflection profile is to be determined. There are 
two approaches to multipoint displacement measurement using 
cameras. The first approach is demonstrated in [11]. This 
research involves the selection of multiple displacement points 
in the viewpoint and using them to calculate multiple 
displacements, with the drawback of decreasing the resolution 
of the system as less detail of the points are available, especially 
for medium to long infrastructures. The concept of multiple 
points from a single camera’s viewpoint has been expanded 
upon using a high resolution camera [12]. However, since no 
traditional sensors were used as a means of comparison in this 
research, it is difficult to verify the real accuracy of the system 
when deployed in the field. The other approach to multipoint 
displacement calculation involves the use of multiple 
synchronized cameras. Early work in this area was carried out 
in [13], where multiple personal computers (PCs) were used to 
control camcorders in a master-slave relationship. This system 
is based on estimating the time lag between master and slave 
computers and is also dependent on having the cameras 
controlled by a PC at all times, which are severe constraints for 
practical applications. This research is built upon in [14], with 
a more advanced version of the synchronization system being 

used. The inherent disadvantage of a frame grabber and PC 
being required for connecting the cameras limits the scope of 
the system for field deployments due to power consumption and 
difficulties with cabling cameras to the computers.  
Previous research has shown that Computer Vision is viable as 
a method of displacement calculation. The increase in 
resolution of small, durable action cameras has led to their 
usage as a means of displacement calculation, as shown in [15]. 
Previous work in this area by the authors of this study has 
proven that our system is viable for usage in the laboratory and 
in field trials, with accurate results obtained compared to 
traditional sensors. The results obtained in field trials in this 
study were 0.952053 correlation coefficient(CC) and 0.0314 
Root Mean Square Error (RMSE) when comparing vision based 
results to traditional displacement sensors.  
 This paper aims to expand on that work by implementing this 
algorithm in tandem with  multiple time-synchronised high-
resolution action cameras. This will provide a greater flexibility 
in monitoring locations on bridge structures, and allow the 
development of a time-synchronized, portable, wireless easy-
to-use Computer Vision system for SHM which has been 
validated in laboratory trials and field experiments.  

III. DEVELOPMENT OF A WIRELESS VISION BASED SENSOR 

NETWORK FOR STRUCTURAL ASSESSMENT 

As previously mentioned vision-based sensors provide a 
completely contactless means of displacement measurement of 
structures. In many cases the vision sensor is built into a 
specialist camera and controlled by use of a laptop computer 
and frame grabber apparatus. These systems can be cost 
prohibitive and require onerous site set-up and wiring 
arrangements. This research has been based on the development 
of a low cost and easy to deploy system using the commercially 
available action cameras commonly known as “GoPros” [16].  
In general vision-based monitoring, a camera is set up on a 
tripod at a stationary location in sight of the bridge. The vision 
sensor is used to record a series of images of a structural 
element of the bridge under live loading, usually at a minimum 
frame rate of 25 frames per second (fps). A significant 
advantage of the system is its ability to measure displacement 
at any location along the span of the bridge from one stationary 
camera location. The purpose of multi-point measurement is to 
provide more accurate information on bridge condition. A 
greater number of data points enables a more detailed 
assessment of the bridge behaviour under live loading due to 
the creation of multiple influences or influence surface. A 
change in the behaviour under certain load types can then be 
used to detect and localise damage in the structure. 
 

A. Hardware configuration:  

1) Camera Modification 
GoPro vision sensors provide a low-cost, high resolution (up to 
4K) solution for the capture of data. Additionally, their 
portability and wireless functionality for camera control offer a 
significant advantage. These cameras are resistant to adverse 
environmental conditions such as rain, making them practical 
for long term deployment in the field. The disadvantage of 
using GoPros for bridge monitoring is that the standard GoPro 



lens has a limited focal length, rendering them less suitable for 
accuracy over long distance monitoring of structures. Research 
was carried out into potential modifications to the camera to add 
long distance monitoring capability. A solution was found using 
a modification kit for the GoPro: Ribcage [17]. The Ribcage 
adds functionality for the attachment of C or F- mount zoom 
lenses to a GoPro. This allows usage of the GoPro as a long-
distance monitoring tool. A Computar 1/2″ 25-135mm F1.8 C-
Mount [18] lens was attached to the GoPro for the testing 
detailed in the following sections. This lens was chosen because 
it is capable of being fitted directly to a tripod whle attached to 
the GoPro, allowing for a stable mounting of the camera in 
laboroatory/ field trials.   The hardware configuration for the 
test is shown in Fig 1, with an example of the camera mounting 
confirguration shown in Fig 2. The GoPro was controlled 
during testing using the Capture App [19] for smartphones 
provided by GoPro, with footage saved to microSd cards for 
later transfer to a PC for post processing. 
 

 
Fig 1 Hardware specification, from left to right. GoPro Hero 4 black, Ribcage 
Lens Modification and Computar ½” 25-135mm F1.8 C-Mount lens 

 

 
Fig 2 Camera mounting configuration for laboratory and field trials 
 

 
2) Synchronization Hardware  
The system that was chosen to provide time synchronization for 
the GoPro systems is known as Syncbac [20]. This GoPro 
accessory can be attached to the extension port of the GoPro 
and embeds timecode data into each frame recorded by the 
GoPro. Analysis of this metadata allows for synchronization of 
recordings obtained by the system using a solution developed 
by the authors in C++ in Microsoft Visual Studio. The Syncbac 
sends live timecode data via Radio Frequency (RF), with a 
range of 30-60m. There is also functionality available for units 
to be initially synchronized with a master unit before handling 
timecode insertion without any additional information being 

provided. The range of the system can also be extended to 150-
180m by use of a pulse: [21], which allows for greater 
deployment range in addition to wireless control of all units via 
the Blink Hub app [22]. The Syncbac system also allows for 
wireless remote control of the cameras via PC/smartphone app, 
meaning the cameras can be placed in areas not traditionally 
available for bridge monitoring using Computer Vision.  
 

B. Software and algorithm development for wireless vision-
based sensor 

A requirement of all vision-based SHM systems is intensive 
post processing of captured images into accurate bridge 
displacement responses [23]. For the system developed in this 
research, feature-based tracking was selected due to being more 
robust and reliable than Digital Image Correlation(DIC) 
approaches when paired with a reliable feature extraction 
technique, with similar precision [24]. The processing 
framework is composed of three main blocks, as shown in Fig 
3. 
 

 
Fig 3 Block Diagram of Algorithm Design 
 
 

 
1) Camera Calibration:  
Camera Calibration is a method of determining the intrinsic and 
extrinsic parameters of the camera used to record the structure 
motion, to remove lens distortion effects and to provide a 
scaling factor for the conversion from pixel units to engineering 
units. The method used to remove lens distortion in this study 
was based on that proposed by Bouguet [25], where a series of 
images of a checkerboard or similar pattern is used to obtain the 
lens distortion of a camera at the desired focal length. 
There are a variety of approaches used to determine the scaling 
factor for converting pixels to physical distance. In [26], a pre-
testing calibration method is demonstrated. This involves 
setting up the camera in the laboratory in an identical manner 
to that of the field test to be carried out; that is, same monitoring 
distance, focal length, angle etc. The camera is calibrated using 
the checkerboard pattern and these variables are used to remove 
lens distortion and provide a scaling factor for the videos 
captured in the field trials.  The formula to show this is as 
follows: 
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where SF is the scaling factor ratio, d is a distance on the image, 
D is a world distance, f is the focal length of the camera, p is the 
unit length of the camera sensor (mm/pixel) and Z is the 
distance from the camera to the monitoring location. The 
scaling factor can also be determined from: 
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where DKnown is the known physical length on the object surface 
and IKnown is the corresponding pixel length on the image plane. 
 
 
 
2) Feature Extraction:  
This is the process of extracting and detecting salient features 
from the images of the object to be tracked.  Examples of these 
could be corners, rivets or natural decay in a bridge structure. 
Processing time can be minimized by only searching for 
features inside a Region of Interest (ROI). The process selected 
for use in the algorithm was SURF [27], a robust and 
computationally inexpensive extension of SIFT [28]. The key 
points provided by SURF are scale and rotation invariant and 
are detected using a Haar wavelet approximation of the blob 
(region in an image that differs in properties, such as 
brightness/colour, from surrounding regions) detector based on 
the Hessian determinant. These approximations are used in 
combination with integral images (the sum of pixel values in 
the image) to encode the distribution of pixel intensity values in 
the neighbourhood of the detected feature. The natural features 
detected in the laboratory tests are shown in Fig 4.These 
features consisted of irregularities in the surface of the beam 
that could be easily identified and tracked through the video.  
 

 
Fig 4 Features identified using feature detector 
 

 
3) Feature Tracking:  
On detection of the points, they must be tracked through 
subsequent frames to filter outliers and improve the dynamic 
estimation of displacement. Careful application of threshold 
values must be maintained during this process, as features may 
become occluded or vary during the progression of a video. The 
system in this research makes use of a Kanade-Lucas-Tomasi 
(KLT) [29] tracker to determine movement of the features 
detected. This method takes the points detected by the feature 
extractor and uses them for initialization. The system removes 
outliers using the statistically robust M-estimator SAmple 
Consensus (MSAC) algorithm [30] which is a variant of the 
RANSAC algorithm. The MSAC algorithm scores inliers 
according to the fitness of the model and uses this, together with 
a user-specified re-projection error distance, to minimize the 
usage of outliers in the displacement calculation. Any features 
that do not meet these thresholds are rejected, with the inliers 
then tracked on the next video frame using the KLT algorithm. 
The displacement of the object can be measured in pixels by 
calculating the relative movement between frames of the 
centroid of a matrix containing the extracted features. While it 

is possible to use SURF as a means of means of feature tracking 
as well as extraction, the results gathered in preliminary trials 
were not as accurate/stable compared to reference sensors as the 
results obtained using SURF & KLT in tandem, with 
undesirable variance in the number of features detected/tracked 
throughout a video compared to the tandem approach of 
SURF/KLT. Results from a laboratory investigation on this are 
shown in  Fig 5 and Fig 6. 
 

  
Fig 5 Retained Features Comparison for SURF vs KLT-SURF 

 

 
Fig 6 Accuracy Comparison for SURF vs KLT-SURF 

 
The pixel movement is converted to engineering units using Eq. 
(2). This continues until all frames of the video have been 
processed. 

IV. EXPERIMENTAL PROGRAMME 

The aim of the experimental work was to conduct a series of 
sequential tests to establish the accuracy of the timecode 
synchronization between the vision sensors, since perfect 
synchronisation is required for a full characterisation of the 
deflection pattern 

A. Test Series 1 – Timecode testing 

The system for synchronizing the vision sensors involves 
attaching an accessory for the GoPro called Syncbac. The 
accessory embeds timecode data in each video. This metadata 
is then used to synchronize the videos so that they start at the 
same time. This is accurate to frame level at 30 FPS as the code 
embeds timecode data for synchronization in each frame. This 
was tested using a website called currentMillis.com, which 
displays the time elapsed in milliseconds since 1/1/1970. The 



cameras were placed 20 m apart and set to record this website 
displayed on separate computers. When the recordings were 
analysed and combined it was confirmed that each frame 
matched successfully. An example frame is shown in Fig 7. The 
test was carried out over a span of 45 minutes and the 
synchronization of the cameras was consistent throughout the 
video analysis, obtaining a perfect synchronisation after the 45 
min.  

 
Fig 7 Readings from initial time synchronization trial, confirming accurate 
recording of UNIX time. 

 

B. Test Series 2 – Accuracy of synchronized vision sensors 
for displacement measurement 

The accuracy of the hardware system and associated post 
processing techniques were developed and validated through a 
laboratory experimental program. This involved tracking the 
displacement of a simply supported 178mm×102mm×19mm 
Universal Beam with a clear span of 5.3 m. A centrally applied 
static load of 3255N was applied to induce displacement along 
the span of the beam. The beam was split into 9 elements of 
equal length along the span of them beam to situate the loading 
and sensing points. The nodes connecting the elements were 
numbered 1-10 consecutively from left to right. Hence the load 
was applied midway between nodes 5 and 6. 
 
 
1) Sensor configuration and data acquisition 
Linear Variable Displacement Transducers (LVDT’s) were 
used to validate the camera measurements at the monitoring 
locations used by the camera along the span. The LVDT sensors 
were configured to measure static displacements at each of the 
nodes monitored by the camera. A Datataker DT800 logger was 
used to acquire the readings at discrete times during the test 
corresponding to times when the beam was loaded and 
unloaded. The FOS was also used at a single node (Node 4) to 
validate the accuracy of the deflections that were determined 
from the camera readings. This sensor was used because it 
provides a high level of accuracy compared to LVDT. The FOS 
was positioned to record continuous displacement 
measurements at a rate of 25 Hz.  The wavelength shift data 
associated with the FOS was recorded and converted to 
displacement using an approach described previously [31], 
where a Fabry-Perot filter was used in tandem with a 
photodiode.  
 
Two GoPros set to record continuously during loading and 
unloading at a frame rate of 25 fps were used to monitor the 
beam. The GoPros were modified and fitted with C-mount and 
F-mount lenses to reduce lens distortion and provide greater 
flexibility in terms of monitoring distance. One camera was set 
to monitor node 3 and the second to monitor node 4. The 

readings taken at each node were converted from pixels to mm 
using the scaling factor of Equation (2).  
 
The results from the synchronization trial for nodes 3 and 4 are 
shown in Fig 8. The results show good agreement between the 
camera system and the LVDT/FOS sensors, with our vision 
system outperforming the LVDT sensors in the point where the 
FOS was available.  

 
Fig 8 Vision, FOS and LVDT sensor displacement results for test series 2 

 
To allow for accurate comparison between the displacement 
results calculated from the vision-based sensors and the 
validation sensors, the root mean square error (RMSE) is 
presented in Table I. 
 
  

TABLE I 
RESULTS FROM GOPRO VS FOS VS LVDT DISPLACEMENT MONITORING 
Camera Node Validation 

Sensor 

RMSE (vision sensor v’s 

validation sensor) (mm) 

3 LVDT 0.044 

4 LVDT 0.107 

4 FOS 0.079 

 
 The correlation coefficient between the FO and the Vision 
results at Node 4 is .894 for this test.  
The results confirm successful synchronization of the two 
cameras, providing confidence in this method for future 
deployment. It is believed by the authors that the higher RMSE 
with the LVDT comparison at Node 4 is due to the lower 
resolution of the LVDT versus the FOS. The low error results 
from the RMSE comparison validate the use of the GoPro 
camera in laboratory trials.  
 
2) Scaling Factor Determination Trial 
A supplementary laboratory trial was carried out between the 
dimension correspondences(DC), Catbas-Khuc(CK) and 
Bouquet(B) methods of scaling factor determination,  the 
results are shown in Fig 9. 



  
Fig 9 Scaling Factor Determination Trial 

 
 
The correlation coefficient for each method was 1 when 
compared to the FOS, the Root Mean Square Error RMSE 
compared to FOS is shown in Table II. 
 

TABLE II 
RESULTS FROM SCALING FACTOR DETERMINATION TRIAL 

Dimension 

Correspondences RMSE vs 

FOS(mm) 

Catbas -

Khuc 

RMSE vs 

FOS(mm) 

Bouquet  RMSE vs 

FOS(mm) 

.0962 .7691 .3616 

 
The superior accuracy gained from the use of dimension 
correspondences method (Equation (2)) resulted in its 
selection for use in this study.  
 
3) Multiple Cameras at Single Monitoring Location Trial 
 
An additional trial was carried out in the laboratory where two 
GoPro cameras set to 25fps were used to monitor the 
movement of a single target attached to a displacement testing 
apparatus while it was displaced manually. The cameras were 
placed 4.3m away from the monitoring location and pixel-mm 
conversion was carried out using dimension correspondences 
method in Eq. (2).  Verification of the measured displacement 
was provided by the FOS to record at 25hz.   The setup for this 
trial is shown in Fig 10, with the results shown in Fig 11 and 
summarised in Table III. 

 
Fig 10 Setup of Displacement Apparatus for multiple cameras at single 

monitoring location trial 

 
TABLE III 

RESULTS: MULTIPLE CAMERAS AT A SINGLE MONITORING LOCATION 

GoPro 1 

RMSE vs 

FOS(mm) 

GoPro 1 CC 

vs FOS 

GoPro 2 

RMSE vs 

FOS(mm) 

GoPro 2 CC 

vs FOS 

GoPro 1 CC 

vs GoPro 2 

.1533 .9914 .0928 .9975 .9869 

 
 

 
Fig 11 Results of Multiple Cameras at Single Node Trial 

 
This trial provided confidence in the capabilities of the system 
for measuring displacement from multiple synchronised 
cameras.  
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4) Stationary Location Accuracy Trial 
An additional metric for determining the quality of a 
displacement monitoring system is that of stability. To test 
this, a supplementary trial was carried out where one of the 
modified action cameras recorded images of a stationary 
portion of the testing setup to determine if the algorithm 
experienced any drifting away from true values over a longer 
monitoring time than previous tests. The results are shown in 
Fig 12.  

 
Fig 12 Results from Stability Trial 

As can be seen from the results, there is a drift of only 2 pixels 
of a 4K video over the course of the trial in the Y-axis, with 
drift of 0.5 pixels in the x-axis.  
 
C. Test Series 3 – Validation of different types of vision-

based sensors  

The purpose of this test series was to validate results using other 
camera types, thereby ensuring greater monitoring flexibility 
but also justifying the use of GoPro as the choice of sensor. For 
this, the Blink Hub app provided with the Syncbac was used for 
the camera control. A WIFI-enabled smart device can be paired 
with the pulse device and used to display the timecode in use 
by devices. This reference can then be displayed in the field of 
view of any camera type and used as a means of synchronizing 
videos. The centrally loaded beam from test series 2 was loaded 
and unloaded, similarly to test series 2, and a selection of nodes 
were monitored as detailed below. For this test a Nikon D810 
camera with an 80-400mm zoom lens and a resolution of 1080p 
was used in addition to the Syncbac enabled GoPro.   
 
1) Sensor configuration and data acquisition 
For this test series, the reference timecode was obtained by 
manually reading the images (a text recognition algorithm 
could be used to automate this process in future). In this case 
the FOS was used as the sole means of validating the vision- 
based displacement. The cameras were both placed at a 
monitoring distance of 4.2 m and targeted the monitoring 
location at Node 7. Lenses and zoom levels were chosen to be 
as similar as possible, with small differenced due to availability 
and manufacturers, yielding to the pixel to millimetre 
conversion factors depicted in Table IV. An image from the 
D810 Camera used in the test is shown in Fig 13. 
 
 
 
 
 
 

TABLE IV 
MONITORING LOCATIONS FOR TEST SERIES 3 

Test GoPro 

Node 

GoPro 

Pixel/mm 

Conversion 

Factor 

D810 

Node 

D810 Pixel/mm 

Conversion 

Factor 

3 7 0.1011 mm/pixel 7 0.1829 mm/pixel 

 

The results are shown in Fig 14 and Table V. The data confirms 
that there is good agreement between the camera systems and 
the FOS.  

 
Fig 13 D810 Image from Test 3 

 
 

TABLE V 
RESULTS: TEST SERIES 3 AT NODE 7 

GoPro 

RMSE vs 

FOS(mm) 

GoPro CC vs 

FOS 

D810 RMSE 

vs FOS(mm) 

D810 CC vs 

FOS 

D810 CC vs 

GoPro 

.0434 .9994 .0589 .9953 .9935 

 
 

 
Fig 14 Results from Test 3 Run 1 

 
This test has proven the effectiveness of the solution with 
multiple camera types, which increases the flexibility of our 
system to different sensors, according to the user’s preferences 
and availability. The superior results obtained with the modified 



action camera system (approx. cost ~£500) vs the D810 
(approx. cost ~£2500) also validate the use of the low-cost 
action camera as a means of gathering accurate deflection data.  

V. FIELD TESTING OF SYSTEM  

On completion of the algorithm development and laboratory 
testing, a field test was carried out to determine the system’s 
suitability for measuring the corresponding bridge 
displacement in real scenarios and perform a complex analysis, 
such as, for instance, accurately identifying vehicles and 
identifying the pattern of displacement along the span of the 
bridge. A single lane 30 m span steel truss bridge, illustrated in 
Fig 15, was selected as a suitable structure to test this system. 
‘Verners’ bridge is on the Tamnamore Road in Co Tyrone, 
Northern Ireland. This road provides access to a busy industrial 
estate and is therefore frequently used by heavy goods vehicles 
(HGV’s). Additionally, traffic on the bridge is controlled by a 
traffic light system which only allows for a single lane of traffic 
in one direction at any one time thus removing the complication 
of multiple events on the bridge (which is being addressed in 
ongoing research). Two GoPro cameras were used in this field 
test, to measure displacement at mid- and ¾-span and a third 
GoPro to identify the associated vehicles causing this 
deflection.   
 

 
Fig 15 Side elevation of Verners Bridge. (Image taken from location of 
cameras monitoring deflection) 

A. Sensor configuration and data interpretation 

Bridge displacements were monitored using two GoPros 
mounted on a single tripod on the North West river bank at a 
monitoring distance of 22m. The cameras were adapted as 
described in III. The focal length of both lenses was set to 
135mm with a wide field of view setting selected on the 
GoPros. Footage was captured at a framerate of 25fps. Natural 
image features at midspan (Figure 16)  and 3/4span (Figure 17) 
were targeted for monitoring. A pixel-mm ratio was defined as 
0.5911 mm/pixel at midspan; with a pixel-mm ratio of 
0.6891mm/pixel determined at 3/4span allowing for sub-
millimetre measurement of displacement on the bridge span at 
both locations. The lens used for this study has a capability to 
lock the focal length in place, which meant the parameters 
would be preserved to remove lens distortion after calibration. 
The camera to target distance/angle was measured using a laser 
distometer, and the calibration step was performed in identical 

circumstances (camera distance, focal length, etc) to the field 
trial on the premises of QUB.  

 
Figure 16 Side elevation of Verners Bridge at midspan showing image 
features. 1) is the distance in engineering units, with 2) the distance in pixels 
on captured footage. (Image taken from location of camera monitoring 
deflection) 

 
Figure 17 Side elevation of Verners Bridge at ¾ span showing image features. 
1) is the distance in engineering units, with 2) the distance in pixels on captured 
footage. (Image taken from location of camera monitoring deflection) 

 
Fig 18, Fig 19 and Fig 20 provide a sample of the data collected 
at this site. This confirms accurate camera synchronization and 
clear identification of displacements at both the mid- and ¾-
span. The additional level of noise in the results for Fig 19 are 
due to multiple cars following close behind the vehicle being 
tracked.  



 
Fig 18 Vehicle 1 Crossing Verners Bridge & Results 

 

 
Fig 19 Vehicle 2 Crossing Verners Bridge & Results 

 
 

 
Fig 20 Vehicle 3 Crossing Verners Bridge & Results 

 
As previously described, to assess the structural condition of the 
bridge, it is important to relate the measured displacements to 
the corresponding imposed traffic loading. Therefore, the 
accurate synchronization of the third camera to allow for 
successful traffic identification, was a key feature of this 
system. In each case the vehicle was easily identified, and an 
image has been provided along with the displacement data. In 
this initial field trial, the vehicles were manually identified. 
Work is currently in progress to develop a deep learning system 
for autonomous vehicle classification. This system would be 
able to identify and locate axle spacings of vehicles crossing the 
bridge, allowing for calculation of local and global responses of 
the bridge to crossing vehicles.  
 
 

VI. DISCUSSION AND CONCLUSIONS 

A sequential series of tests have been carried out to validate 
our fully synchronized wireless vision sensor monitoring 
system. Each of the tests carried out was designed to build upon 
the results of previous work and facilitated the development of 
an accurate algorithm for determining displacements from 
video footage.  

A review of the existing literature highlights the need for a 
precise fully wireless monitoring system which could be rapidly 
deployed on a bridge of medium to long span. The systems 
presented overcome previous limitations in terms of cost and 
power consumption as well as in the size of the infrastructure 

Mid span Monitoring Location 

3/4 span Monitoring Location 



due to the use of multiple vision sensors. The results from the 
initial synchronization trial are shown to be repeatable in the 
field and successful millisecond timecode synchronization was 
consistently obtained. Test Series 2 offered a robust testing 
programme which provided confidence in the displacement 
calculation algorithm used in the post processing of the vision 
sensors. In comparison to a FOS, displacement from the vision 
sensor repeatedly correlated with loading pattern and 
displacement magnitude. Significant advantages of the vision 
sensor over the FOS include, but are not limited to, the 
contactless nature of measurement, no requirement for a power 
supply on site and cost. A single FOS costs five times that of a 
single vision sensor.  
Test 3 confirms that the system can be adapted to include 
multiple camera types. This key feature of the system would be 
particularly useful for the incorporation of existing camera 
networks into the SHM system presented here.   
In summary the work carried out in the experiential trials gave 
confidence in the accuracy of the system. This allowed for rapid 
deployment on site and minimized the equipment needed for 
site measurement.  
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