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Abstract

Differential equations are often directly solvable by analytical means only in their 1-D
version. Partial differential equations are generally not solvable by analytical means
in 2-D and 3-D, with the exception of few special cases. In all other cases, numerical
approximation methods need to be utilized. One of the most popular such methods is
the finite element method. Our main areas of focus are the Poisson heat equation and
the plate bending equation. The purpose of the current paper is to provide a quick walk
through of the various approaches we followed in pursuit of creating optimal solvers,
accelerated with the use of graphical processing units, and comparing them in terms
of accuracy and time efficiency with existing or self-made non-accelerated solvers.

Keywords: GPU acceleration, finite element, PDE, Poisson, plates, plate bending.

1 Introduction

Graphics processing units (GPUs), originally designed for efficient 3-D computer vi-
sualization, contain highly optimised hardware capable of solving large scale mathe-
matical problems, such as those seen in aerospace engineering, mechanical engineer-
ing and biomedical research. The utilization of this GPU quality, if properly applied,
provides a remarkable improvement in a programs performance in terms of speed.
This process is known as GPU acceleration [1].

Our current research was focused on partial differential equations (PDEs). We de-
veloped a series of PDE solver codes implementing a solution approximation method
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known as the finite element method (FEM).
GPU acceleration requires our existing algorithms to be adapted to the new archi-

tecture in an intelligent and considered way. The purpose of the current article is to
present the latest developments in the field of GPU accelerated, FEM implementing
PDE solvers.

After a short introduction to PDEs and FEM, we provide a description of FEM
solvers and their three main parts, data reading, assembly, and solution. We dedicate
an additional section to provide the reader with the concept of GPU acceleration.

We then focus on our main contribution, the efficient implementation of the “Cotan-
gent Method” on many-core devices, such as GPUs, for the assembly part of the solver
code, and explain in what way it reduces the computation time, while securing preci-
sion and boosting memory economy.

Afterwards, we provide a walk through of the various solver codes we have devel-
oped, as well as the precision and time-efficiency comparisons we carried out, both
between self made accelerated and unaccelerated codes, as well as between our codes
and comparable commercial and open source software.

We finalize the document with an overview of the engineering applications and
academic benefits of our research as well as our future pursuits on the fields of PDEs
and FEM.

All experiments described in the current paper were executed on a computer con-
sisting of an Intel Core i7-3770K CPU @ 3.50GHz x 8 processor mounted with an
NVidia GeForce GTX 680 graphics card, consisting of 1536 cores, equiped with 2
GB of global device memory.

2 PDEs and FEM

PDEs are equations involving of an unknown function u, its derivatives. PDEs are nor-
mally unsolvable by analytical means, save for a few standard exceptions. Therefore,
numerical methods are employed in an attempt to approximate the unknown function.
The method of focus in our current research was FEM [2].

The finite element method begins with an unknown function u over a domain Ω
whose values are known along the boundary of the domain. The domain is then di-
vided into a number of triangles (in 2-D), or tetrahedra (in 3-D), called elements. The
vertices of the elements are termed nodes. The purpose of FEM is to calculate the
values of the unknown function at the nodes [3].

There are a variety of FEM solvers on the market, both commercial and open
source. The vast majority of them function under the same principles, which reduce
the problem into solving a linear system. A generic code consists of three main steps:
data reading, assembly and system solver. CPU reads and stores the input data in a set
of matrices. In the assembly, the code uses those matrices to form the linear system.
In the system solver, the code solves the linear system [4].
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Our main contribution was focused on applying a highly parallelizable adaptation
on the finite element assembly algorithm [5] to the solution of the Poisson heat equa-
tion on the GPU. This assembly method effectively bypasses the traditional shape
function methods, thus avoiding complicated, time-consuming integrations.

This method, combined with a comprehensive optimization has provided a huge
speed boost to the assembly part of the code, considerably lowering the assembly time
from over 8 s to below 10−3 s.

3 GPU acceleration

A typical GPU consists of up to 16 streaming multiprocessors. Each streaming mul-
tiprocessor can have up to 48 active warps. A warp is a group of 32 threads to per-
form calculations in SIMD (Single Instruction Multiple Data) fashion. Hence every
streaming multiprocessor can perform up to 1536 calculations simultaneously. This
architecture gives the GPU the capacity to perform up to 24576 calculations in parallel
[6].

Over the past few years, GPU use has become an increasingly important part of
engineering mathematics, providing significant and inexpensive speed-ups to industry
scale FEM computations. Its relevance to FEM algorithms is thus clear. As explained,
FEM relies heavily on efficiency dividing a domain into many smaller pieces and
performing a series of computational tasks in every piece separately [1, 3].

Unaccelerated programming would have the CPU processor scan through all the
elements one by one and perform the appointed tasks on each element separately. Par-
allel programming assigns a few elements to each thread and the appointed tasks are
performed simultaneously. This way the overall workload is accomplished multiple
times faster.

Linear system solvers, are also another region where parallel programming can be
utilized. Most of the iterative system solvers, such as Gauss Seidel and Conjugate
Gradient, require that the same set of calculations is performed for every line of the
system. Appointing one line (or one set of lines) to each thread of the GPU can provide
a considerable speedup to the solution process [7].

Nonetheless, the speedup is not linear. Various delaying factors such as race con-
ditions and bank conflicts limit the effects of acceleration. These occur when dif-
ferent threads are trying to access the same memory location. In this case, threads
are queued, with one accessing the location and the rest waiting for their turn. Such
incidents render optimization attempts imperative in order to produce an efficiently
performing software [8].
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4 Formulation

4.1 Poisson heat equation

The Poisson heat equation is as follows: We have an unknown function φ(x, y) and
a known function f(x, y) defined over a domain Ω, related by the following equation
(1) and (2)

∂2φ

∂x2
+
∂2φ

∂y2
= f(x, y) on Ω (1)

In its three-dimensional version, the equation becomes:

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= f(x, y, z) on Ω (2)

The value of φ is known throughout the boundary of the domain. While the equation
is commonly used to describe thermal transfer processes, its usability extends beyond
heat diffusion problems [9].

The aim is to calculate the unknown function φ. Apart from a few special cases,
the above equation cannot be resolved analytically. In solving the above problem, the
finite element method works as follows: The domain Ω is discretized, that is, it is
divided into a set of non-overlapping shapes called elements. In the 2-D case these
elements are more often triangles or quadrilaterals, while in the 3-D case tetrahedra
are often employed. The vertices of the elements are called nodes.

The true solution may then be approximated by a finite-dimensional, piecewise
polynomial function, smooth except at edges of the elements. Following the steps
of the FEM algorithm, the PDE problem promptly reduces to solving a linear equa-
tion system, with the number of equations and the number of unknowns equal to the
number of nodes in the domain [3].

Evidently, a more detailed triangulation results in bigger, more complicated final
linear system. Thus the system’s solution becomes a harder and more time-consuming
process. Nonetheless, the solution also becomes more accurate approximation of the
unknown function, provided that the solver’s precision is adequate.

4.1.1 Solvers and methodology

In storage, the mesh is commonly represented textually as a series of nodes, indexed
2-D or 3-D coordinates, and elements, indexed tuples of node indices.

The first phase of most solver codes consists of reading the mesh file and appro-
priately storing the data in the CPU memory. For that purpose, in our case, we used
a matrix of three (2-D case) or four columns (3-D case). This matrix is called the
domain matrix. The number of lines is equal to the number of nodes in the mesh. The
elements are also stored in the elements matrix which consists of a number of lines,
equal to the number of elements in the mesh, and columns depending on the type of
element: four for triangle and five for quadrilateral or tetrahedral.
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The second phase of most solver codes consists of reducing the PDE problem to a
linear system. The linear system has the form,

KΦ = F, (3)

where n is equal to the number of internal (non-boundary) nodes in the mesh, K is an
n × n symmetric square matrix, and Φ and F are column vectors of n entries. The
fact that the size of K rises quadratically with the number of nodes, combined with its
sparse nature, rendered compact indexing methods imperative for the viability of the
code in terms of memory economy.

The third part of most solver codes consists of solving the linear systems. The
amount of solver methods, algorithms and libraries available is limitless. Nonethe-
less, we chose to create our own codes for the purpose of better oversight and to allow
the use of data structures suitable for the GPU optimization of the entire FEM algo-
rithm. We experimented with a variety of algorithms, including LU decomposition
and the Gauss-Seidel method, and concluded that the preconditioned Conjugate Gra-
dient approach was the most efficient way to address our needs.

4.1.2 The cotangent method

Of the three matrices appearing in Equation 3, Φ is the unknown vector to be calcu-
lated and F is provided in the formulation of the problem. For many applications, F
may be evaluated be point-wise at nodes and so used with little or no modification.
The focus of the assembly process is then the matrix K, known as the global stiffness
matrix. Its elements are known as stiffnesses. Hence the number in the (2, 3) position
represents the stiffness between nodes 2 and 3, while the number in the (3, 3) position
represents the self-stiffness of node 3.

The assembly of the global stiffness matrix takes place element by element. The
global stiffness matrix begins as an empty matrix. If two nodes (say 2 and 3) belong
to a specific element (triangle, quadrilateral, tetrahedron) a number is calculated and
added to the respective position (2, 3) of the global stiffness matrix. Positions of the
global stiffness matrix that correspond to non-neighbouring nodes (nodes which do
not belong to the same element) shall remain zero.

The calculation of the local stiffnesses by traditional algorithms is a difficult and
time consuming procedure that requires calculation of complicated integrals. This
process takes a toll both on time as well as memory space.

However, when our solution is constrained to be piecewise linear, this is not nec-
essarily the most effective approach. Our main contribution lies in applying a differ-
ent and more direct method for the assembly process, applicable to piecewise linear
approximations over triangles and tetrahedra, and much better suited to many-core ar-
chitectures. The method is explained in detail in [3] for the 2-D case and [10] for the
3-D case.

By employing cotangent method, we avoid explicit numerical integration, while
constructing the local stiffness matrices from shape functions. In this method, each
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Figure 1: Calculation of the cross stiffness in a triangular and tetrahedral element. In
the triangular case, the stiffness between nodes v1 and v2 is calculated based
on the cotangent of node v3. In the tetrahedral case, the stiffness between
the nodes v1 and v2 is calculated as the angle between the planesA2 andA1,
which are the planes that do NOT contain the edge l12 [10]

element’s contribution to the stiffness between nodes 1 and 2 is easily measured, in
2-D, by calculating the cotangent of the planar angle (θ3) formed by the two edges not
~12, and, in 3-D, the cotangent of the angle formed by the two faces of the tetrahedral
element not including an edge ~12. In general, θi is the angle at vertex vi of a triangle
and θij is the dihedral angle at the edges connecting vertices vi and vj of a tetrahedron.
For that purpose, in this document, this method will be referred to as the Cotangent
Method. For the 2-D Poisson heat problem, the local (per element) contributions to the
global (whole domain) stiffness matrix may be expressed, using the cotangent method,
as follows: [3]


1
2
(cotθ2 + cotθ3) −1

2
cotθ3 −1

2
cotθ2

−1
2
cotθ3

1
2
(cotθ1 + cotθ3) −1

2
cotθ1

−1
2
cotθ2 −1

2
cotθ1

1
2
(cotθ1 + cotθ2)

 (4)

For the 3-D Poisson heat problem, the cotangent method provides the following local
contribution to the global stiffness matrix, [10] The implementation of the cotangent
method, combined with aggressive parallelization of the assembly code, resulted in a
significant boost of the time efficiency of the assembly part of the solution process.
From that point a variety of approaches has been implemented for the resolution of
the linear system.
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∑
16=i<j

lijcotθij −l34cotθ34 −l24cotθ24 −l23cotθ23

−l34cotθ34
∑

26=i<j 6=2

lijcotθij −l14cotθ14 −l13cotθ13

−l24cotθ24 −l14cotθ14
∑

36=i<j 6=3

lijcotθij −l12cotθ12

−l23cotθ23 −l13cotθ13 −l12cotθ12
∑
i<j 6=4

lijcotθij


(5)

5 Implementations

5.1 2-D LU decomposition solver

The first solver was intended to evaluate the applicability of the cotangent Method.
The solution to the linear system, is derived as Φ = K−1 ∗ F . In order to verify the
solver’s validity and precision we solved a series of problems with known answers.
To provide a test problem, we began with a known solution,

φ(x, y) = (x− 10)(x− 20)(y − 10)(y − 20) on [10, 20] × [10, 20] (6)

In the first solver, the above system was solved through LU decomposition. This
method was easy and direct and provided up to 7-digit precision in small domains.
Nonetheless this method is not particularly parallelizable, as every step of the process
requires input from all the previous steps. Hence every part fo the algorithm requires
to wait for the previous parts to finish [11].

Nonetheless, the biggest weakness demonstrated itself with bigger domain sizes.
Since each step in the decomposition required input from the previous ones, that meant
that inaccuracies derived from small numerical or computational errors would carry
on to the next step. As the system gets bigger, more and more errors accrue in the
following rows. For big enough domains, the final result is susceptible to become
grossly irrelevant to the real solution.

5.2 2-D Gauss Seidel Solver

The second solver consisted of an attempt to fully parallelize the code. Both CUDA
and OpenCL were used. While academia generally praises OpenCL’s parallel pro-
gramming capacities, which expand beyond just Nvidia GPUs, scholars are more in
conflict when it comes to determining which framework performs better on Nvidia
hardware. In our case, CUDA was the base software for most of our work, mainly due
to its user-friendly environment.

The code was parallelized on two levels, assembly and solution. The assembly par-
allelization was a per-element one. The number of GPU threads utilized was set equal
to the number of elements in the mesh. It begins by setting all entries of the global
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stiffness matrix equal to zero. The global stiffness matrix must have adequate entry
spaces for every node’s self-stiffness and cross-stiffnesses. Afterwards, each element
is studied separatelly and in parallel. For each of the three nodes of the element, the
self-stiffness and cross-stiffnesses are calculated according our stated directives [3].
The results are added to the global stiffness matrix K. The addition takes place with
the use of atomic functions, in order to ensure that all stiffnesses are properly added
and no number is omitted.

The solution parallelization was per node. The number of GPU threads utilized is
equal to the number of nodes in the mesh. Each entry in the solution matrix represents
the value of the unknown function in the corresponding node. All degrees of freedom
are set to zero as initial values. At each iteration, the values are modified according to
the equation (7) as explained in [12].

x
(n+1)
i =

1

kii
[bi −

∑
i 6=j

kijx
(n)
j ] (7)

or the variant :
x
(n+1)
i =

1

kii
[bi −

∑
i<j

kijx
(n)
j −

∑
i>j

kijx
(n+1)
j ] (8)

Both variants update the values of solution xi, based on the current or previous values
of the rest of the solutions. For that purpose, a proper coordination between the GPU
threads was necessary. An improper coordination would still managed to bear near
results with over 99.999 accuracy for smaller mesh sizes. It must be noted that the
accuracy is considerably higher than that of the LU decomposition solver case. The
main reason is that, while the LU decomposition algorithm is sensitive to rounding
errors, which transfer themselves to each new calculation, the Gauss Seidel algorithm
functions function on the principle that errors exist. In fact, the basic principle is that
the initial input is iteratively updated toward the solution. This gives the algorithm an
important boost to error tolerance.[7].

However, certain issues emerged, stemming from the requirements of the algorithm
and the capabilities of the GPU. While the algorithm is not too strict on the updating
between the solutions (hence the two variants), it does require a minimum degree of
synchronization between the nodes. This prerequisite clashes with the GPU capacities.
In large meshes, the number of concurrently active threads is considerably smaller
than the number of nodes. Each thread, calculates the solution in a corresponding
node. Nonetheless, each active thread carries out all iterations for a particular node,
before it can move on the the next node. This means that a specific solution will finish
updating, before another can even start. This renders the code useless as it ends up
bearing totally irrelevant results.

There have been many solutions to this, all of them with a natural speed burden
on the codes efficiency. First and simplest idea was to include one only iteration
in each kernel call. This method proved highly efficient in terms of precision, but
at a great time cost. The main reason is that each kernel call contains a series of
commands that prepare the iteration. These include identifying the neighbourhood and
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the corresponding stiffnesses of each node. Since these commands are to be recalled
in each kernel call, such a repetition results in above triple solution time. A middle
solution resides in practising an average number of 10-20 iterations per kernel call.
That way threads have the chance to synchronize as well as update their solutions in a
viable manner.

5.3 3-D Gauss Seidel solver

Having met an adequate level of success with the 2-D Gauss Seidel Solver we moved
on to the 3-D case. The main issue encountered with the 3-D case was that there
was not adequate academic material providing an efficient and parallelizable assembly
algorithm. Fortunately, the research of Jonathan Richard Shewchuk [10] provided us
with the 3-D counterpart of the cotangent method. This method provided with an
efficient and easily calculatable assembly for the stiffness matrix.

Furthermore, we focused on making a code that would emulate and compete the
behaviour of its open source and commercial counterparts. For that purpose, we im-
plemented a subroutine that reads a common .msh file. That is the file type that pro-
fessional and open source software such as FEniCS and VTK . File reading cannot
be performed in parallel by the GPU. Nonetheless, attempts to implement multi-core
CPU parallelization brought an up to four times speed-up in the file reading process.

Concerning the assembly, a more challenging indexing method had to be imple-
mented, in order to account for the bigger size of data. In 2-D each node has on
average 6-10 neighbours. In 3-D this number rises up to 27-30 neighbours. An index-
ing that would guarantee maximal memory economy was therefore imperative. We
managed to create such an indexing patterns of progressive quality and tested the code
for the first time versus existing competitive software. Our software of choise was
FENICS. Its wide usability combined with the positive feedback made the challenge
appealing. The results of the comparison were highly encouraging.

In a domain of over half million nodes and over 2.8 million elements, our code
brought results in under 30 seconds, while the unaccelerated FEniCS solver required
8 minutes and 37 seconds in order to bring results under the same precision rating for
the same solver algorithm (Gauss Seidel).

5.4 Conjugate gradient solver

The 3-D Gauss Seidel solver provided the first evidence of the performance benefits
of parallel programming but the contrast was not especially marked. The third-party
reference solver was configured to use the same linear solver as ours and so its per-
formance was not necessarily reflective of the maximum attainable through a suitably
chosen configuration. What we needed was a code, that would compete and outper-
form available commercial and open source software at its maximum capacity.

Given that the linear system solution part was the most time consuming part of
the code, we decided to pursue more efficient system solvers. The conjugate method,
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as an efficient, parallelizable, iterative Krylov solver was appealing. The standard
algorithm may be stated [5] as follows:

d(0) = r(0) = F

α(i) =
rT(i)r(i)

dT(i)Kd(i)

x(i+1) = x(i) + α(i)d(i)

r(i+1) = r(i) − α(i)Kd(i)

β(i+1) =
rT(i+1)r(i+1)

rT(i)rd(i)

d(i+1) = r(i+1) + β(i+1)d(i)

with K, F and x being the stiffness matrix, the source term and the unknown
function, respectively. The column matrices d and r are generated for the needs of the
algorithm.

The advantage of this algorithm over the Gauss-Seidel approach is that it is divided
into distinct steps that require the completion of the previous, before the next can be
initiated. This way, perfect thread synchronization is accomplished. Race conditions
still exists, but these do not hamper the quality of the output.

Figure 2: The above sketch illustrates the impact of dimensionality on distance to
boundary for similar number of degrees of freedom

The results of that code were highly encouraging. In a domain of over 500, 000
nodes and over 2, 800, 000 elements, the code managed to bring results in under 5 s.
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The code was compared against the third-party code, FEniCS [13] and proved supe-
rior. FEniCS required over 27 seconds to bring results of equal precision.

However, as the number of internal degrees of freedom increases, the maximum
number of edges that must be traversed to reach a Dirichlet boundary increases and
the performance degrades significantly. This was particularly noticeable moving from
a 3-D domain to a 2-D domain of a similar number of elements.

The reasoning behind this lies in the solution update after every iteration under
the Conjugate Gradient algorithm. The nodes begin updating their solutions from the
edges of the domain , with the influence of the boundary conditions on degrees of
freedom progressing inward on successive iterations. Consequently, the bigger the
distance from the boundaries , the more iterations required for the inner nodes to
converge(Figure2).

The standard approach to improving linear solver performance in such situations
is the use of suitable preconditioning. We select a preconditioner matrix M . Of the
suggested preconditioners, the simplest one to use was the diagonal matrix formed
of the diagonal entries of the global stiffness matrix, K, especially well-suited for
our highly parallelized settings. We then follow the Conjugate Gradient algorithm,
modified as follows:

Let r(0) =F and d(0) = M−1r(0)

α(i) =
rT(i)M

−1r(i)

dT(i)Kd(i)

x(i+1) =x(i) + α(i)d(i)

r(i+1) =r(i) − α(i)Kd(i)

β(i+1) =
rT(i+1)M

−1r(i+1)

rT(i)M
−1rd(i)

d(i+1) =M−1r(i+1) + β(i+1)d(i)

The preconditioning provided an impressive speed boost. The code was tested on
a domain of over 1,000,000 nodes and over 2,000,000 elements and brought results
within 18 s. The FEniCS software, when run serially, required over 170 s to bring
comparable results.

6 Plate bending problem

To expand this work in a more mathematically involved and engineering applicable
context, we considered the standard plate bending problem. This involves the calcula-
tion of point-wise displacement and rotation of a flat, horizontal plate under the effect
of vertical forces and having boundary constraints on displacement and certain of its
derivatives. Research into the benefits of parallel programming in the field of plate
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bending is available, but while certain researchers are active in both plate bending and
GPU acceleration patterns [14], publications combining those two fields are limited.

To derive a suitable plate bending element we combined the approaches of a num-
ber of authors [15, 16, 17, 18, 19]. These sources suggested a more efficient means of
attaining the global stiffness matrix than numerical integration. For triangular meshes,
we take shape functions,

N(x, y) = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + a7x
3 + a8(x

2y + xy2) + a9y
3,

where the ai are unknown degrees of freedom. In the quadrilateral case, the shape
functions are chosen to be

N(x, y) = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + a7x
3+

a8x
2y + a9xy

2 + a10y
3 + a11x

3y + a12xy
3.

For our chosen shape functions and degrees of freedom, the mapping from degrees of
freedom to nodal displacements and their derivatives gives rise to local matrices Atri,
for triangular cells, and Aquad, for quadrilaterals, as follows,

Atri =



1 x1 y1 x21 x1y1 y21 x31 x21y1 + x1y
2
1 y31

0 1 0 2x1 y1 0 3x21 2x1y1 + y21 0
0 0 1 0 x1 2y1 0 x21 + 2x1y1 3y21
1 x2 y2 x22 x2y2 y22 x32 x22y2 + x2y

2
2 y32

0 1 0 2x2 y2 0 3x22 2x2y2 + y22 0
0 0 1 0 x2 2y2 0 x22 + 2x2y2 3y22
1 x3 y3 x23 x3y3 y23 x33 x23y3 + x3y

2
3 y33

0 1 0 2x3 y3 0 3x23 2x3y3 + y23 0
0 0 1 0 x3 2y3 0 x23 + 2x3y3 3y23


Aquad =

1 x1 y1 x21 x1y1 y21 x31 x21y1 x1y
2
1 y31 x31y1 x1y

3
1

0 0 1 0 x1 2y1 0 x21 2x1y1 3y21 x31 3x1y
2
1

0 −1 0 −2x1 −y1 0 −3x21 −2x1y1 −y21 0 −3x21y1 −y31
1 x2 y2 x22 x2y2 y22 x32 x22y2 x2y

2
2 y32 x32y2 x2y

3
2

0 0 1 0 x2 2y2 0 x22 2x2y2 3y22 x32 3x2y
2
2

0 −1 0 −2x2 −y2 0 −3x22 −2x2y2 −y22 0 −3x22y2 −y32
1 x3 y3 x23 x3y3 y23 x33 x23y3 x3y

2
3 y33 x33y3 x3y

3
3

0 0 1 0 x3 2y3 0 x23 2x3y3 3y23 x33 3x3y
2
3

0 −1 0 −2x3 −y3 0 −3x23 −2x3y3 −y23 0 −3x23y3 −y33
1 x4 y4 x24 x4y4 y24 x34 x24y4 x4y

2
4 y34 x34y4 x4y

3
4

0 0 1 0 x4 2y4 0 x24 2x4y4 3y24 x34 3x4y
2
4

0 −1 0 −2x4 −y4 0 −3x24 −2x4y4 −y24 0 −3x24y4 −y34


To obtain the strains from the displacements and derivatives, we require a transforma-
tion. For the quadrilateral case, this is as follows,

Hquad =

0 0 0 −2 0 0 −6x −2y 0 0 −6xy 0
0 0 0 0 0 −2 0 0 −2x −6y 0 −6xy
0 0 0 0 −2 0 0 −4x −4y 0 −6x2 −6y2
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The matrix B = H × A−1 may then be applied to a degree of freedom vector to give
local strains. Our elasticity tensor E, which converts those strains to the point-wise
stresses, is defined to be (in the case of plane strain),

E =

1 − ν ν 0
ν 1 − ν 0
0 0 0.5 − ν


where ν is Poisson’s ratio for elastic deformation. The local stiffness matrix may then
be defined as,

K =

∫∫
BTEBdxdy (9)

For triangular elements, we performed this integration analytically by classifying tri-
angles in the xy plane into three types: those with two edges joining a vertical edge to
their right, those with two edges joining a vertical edge to their left, and all other trian-
gles. In the case of quadrilateral elements, we included a restriction to rectilinear cells,
allowing us to again analytically integrate. This provided us with local contributions
to build the global stiffness matrix.

Testing the code with the appropriate force vector at the RHS, and solving the
code by implementing the Preconditioned Conjugate Gradient Algorithm, the code
quickly bore reliable results. The assembly time was reduced to below 0.001 second
outperforming the available professional and open-source software, Visual FEA and
Nastran.

7 Conclusion

Our 12-month research provided us with useful material both for application, as well
as educational purposes. We provided an overview of the PDE Problems and demon-
strated the Finite Element Method as a viable approach to approximate the solution.

We conducted a thorough research on the Poisson Equation and explored new, more
efficient ways to implement the finite element method. We utilized the Cotangent
Method and attained a monumental speed-up in the assembly process. We formulated
a series of solvers both in 2-D and 3-D and effectively managed to outperform their
professional and open-source counterparts.

With this success at hand, we moved forward to produce a series of GPU acceler-
ated solvers for the plate bending problem. By implementing an assembly method that
partially bypasses the shape function formation, we managed to create an accurate,
time efficient and memory efficient assembly algorithm. Once again, the accelerated
code managed to over perform the competitive software, especially in the assembly
part of the code.

With this success at hand, we can conclude that GPU acceleration is a very efficient
way to improve the performance and memory economy of current and future solvers.
Having accumulated a series of functional and efficient solvers, we can now move
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on and prepare a solver for the membrane stress problem for the ultimate purpose of
combining membrane stress and plate bending in one coherent shell element.
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