
Enhanced sparse component analysis for operational modal
identification of real-life bridge structures

Xu, Y., Brownjohn, J. M. W., & Hester, D. (2019). Enhanced sparse component analysis for operational modal
identification of real-life bridge structures. Mechanical Systems and Signal Processing, 116, 585-605.
https://doi.org/10.1016/j.ymssp.2018.07.026

Published in:
Mechanical Systems and Signal Processing

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2018 Elsevier.
This manuscript is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs License
(https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the
author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team.  We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:04. May. 2024

https://doi.org/10.1016/j.ymssp.2018.07.026
https://pure.qub.ac.uk/en/publications/278938ee-7504-4d6a-a33f-6ec85f8b575f


Enhanced sparse component analysis for operational modal identification of real-life bridge structures 1 

 2 

Yan Xua, James Brownjohna, David Hesterb 3 
aVibration Engineering Section, College of Engineering, Mathematics and Physical Sciences, 4 

University of Exeter, UK 5 

bSchool of Natural and Built Environment, Queen’s University Belfast, UK 6 

 7 

Abstract: 8 

Blind source separation receives increasing attention as an alternative tool for operational modal 9 

analysis in civil applications. However, the implementations on real-life structures in literature are rare, 10 

especially in the case of using limited sensors. In this study, an enhanced version of sparse component 11 

analysis is proposed for output-only modal identification with less user involvement compared with the 12 

existing work. The method is validated on ambient and non-stationary vibration signals collected from 13 

two bridge structures with the working performance evaluated by the classic operational modal analysis 14 

methods, stochastic subspace identification and natural excitation technique combined with the 15 

eigensystem realisation algorithm (NExT/ERA). Analysis results indicate that the method is capable of 16 

providing comparative results about modal parameters as the NExT/ERA for ambient vibration data. 17 

The method is also effective in analysing non-stationary signals due to heavy truck loads or human 18 

excitations and capturing small changes in mode shapes and modal frequencies of bridges. Additionally, 19 

closely-spaced and low-energy modes can be easily identified. The proposed method indicates the 20 

potential for automatic modal identification on field test data. 21 

 22 

Keywords: Blind source separation; sparse component analysis; operational modal identification; non-23 

stationary signals. 24 

1 INTRODUCTION 25 

Operational modal analysis (OMA) is targeted at identifying modal characteristics from only response 26 

measurements of structures under ambient or natural excitation [1] and has many applications such as 27 

for structural identification, vibration-based health monitoring and damage detection, etc.  28 

Several algorithms have been developed for OMA, including natural excitation technique combined 29 

with the eigensystem realisation algorithm (NExT/ERA) [2,3], stochastic subspace identification (SSI) 30 

approaches [4] and a general auto-regression moving average (ARMA) model [5] in time domain and 31 

frequency domain decomposition [6] in frequency domain. Most of them are parametric identification 32 

methods based on a mathematical model representing the physical phenomenon of structural dynamics. 33 

Their applications are limited to certain situations (e.g. ambient and free vibration signals) due to the 34 

model assumption regarding the nature of excitation forces (e.g. a broadband uncorrelated random 35 



process). In addition, the working performance is sensitive to some model parameters (e.g. model order) 36 

and the parameter selection is dependent on users’ subjective judgement. 37 

Hilbert Huang transform (HHT) [7–9] is a parameter-free time-frequency analysis tool for modal 38 

identification which is capable of dealing with nonlinear and nonstationary signals. One critical step in 39 

the HHT is empirical mode decomposition (EMD), i.e. decomposing one multi-component signal into 40 

a series of mono-component signals. The decomposition process exploits no joint information between 41 

multiple measurement channels and might derive modal responses involving mode mixing [10]. 42 

Improved work has been performed by proposing the ensemble EMD [11] and multivariate EMD [12,13] 43 

to overcome limitations. 44 

Blind source separation (BSS) offers an alternative for OMA, belonging to non-parametric 45 

identification methods. BSS originates from the audio signal processing field for de-mixing audio 46 

sources from recordings via a mixing matrix. Its physical interpretation for OMA is that with the modal 47 

responses regarded as virtual sources, the mixing matrix is mapped directly to structural vibration 48 

modes [14]. BSS is classified into two types, overdetermined and undetermined cases depending on the 49 

provided measurement channels compared to the number of active modes. Underdetermined BSS is 50 

suitable for civil applications with limited sensors available and has been addressed by different 51 

methods such as sparse component analysis (SCA) and tensor decomposition.  52 

The SCA makes use of sparseness in the transformed domain i.e. the time-frequency (TF) domain for 53 

decomposition. The sources are assumed to be sparsely represented after the TF transform e.g. short-54 

time Fourier transform (STFT) [15] [16] [17], wavelet packet transform [18] and quadratic TF transform 55 

[19]. A mixing matrix (or mode shapes) is estimated using clustering algorithms (e.g. hierarchical 56 

clustering [15], K-hyperline clustering [16], K-means clustering [17] [19] and Fuzzy C-means 57 

clustering [20]) on scatter plots of measurement signals in the transformed domain. Given the mixing 58 

matrix, source signals can be reconstructed based on the source sparsity using 1l  norm minimisation [16] 59 

[20], smoothed zero-norm algorithm [15] or subspace-based algorithm (by identifying active sources at 60 

TF points and estimating the energy each of these sources contributes) [19]. With the source signals (or 61 

modal responses) available, modal frequencies and damping ratios can be estimated using either single-62 

mode curve fitting in frequency domain or logarithmic decrement method in time domain. The SCA 63 

has been implemented for OMA on a cantilever beam structure [16], a laboratory tower structure under 64 

narrow-band excitations [18] and a column structure in temperature-varying environment [17] with the 65 

working performance evaluated against identification using SSI [16]. 66 

Tensor decomposition method is an alternative for the underdetermined BSS based on the assumption 67 

that source signals are uncorrelated among different channels but correlated individually in time [21]. 68 

The main idea is to decompose the third-order tensor representation (i.e. spatial covariance matrices of 69 

observation signals for different time lags) into a linear combination of a minimal number of rank-1 70 

terms by means of an alternating least squares algorithm. The derived mixing matrix and auto-71 



covariance of modal responses can be used for modal parameter estimation. The method has been 72 

validated at being effective when analysing ambient vibration signals [22], earthquake responses [23] 73 

as well as human-induced vibrations [24] [25].  74 

Although there are already a few studies implementing the underdetermined BSS for OMA, most of 75 

these are numerical and laboratory studies, while field tests are rare except on two footbridges [25,26], 76 

one tower structure [27] and two buildings [28,29]. There is no further study to investigate whether the 77 

underdetermined BSS method is capable of offering an effective alternative to classic OMA methods 78 

on field testing data, especially non-stationary vibration signals. 79 

In this study, an enhanced method based on the SCA is proposed for OMA suitable for field applications. 80 

In this method, a novel procedure of the two-step clustering is involved to ensure an automatic and 81 

robust estimation of mode shapes that is the basis for the accurate estimation of modal parameters. 82 

The proposed method is validated on two full-scale in-operation bridges in both ambient and non-83 

stationary vibrations (i.e. due to heavy truck loads or passing pedestrians). Wired and wireless 84 

accelerometer sensors with different accuracy levels were used for data acquisition to test the sensitivity 85 

of the proposed method to noise level. Closely-spaced and low-energy modes that are common for 86 

footbridges are considered based on the recorded data. The working performance of the proposed 87 

method is evaluated by comparing with the classic OMA methods i.e. NExT/ERA and SSI.  88 

To that end, section 2 introduces the main methodologies of the proposed OMA method based on the 89 

SCA and improvements, mainly in the clustering step, to ensure a robust estimation of mode shapes. 90 

Section 3 describes a validation study on ambient vibrations of a short-span road bridge and evaluates 91 

the performance through comparing the results with those using the NExT/ERA algorithm. Section 4 92 

describes a load test on the same bridge and investigates the feasibility of the proposed method on non-93 

stationary signals. Section 5 analyses non-stationary vibration data from a footbridge under pedestrian 94 

excitation and validates the effectiveness of the proposed method for vibration signals under narrow-95 

band excitation and for extracting closely-spaced modes.  96 

2 ENHANCED SPARSE COMPONENT ANALYSIS FOR OMA 97 

The BSS is a powerful tool for separating mixed signals when the sources and the mixing methodology 98 

are unknown. The simple form of BSS in the noiseless case is to determine a mixing matrix A (using 99 

statistical and data structure information [30]) and to recover the M-component source data s  from 100 

their linear mixture in the N-component observational data X , expressed as 101 

 ( ) A ( )t tX s . (1) 102 

Consistent with the expression in BSS, the vibration measurement X  could be decomposed via the 103 

mode shape matrix Φ  into single-mode response signals ( )q t , similar to the BSS expression in 104 

Equation (1).  105 

 ( ) ( )t q tX Φ . (2) 106 



Thus, BSS methods have been successfully utilised for OMA [30], i.e. estimating mode shapes and 107 

identifying modal parameters from the recovered single-mode response signals ( )q t . 108 

The case of underdetermined BSS, where the number of active modes is larger than the number of 109 

measurement channels (M>N), is common for civil applications. To solve the underdetermined BSS 110 

problem, the SCA provides a simple framework based on source sparseness [31]. The main algorithms 111 

and procedures of the SCA are presented in section 2.1; and an enhanced SCA targeted for OMA in 112 

civil applications is described in section 2.2. 113 

2.1 Sparse component analysis for OMA 114 

SCA is a relatively simple tool for separating a number of sources from observed mixtures, primarily 115 

for underdetermined cases. The underlying assumption is data sparsity, e.g. at each point t, a single 116 

source is significantly more active than others [31]. In a scatter plot of observational data mixtures, the 117 

collection of points dominated by the same source signal forms into one straight line passing the origin 118 

and could be separated as one cluster with the line direction representing the mixing vector. 119 

The original form of data mixture generally does not fit the assumption about sparsity. Figure 1(a) 120 

demonstrates the temporal scatter plot of two mixture signals ( 1( )x t  and 2 ( )x t ) from five sources (data 121 

from the numerical example in section 2.3). The figure indicate no apparent line alignment and the 122 

sources could not be regarded as disjoint support in time domain. Therefore, a pre-processing step i.e. 123 

sparse signal representation is essential before any clustering.  124 

 125 

Figure 1 Scatter plots of two-channel signals (involving five sources) in time domain (a) and frequency domain 126 

(b). 127 

A sparse representation of observed mixtures could facilitate the mixing matrix estimation. Linear time-128 

frequency (TF) transforms like short-time Fourier transform (STFT) and wavelet transform are 129 

commonly applied to measured signals of each channel ( :c  X X ) for sparsity. Through the linearity 130 

of the transform, the source separation problem has an exact analogue in the transformed domain as 131 

 ( ) A ( )C k C k X s  (3) 132 



and the sources ( )C k
s  in the transformed domain are expected to be reasonably disjoint. Figure 1 (b) 133 

presents the TF scatter plot of the two-channel signals, indicating approximately directions of five 134 

aligned straight lines. 135 

The second step of SCA consists of estimating the mixing matrix by means of clustering from a scatter 136 

plot of the TF coefficients  ( )C k
X . The performance of mixing matrix estimation using a clustering 137 

algorithm degrades when the sources are non-disjoint in the transformed domain. This problem could 138 

be resolved by refining the TF coefficients  ( )C k
X  for clustering through detecting only single source 139 

points (SSPs) i.e. where a single source dominates. The common criteria for SSP detection include the 140 

complex ratio of the mixtures over a small window in the transformed domain [17,32] and directional 141 

alignment of the real and imaginary parts of TF coefficients [33][15]. Scatter plots of sparse coefficients 142 

 ( )iC k
X  yield clear lines of orientation corresponding to the vectors constituting the mixing matrix. 143 

For convenience, unit vectors of the normalised TF coefficients  ( )iC k
X  are imported for 144 

classification with cluster centroids denoting the mixing matrix or mode shapes directly. Clustering 145 

algorithms used for OMA applications include hierarchical clustering algorithm [33][15], K-means 146 

algorithm [17][19], K-hyperline clustering [16] and Fuzzy C-Means clustering [20]. 147 

Given the estimated mixing matrix Â, the source TF representation ( )C k
s  in Equation (3) is estimated 148 

based on the source sparsity by finding the solution that minimises the ql  norm [34], 149 

 ˆ ( ) : arg min
q

C k C s s  subject to Â ( ) ( ),C k C k s X              1q  . (4) 150 

For example, 1l  norm minimisation could be interpreted as a maximum likelihood estimate of source 151 

TF coefficients assuming the coefficients have a Laplacian distribution. The sparsity criteria used in 152 

literature include 1l  norm [16,20] and an improved 0l norm named smoothed zero norm algorithm [15]. 153 

In the fourth step, source signals are reconstructed to the time domain by inverse TF transform. Finally, 154 

the modal parameters can be extracted from source signals (modal responses) by using either single-155 

mode curve fitting in frequency domain or logarithmic decrement method in time domain. The SCA 156 

flowchart is summarised in Figure 2; further details can be found in [17][31]. 157 

 158 



Figure 2 Flowchart of the SCA for OMA (modified from Figure 10.2 in [31]). 159 

2.2 Enhanced sparse component analysis 160 

Accurate estimates of mode shapes in the second step are critical for the robustness of source separation 161 

that has direct influence on the accuracy of identified modal parameters. The existing problem in the 162 

SCA method for OMA is that some mode shapes of a structural system estimated based on limited 163 

sensors are of high similarity and might be incorrectly assigned to one cluster, contributing together for 164 

the estimation of a single mode shape. For example, torsion modes could not be distinguished from 165 

bending modes by the SCA method when sensors for data collection are located on one longitudinal 166 

side of a bridge structure. 167 

Compared with existing work [15–20] implementing the SCA method for OMA, the proposed method 168 

in this study made improvement to the second step, mode shape estimation. To overcome the ambiguity 169 

of mode shape representation using limited sensors, a novel two-step clustering procedure is shown in 170 

Figure 3, i.e. first clustering frequency values  ( )f k and then clustering TF coefficients  ( )C k
X . 171 

After TF transform of measurement signals in the first step, both the TF coefficients  ( )C k
X  and the 172 

corresponding frequency values  ( )f k  are stored for analysis. The SSPs are detected using a threshold 173 

angle   based on directional alignment of the real parts (  ( )R C k
X ) and the imaginary parts 174 

(  ( )I C k
X ) in TF coefficients [33] expressed as 175 

 
   
   

( ) ( )
cos( )

( ) ( )

T
R C k I C k

R C k I C k


 

 
 



X X

X X

. (5) 176 

Instead of clustering TF coefficients directly for mode shape estimation, a frequency-clustering step is 177 

added to avoid any ambiguity of mode shape representation. The stored frequency values of these 178 

identified SSPs are analysed first using hierarchical clustering, leading to a few groups of SSPs with 179 

different frequency ranges. Since similar modes based on limited sensors usually have apparent 180 

deviations in modal frequency values, the purpose of this step is to separate them into different groups 181 

before clustering TF coefficients. Note that this step is not aimed at modal frequency estimation and 182 

also it is acceptable to include several closely-spaced modes into one group. 183 

For each group of SSPs, the normalised TF coefficients are clustered to identify mode shape candidates 184 

which are real-valued. Implementation of some clustering methods used in literature like K-means and 185 

Fuzzy C-Means requires prior specification of the number of clusters. This is problematic as the existing 186 

mode number in measurement signals is unknown before the analysis. Another problem in these 187 

methods is the sensitivity to the initialisation and that poor choices of initialised cluster centroids can 188 

lead to sub-optimal configuration of cluster assignment.  189 



In this study, a probabilistic method using Dirichlet process mixture models [35] is used for cluster 190 

analysis of the TF coefficients. The main idea of this method is to fit the data to a Dirichlet process 191 

mixture model (i.e. an infinite mixture model) that maximises the overall posterior probability of cluster 192 

assignment. As a random variable in the model, the number of clusters is estimated as an intrinsic part 193 

of the algorithm. This clustering method has been validated to be robust to the presence of outliers (by 194 

assigning them into separate clusters) [35] that is common for data collected from field tests. Detailed 195 

description of this method is in the reference [35]. 196 

Among the extracted mode shape candidates, outliers are automatically removed according to a 197 

minimum sample number and statistical information about sample distribution in each cluster using two 198 

parameters, standard deviations of modal frequency values and standard deviations of point distance to 199 

the cluster centroid. 200 

Procedures (steps 3-5) after mode shape estimation follow the SCA flowchart in Figure 2. 201 

  202 

Figure 3 Procedures of mode shape estimation using two-step clustering proposed in this study 203 

2.3 Numerical illustration 204 

A five degree-of-freedom (DOF) building model [25] is set up to validate the proposed method. The 205 

natural frequencies are 0.91 Hz, 3.37 Hz, 7.11 Hz, 10.66 Hz and 12.73 Hz while damping ratios are 206 

assumed as 2% in all modes. The system is excited by white noise (zero mean unit variance Gaussian 207 

process) at all the five floor level and integration scheme based on state space representation is 208 

implemented to obtain the time-history responses of the system at the sample rate of 128 Hz. White 209 

noise is added to the simulated acceleration data and the noise level is taken as 5% root mean square 210 

(RMS) noise-to-signal ratio. 211 

Acceleration data with the duration of 60 s for the bottom three floors are used in modal analysis. The 212 

data are firstly transformed to TF coefficients using the STFT with the sliding (Hamming) window 213 

length of 1024 and window shift size of 2. SSPs are then detected based on the specified threshold (4 214 

degrees) related to directional alignment of TF coefficients in Equation(5). For those SSPs, the real and 215 

imaginary parts of TF coefficients are collected together for the two-stepping clustering. Hierarchical 216 

cluster analysis is applied to SSP frequency values, classifying the SSPs into five groups with the 217 

frequency centroids at 0.95 Hz, 3.32 Hz, 7.09 Hz, 10.60 Hz and 12.66 Hz, respectively. The clustering 218 



algorithm in [35] is then implemented for each frequency group to classify TF coefficients. Outliers are 219 

automatically removed based on the criterion for cluster distribution, i.e. minimum sample number 220 

(e.g. >100), standard deviation of modal frequency values (<0.05) and standard deviation of point 221 

distance to cluster centroid (<0.05). Five clusters (i.e. 0.92 Hz, 3.39 Hz, 7.07 Hz, 10.70 Hz and 12.64 222 

Hz) are derived with the corresponding mode shapes indicated in Figure 4. Dot markers represent 223 

estimated mode shape ordinates using the enhanced SCA method while the solid curves are the 224 

theoretical ones taken as the reference. Compared with the reference, the estimation results have the 225 

MAC values over 99.8%. For comparison, two other window functions (i.e. rectangular and Hann) are 226 

implemented in the STFT for TF transform. The achieved MAC values using either window function 227 

are high (over 99.6%) for all the five modes. Thus, the method is not sensitive to the window function 228 

chosen for STFT. 229 

 230 

Figure 4 Mode shapes of a 5-DOF building system: solid curves represent the reference mode shapes in the 231 

simulation; and dot markers denote the modal shape ordinate estimated by the enhanced SCA method using three-232 

channel acceleration data. Modal assurance criteria (MAC) compared with the reference mode shapes are given 233 

in subplot titles. 234 

Given the mode shape matrix, the source TF representation is separated based on 1l  norm minimisation 235 

using an open source package SPGL1 [36,37] and then recovered to the time domain using inverse 236 

discrete Fourier transform. Figure 5 shows the estimated sources and the corresponding auto-spectral 237 

densities (ASD), indicating that the five sources are clearly identified using three-channel measurement. 238 



 239 

Figure 5 Five source signals recovered from three-channel measurement using the enhanced SCA method (the left 240 

column) and the corresponding auto-spectral densities (the right column). 241 

TF transform representation is the necessary step in the SCA method for data sparsity. The simplest TF 242 

transform (i.e. STFT) is demonstrated to be effective in this numerical example and will be used with 243 

field data as described in sections 3 to 5, although there are other feasible alternatives e.g. wavelet 244 

packet transform [18] and quadratic TF transform [19]. 245 

Application to field test data collected from two bridges is described next. In section 3, the enhanced 246 

SCA method is firstly validated for OMA of a short-span road bridge using data collected by wired and 247 

wireless accelerometer sensors. The feasibility of the proposed method for analysing non-stationary 248 

vibration data is investigated in section 4 using the data from the same bridge under a heavy truck 249 

passage, while section 5 employing human-induced vibration data from a footbridge. 250 

3 FIELD TEST ON A ROAD BRIDGE DURING NORMAL OPERATION 251 

This section reports the validation study of the enhanced SCA method for OMA on a short-span road 252 

bridge. The extracted modal parameters using the new method are evaluated through comparison with 253 



the results by the NExT/ERA procedure [38]. NExT/ERA operational modal analysis procedure is 254 

chosen as the reference due to its long experience of use and availability in a custom software [39]. 255 

Essentially, section 3.1 introduces the test configuration on the bridge and demonstrates the 256 

measurement results. Modal analysis results using enhanced SCA are described in section 3.2 for mode 257 

shape estimation and in section 3.3 for modal parameter extraction.  258 

3.1 Test configuration and measurement results 259 

Station Road Bridge in Figure 6(a) is a steel girder bridge with 36 m span near Exeter St David’s railway 260 

station. A modal test was performed on the bridge (also reported in [40]) using two types of sensors, 261 

wired Honeywell QA-750 accelerometers and APDM OpalTM wireless inertial measurement units 262 

(IMUs). 263 

The QA-750 accelerometers are DC-response devices with a resolution better than 1 μg and sensor 264 

noise floor better than 7 μg / Hz  in 0-10 Hz band from manufacture data. The IMU Opal sensor 265 

includes a tri-axial accelerometer with the resolution of 240 μg and 730 μg for the sensing ranges of ±2 266 

g and ±6 g, respectively and noise floor one or two orders of magnitude inferior to the QAs. 267 

Sensors were arranged in six test points on the bridge, ¼ points (TP1 and TP4), mid-span (TP2 and TP5) 268 

and ¾ points (TP3 and TP6) of north and south sides, as indicated in Figure 6(b). With four QA 269 

accelerometers available, two runs of recordings were performed to cover all the six test points: two 270 

QAs were kept at the same locations (TP3 and TP5) while the other two were moved from TP1 and TP2 271 

in the first run to TP4 and TP6 in the second run. Six Opal sensors were arranged in the six test points 272 

with one run of data recorded directly to the memory of each IMU. The sample rates for two sensing 273 

systems were both set as 128 Hz. 274 

(a) 275 

 276 

(b) 277 

 278 

Figure 6 Bridge information and test point locations: (a) bridge elevation taken from the north side of the bridge; 279 

and (b) configuration of test points for accelerometer sensors. 280 



The vertical acceleration signals from a 15-minute recording are truncated for the modal analysis. 281 

Vibration data collected by a QA accelerometer at TP3 in Run 1 are demonstrated in Figure 7 as an 282 

example. The experienced maximum acceleration reaches 0.43 2m/s  and the auto-spectral density 283 

(ASD) indicates five modes lower than 18 Hz at approximately 3.1 Hz, 5.0 Hz, 7.5 Hz, 11.4 Hz and 284 

13.7 Hz. 285 

 286 

Figure 7 Time histories of vertical acceleration and the corresponding auto-spectral density (ASD) at test point 287 

TP3 in Run 1 by QA accelerometer.  288 

3.2 Estimation of mode shapes by enhanced SCA method 289 

The vibration data collected by QA and Opal sensors were analysed following the procedures of the 290 

enhanced SCA method in section 2.2. Firstly, the acceleration data were transformed to the TF domain 291 

by STFT using Hamming windows with the window length 14400 and the hop size 20 (i.e. the number 292 

of samples between the begin-steps of adjacent windows). 293 

The second step is to estimate mode shapes using TF coefficients of the SSPs. The SSPs were detected 294 

based on directional alignment of the real and imaginary parts in TF coefficients using a threshold angle 295 

 . A smaller threshold angle   corresponds to imposing a tougher requirement on the qualified 296 

SSPs, leading to a smaller number of SSPs. The specified angle   for QA data is 2 degrees providing 297 

45088 SSPs while the same value applied to Opal data leads to only 52 qualified SSPs and then failure 298 

of cluster analysis. A large value for   (5 degrees) was taken to analyse the Opal data, providing 299 

5544 qualified SSPs. 300 

The two-step clustering results for the detected SSPs are shown in Figure 8: X and Y axes correspond 301 

to the frequency values (lower than 20 Hz) and the normalised TF coefficients at the test point TP3.  302 

 The QA data in Run 1 are assigned to five groups shown in (a) with frequency centroids at 3.10 Hz, 303 

4.98 Hz, 7.51 Hz, 11.41 Hz and 13.81 Hz, similar to observations from ASD plot in Figure 7 (b). 304 

 Analysis results for QA data in Run 2 shown in (b) are similar to (a) but with slight difference in 305 

frequency centroid values.  306 

 In (c), Opal data are assigned to four groups at 3.10 Hz, 4.90 Hz, 7.52 Hz and 13.71 Hz. For the 307 

SSPs in every cluster, the normalised TF coefficients (along the y axis) have larger variation ranges 308 



compared with QA results possibly due to a more flexible criterion (higher threshold angle) on SSP 309 

detection. One cluster near 11.41 Hz that is visible from QA data is missed by Opal data. 310 

 311 

Figure 8 Clustering results about normalised TF coefficients from acceleration measurement: (a) clustering results 312 

for acceleration measurement in Run 1 by QA accelerometers; (b) clustering results for acceleration measurement 313 

in Run 2 by QA accelerometers; and (c) clustering results for acceleration measurement by Opal IMUs. 314 

For each cluster, the centroid of normalised TF coefficients represents directly one mode shape vector 315 

at test points. Mode shape vectors in two runs of QA measurement were merged based on the two 316 

reference test points with the results shown in the left column of Figure 9. In the figure, the red lines 317 

with circular markers and the black lines with ‘x’ shaped markers represent the mode shape ordinate of 318 

the two longitudinal sides of the bridge in the north and south, respectively. Subplots (b) and (e) indicate 319 

the first two torsion modes of the bridge while the other three are bending modes. 320 



The mode shapes estimated from QA data using NExT/ERA procedures in [40] are taken as the 321 

reference to evaluate the estimation accuracy of the enhanced SCA method. For QA data, all the 322 

extracted five modes indicate high similarity with the reference and the modal assurance criteria (MAC) 323 

reach over 99.96%. In Run 1, four QA sensors were located at the three test points (i.e. ¼, ½ and ¾ 324 

span) in the north side, and the ½ span point in south. Based on four channel measurement, mode shape 325 

vectors of the third bending and first torsion modes (Figure 9(c) and (e)) are of high similarity and might 326 

be judged as one mode using traditional SCA method. The enhanced SCA method employs a two-step 327 

clustering procedure for automatic classification without any signal pre-processing and captures all the 328 

modes of interest accurately. It indicates that the proposed method is effective for the underdetermined 329 

case using limited sensors. 330 

The mode shapes extracted from Opal IMU data are indicated in the right column of Figure 9. Compared 331 

with the reference, the estimation results have the MAC values over 99.2%. The third bending mode at 332 

approx. 11.41 Hz is missed due to a small number (< 100) of SSPs available in the adjacent frequency 333 

range. 334 

 335 

Figure 9 Estimated mode shapes by the enhanced SCA method: the left column corresponds to the first five modes 336 

of the bridge estimated from QA data (a-e); and the right column corresponds to the four modes of the bridge 337 

estimated from Opal IMU data (f-i). Dashed lines denote initial location of the bridge, solid lines with circular 338 

markers denote the mode shape ordinate of the north side of the bridge (TP1~3) and solid lines with ‘x’ shaped 339 

markers denote the mode shape ordinate of the south side of the bridge (TP4~6). The modal assurance criteria 340 

(MAC) compared with the mode shapes estimated by NExT/ERA method using QA measurement data [40] are 341 

given in the subplot titles. 342 



3.3 Extraction of modal parameters 343 

Given the estimated mode shapes, the TF representations of modal responses were separated based on 344 

1l  norm minimisation using a MATLAB toolbox for the SPGL1 solver [36,37] and then reconstructed 345 

to the time domain by inverse STFT. 346 

QA acceleration data covering a free decay period were truncated for modal parameter estimation with 347 

the duration of 22 seconds, presenting in the left column of Figure 10. The modal responses were 348 

separated from the measurement signals based on the estimated mode shapes. Due to the existence of 349 

very similar mode shapes that are indistinguishable using four test points, the output of modal responses 350 

might carry two or more frequency components and are not necessarily single degree-of-freedom 351 

signals. Hence a band-pass filter with the bandwidth of 2 Hz around the frequency value of a cluster 352 

centroid (in section 3.2) was applied to the modal response with the results shown in the right column 353 

of Figure 10. 354 

The modal frequencies were estimated by the peak-picking method from the auto-spectral densities of 355 

the filtered modal responses. The damping ratios were derived from the free decay parts using the 356 

logarithmic decrement method and the fitted envelopes are indicated as red lines in modal response 357 

plots. The estimation results of modal parameters are given in Table 1 compared with those by the 358 

NExT/ERA method in [40]. The frequency estimates match very well with difference within 0.3%. 359 

Although the estimated damping ratios are much smaller than the values by the NExT/ERA method, 360 

the estimates from free-decay signals in this study could be reliable since the fitted envelops of damped 361 

vibration curves in Figure 10(e) to (i) match very well with the actual ones.  362 



 363 

Figure 10 Truncated 22 s signals of QA acceleration measurement in Run 1 and the corresponding modal response 364 

signals separated by 1l  norm minimisation: the left column (a-d) corresponds to acceleration measurement by four 365 

QA accelerometers at test locations TP1, TP2, TP3 and TP5; and the right column (e-i) corresponds to the modal 366 

response signals separated by the SCA method after implementing a band-pass filter with the bandwidth of 2 Hz 367 

around the modal frequencies. Logarithmic decrement method is used for damping ratio estimation with the fitted 368 

envelops (red lines) indicated in modal response plots (in the right column). 369 

Table 1 Modal frequencies (f) and damping ratios ( ) of the first five modes estimated by the enhanced SCA 370 

method and the NExT/ERA procedure [40] using QA data 371 

Mode 
number 

Enhanced SCA NExT/ERA 

f (Hz)   f (Hz)   

1 3.09 0.60% 3.10 1.75% 

2 4.94 0.58% 4.94 0.99% 

3 7.47 0.69% 7.47 1.07% 

4 11.34 1.08% 11.35 1.87% 

5 13.81 0.52% 13.78 0.84% 



After validating the enhanced SCA method for the OMA of ambient vibration of a road bridge, the 372 

proposed method is applied to modal identification of truck-induced non-stationary vibration data for 373 

the same bridge in section 4 and then for pedestrian-induced vibration data of a footbridge in section 5. 374 

4 FIELD TEST ON A ROAD BRIDGE DURING HEAVY TRUCK PASSAGE 375 

Some of the classic OMA methods like the NExT and SSI impose the assumption of stationary 376 

excitation process and thus are challenging for analysing non-stationary signals such as truck-induced 377 

and human-induced vibrations. The SCA-based method is feasible in this case because the underlying 378 

assumption for the SCA is essentially geometrical about the sparsity of sources [31]. 379 

In this section, the enhanced SCA method is implemented for the modal identification of non-stationary 380 

signals recorded on a road bridge (the same bridge as in section 3) under heavy truck passages. Section 381 

4.1 introduces the test configuration on the bridge and demonstrates the measurement results while 382 

section 4.2 presents the estimated results of mode shapes using the enhanced SCA method. The step of 383 

modal parameter estimation is not presented in this section as it is very similar to the content in section 384 

3.3. 385 

4.1 Test configuration and measurement results 386 

The truck used in the test had a total weight of 32 t with four axles shown in Figure 11(a). Sensors used 387 

for recording consisted of four QA accelerometers located at the ¼ point (TP1), mid-span points (TP2 388 

and TP5), and ¾ point (TP3) in Figure 11(b). The sample rate was set as 256 Hz. The truck passed the 389 

bridge, without stopping, from the west to the east using the north lane in Run 1 and from the east to 390 

the west using the south lane in Run 2. 391 

(a) 392 

 393 

(b) 394 



 395 

Figure 11 Truck information and test point locations: (a) the truck used in the test; and (b) locations of four QA 396 

accelerometers and truck passage routes in two runs. 397 

Vibration data during the truck passages were truncated for the analysis. The time series data at TP3 in 398 

two runs are shown in Figure 12 (a) and (c) and the maximum acceleration experienced was 0.33 2m/s  399 

and 0.70 2m/s , respectively. Auto-spectral densities of the signals shown in (a) and (c) are estimated 400 

using the Welch’s method and the results are shown in Figure 12(b) and (d) respectively. Modes that 401 

received more energy in Run 1 are the second bending mode at 7.5 Hz and the second torsion mode at 402 

13.8 Hz while the first torsion mode at 4.95 Hz becomes more apparent in Run 2. This is likely related 403 

to the fact that during Run 2 the truck was closer to the edge of the deck than in is in Run 1 due to the 404 

narrower footpath on the south side of the bridge. Two or three peaks with high energy are observed 405 

near 13.8 Hz that indicate the non-stationary and time-varying feature of the vibration signals. 406 

 407 



Figure 12 Vertical acceleration measurement at TP3 during the truck passages in two runs and the corresponding 408 

auto-spectral densities: (a) acceleration measurement recorded when the truck passed the bridge from the west to 409 

the east in Run 1; (b) auto-spectral densities of acceleration data in (a); (c) acceleration measurement recorded 410 

when the truck passed the bridge from the east to the west in Run 2; and (d) auto-spectral densities of acceleration 411 

data in (c). 412 

4.2 Estimation of mode shapes by enhanced SCA method 413 

Mode shapes of the bridge were estimated following the procedures of the enhanced SCA method in 414 

section 2.2. The TF transform applied to vibration data is STFT using Hamming windows with the 415 

window length 5760 and the hop size 2. The threshold angle   for SSP detection was taken as 2 416 

degrees, same as in section 3.2. 417 

Table 2 provides the estimation results of modal frequencies and also the MAC values compared with 418 

the references that are mode shapes estimated in section 3 using QA data.  419 

 For the first bending mode initially at 3.09 Hz, three mode shapes in Run 1 at 2.11 Hz, 2.57 Hz and 420 

3.09 Hz are observed reaching high MAC values (>99.5%) compared with the reference. In Run 2, 421 

four modes at 2.29 Hz, 2.59 Hz, 3.08 Hz and 3.27 Hz are identified with similar mode shapes as 422 

the reference. Initially the appearance of multiple frequencies that have the same apparent mode 423 

shape is surprising. However, it is to do with the fact that when the truck is on the bridge, the 424 

frequencies of this coupled system consisting of the vehicle and the bridge can vary with truck 425 

position, resulting in a non-stationary vibration signal. This phenomena is not the focus of this paper 426 

so is not discussed further here, but has been reported in detail in [41]. 427 

 For the first torsion mode initially at 4.94 Hz, the mode shape estimates at 4.53 Hz from the data in 428 

Run 1 has the MAC of 95.87%. In Run 2, two modes at 4.16 Hz and 4.81 Hz are identified with the 429 

MAC values of 99.19% and 99.97%, respectively. These modes are demonstrated in Figure 13. In 430 

Run 1 when the truck passed from the west to the east using the north lane of the carriageway, the 431 

modal displacement in the north side (TP1~3) apparently decreased while that for TP5 in the south 432 

side increased slightly. Mode shape changes in Run 2 are less obvious. 433 

 The information of the other three modes lower than 15 Hz is given in Table 2. The 3rd bending 434 

mode is missed when analysing the vibration data in Run 2. The MAC values between the identified 435 

mode shapes and the reference are higher than 98.8%. 436 

Table 2 Modal frequency estimates during truck passages and the MAC values compared with the mode shapes 437 

estimated in section 3 using ambient vibration data recorded by QA accelerometers. 438 

Mode No. Test runs 
Modal 

Frequency (Hz) 
MAC 

1st  
bending 

Reference 3.09 -- 

Run 1 

2.11 99.81% 

2.57 99.70% 

3.09 99.99% 



Run 2 

2.29 98.98% 

2.59 99.90% 

3.08 99.99% 

3.27 99.56% 

1st  
torsion 

Reference 4.94 -- 

Run 1 4.53 95.87% 

Run 2 
4.16 99.19% 

4.84 99.97% 

2nd  
bending 

Reference 7.47 -- 

Run 1 7.52 99.96% 

Run 2 7.45 99.26% 

3rd  
bending 

Reference 11.34 -- 

Run 1 11.36 99.68% 

Run 2 Not available Not available 

2nd  
torsion 

Reference 13.81 -- 

Run 1 13.75 99.35% 

Run 2 
13.23 98.86% 

13.56 99.67% 

 439 

 440 

Figure 13 Estimation results of the first torsion modes during truck passages in Run 1 and Run 2. Dashed lines 441 

denote initial location of the bridge; two solid lines denote the reference mode shape ordinate of the north and 442 

south sides of the bridge estimated using ambient vibration data of QA accelerometers in Section 3. Circular and 443 

‘x’ shaped markers denote the mode shape ordinate estimated using vibration data during truck passages; and the 444 

corresponding modal frequencies and MAC values compared with the reference mode shapes are given in the 445 

legends. 446 

Analysis results indicate that the enhanced SCA method is capable of analysing non-stationary vibration 447 

signals, i.e. identifying accurately bridge mode shapes and capturing additional modes due to changes 448 



of system properties. The procedures are intended to identify such changes while their interpretation 449 

requires structural engineering expertise supported by numerical modelling and further investigations. 450 

5 FIELD TEST ON A FOOTBRIDGE 451 

In this section, the enhanced SCA method is implemented for modal identification of vibration signals 452 

recorded on a cable-stayed footbridge. There are some challenges of implementing classical OMA 453 

methods e.g. NExT/ERA and SSI to capture modal information completely for this bridge as it has 454 

several closely-spaced modes and experiences high energy only in frequency components close to 455 

pedestrian pacing rates. Section 5.1 introduces the bridge and the test configuration and then 456 

demonstrates the measurement results, while section 5.2 and 5.3 presents the estimated results of mode 457 

shapes and modal frequencies using the enhanced SCA method. 458 

5.1 Test configuration and measurement results 459 

Baker Bridge, shown in Figure 14, is a cable-stayed footbridge with the span length 109 m in Exeter, 460 

UK. The bridge links Digby & Sowton railway station in the north to the Sandy Park Stadium in the 461 

south that is the home ground of Exeter Chiefs Rugby Club. The bridge has six vertical modes lower 462 

than 3.5 Hz [42] and thus experiences considerable dynamic response to pedestrian traffic. 463 

 464 

(a) 465 



 466 

 467 

(b) 468 

Figure 14 Bridge information and sensor locations: (a) bridge elevation and locations of four Opal IMUs at D1 to 469 

D4 in the southwest side of the bridge; and (b) west elevation of the south span of the bridge at 14:28:30 PM from 470 

a recorded video file on the test day. 471 

Four APDM OpalTM IMU sensors were installed on the south span adjacent to the west parapet at D1 472 

to D4, as shown in Figure 14(a) on a match day. The match kick-off time was 15:00 PM. The sample 473 

rate was set as 128 Hz.  474 

Vibration data from 14:20 PM to 15:20 PM were truncated for modal identification. The vertical 475 

acceleration measurement shown in Figure 15(a) indicates that the bridge became very quiet after the 476 

match kick-off at 15:00 PM. Auto-spectral densities estimated using the Welch’s method are shown in 477 

Figure 15(b). The two modes with the frequencies close to the normal walking pace (2 Hz) are the 478 

strongest and most obvious. 479 



 480 

Figure 15 Acceleration measurement by four Opal IMUs in the vertical direction and the corresponding auto-481 

spectral densities: (a) acceleration measurement from 14:20 PM to 15:20 PM; and (b) the auto-spectral densities 482 

of acceleration measurement at D4 in (a). 483 

5.2 Estimation of mode shapes by enhanced SCA method 484 

Following the two-step clustering described in section 2.2, mode shapes and frequencies were extracted 485 

from each cluster centroid of normalised TF coefficients. The threshold angle   for SSP detection 486 

was taken as 5 degrees, same as for Opal measurement in section 3.2. 487 

Figure 16 demonstrates the first six mode shapes estimated by the enhanced SCA method together with 488 

the reference that is derived from the previous ambient modal test [42] using NExT/ERA procedures. 489 

In this ambient modal test, six wireless accelerometer sensors were used to record bridge vibrations. 490 

Two sensors were kept at the same points as the reference while the other four were ‘roved’ over the 491 

remaining 30 test points (covering bridge two sides) in several recordings. Mode shape and modal 492 

frequency information for the first six modes have been demonstrated in [42] and now are re-interpreted 493 

here as the reference: Solid and dashed curves correspond to modal shape ordinate of the west and east 494 

sides of the bridge.  495 

The dot markers denote the modal shape ordinate at D1~D4 on the west side of the bridge estimated by 496 

the enhanced SCA method using Opal IMU data. The first five mode shape estimates using the enhanced 497 

SCA method match well with the reference with the MAC values over 99.5% while the MAC value for 498 

the six mode is slightly lower (98.19%). 499 

In this example, mode shape vectors for the third and fourth bending modes (Figure 16(c) and (d)) are 500 

of high similarity based on the four channel measurement (D1-4) and should be challenging to be 501 



distinguished via traditional SCA method. The demonstration example validated again the feasibility of 502 

the enhanced SCA method for the underdetermined case using limited sensors. 503 

  504 

Figure 16 Estimated mode shapes by the enhanced SCA method together with reference mode shapes of the bridge: 505 

solid and dashed curves denote the reference mode shape ordinate from a previous modal test using the 506 

NExT/ERA method [42] in the west and east sides of the bridge, respectively; and dot markers denote the modal 507 

shape ordinate estimated by the enhanced SCA method using acceleration data (in Figure 15(a)) from four Opal 508 

IMUs located at the southwest side of the bridge. Estimates by the enhanced SCA method including modal 509 

frequencies and modal assurance criteria (MAC) compared with the reference mode shapes are given in subplot 510 

titles. 511 

5.3 Extraction of modal parameters 512 

Based on vibration signals involving some periods with a crowd of pedestrians shown in Figure 14(b), 513 

the mode shape estimates in Figure 16 still have good match with the results in a previous ambient 514 

modal test. This indicates that the non-stationary feature of human-induced vibrations in this study is 515 

not apparently reflected in mode shape changes. 516 



To investigate the time-varying characteristics, two time intervals of the separated modal responses 517 

with the duration of two minutes were truncated for modal parameter estimation when the bridge was 518 

occupied by a few pedestrians and a crowd, respectively. The raw acceleration measurement at D4 519 

during these two selected periods is shown in Figure 17(a) and (c). The experienced maximum 520 

acceleration reaches 0.29 2m/s  and 1.31 2m/s , respectively and the strongest mode is both at 2 Hz, 521 

where with the auto-spectral density for the crowd is almost an order of magnitude stronger. 522 

 523 

Figure 17 Acceleration measurement at D4 during two time intervals (when the bridge was occupied by a few 524 

pedestrians and a crowd, respectively) and the corresponding auto-spectral densities: (a) vertical acceleration 525 

measurement at D4 from 15:14 to 15:16; (b) auto-spectral densities of the acceleration signal in (a); (c) vertical 526 

acceleration measurement at D4 from 14:28 to 14:30; and (d) auto-spectral densities of the acceleration signal in 527 

(c). 528 

Figure 18 and Figure 19 provide the separated modal responses and the corresponding auto-spectral 529 

densities recovered from the two time intervals.  530 

For the estimated results in the first time interval (Figure 18), the modal responses are close to single-531 

degree-of-freedom signals except in (a) for the first bending mode (at approximately 0.94 Hz) where 532 

some frequency components near 2.1 Hz (slightly deviated from the third bending mode frequency of 533 

2.0 Hz) also contain considerable energy. 534 

For the estimated results in the second time interval (Figure 19), clear peaks near dominant modal 535 

frequencies are indicated in the auto-spectral density plots of the third, fifth and sixth modal responses. 536 

The first, second and fourth modal responses involve considerable energy in the frequency components 537 

between 1.8 Hz and 2.1 Hz that are probably due to the excitations of walking pedestrians. 538 

The modal frequencies were extracted from the auto-spectral density plots by the peak-picking method. 539 

As a comparison, the acceleration signals were also analysed directly by the covariance-driven SSI 540 



method for modal frequency estimation. The variables were set as 180 points in the covariance function 541 

and maximum order of 80 poles. Table 3 provides modal frequency estimates by the two methods as 542 

well as a reference from the previous ambient modal test [42] using NExT/ERA method. Observations 543 

in Table 3 show that, 544 

 The enhanced SCA method identifies all the first six modes lower than 3.5 Hz from vibration data 545 

in either quiet or busy periods. The SSI method fails to capture some modes (e.g. 0.94 Hz and 3.09 546 

Hz) even when weighting algorithms (e.g. Canonical Variate Analysis, Principal Components or 547 

Unweighted Principal Components) are considered for performance improvement. It is possibly 548 

due to the low-energy in the adjacent frequency ranges as shown in Figure 17(b) and (d). The 549 

enhanced SCA method is feasible for the low-energy modes because the information used for 550 

cluster analysis is the set of unit vectors of normalised TF coefficients, and their scales are neglected. 551 

 Compared with the previous ambient modal test results, the modal frequency estimates in the first 552 

time interval match very well, while in the second time interval the first two modal frequencies are 553 

apparently reduced due to heavy pedestrian occupation.  554 



 555 

Figure 18 Modal response signals and the corresponding auto-spectral densities in the first time interval when the 556 

bridge was occupied by a few pedestrians: the left column (a-f) corresponds to the modal response signals 557 

separated by the SCA method; and the right column (g-l) corresponds to the auto-spectral densities of the signals 558 

in the left column. 559 



 560 

Figure 19 Modal response signals and the corresponding auto-spectral densities in the second time interval when 561 

the bridge was occupied by crowds of pedestrians: the left column (a-f) corresponds to the modal response signals 562 

separated by the SCA method; and the right column (g-l) corresponds to the auto-spectral densities of the signals 563 

in the left column. 564 

Table 3 Estimated modal frequencies of Baker Bridge: the 2nd column denotes modal frequencies estimated in a 565 

previous ambient modal test [42] by NExT/ERA method; the 3rd to 4th columns represent the modal frequencies 566 

estimated from acceleration data in the first time interval by the enhanced SCA and SSI methods; and the 5th to 567 

6th columns represent the modal frequencies estimated from acceleration data in the second time interval by the 568 

enhanced SCA and SSI methods. 569 



Modal 
frequency 

(Hz) 

Previous 
modal test 

Time interval 1 Time interval 2 

By enhanced SCA By SSI By enhanced SCA By SSI 

Mode 1 0.94 0.95 -- 0.90 -- 
Mode 2 1.62 1.62 1.60 1.56 1.56 
Mode 3 2.00 2.01 2.01 2.02 1.98 
Mode 4 2.24 2.25 2.25 2.21 -- 
Mode 5 2.84 2.85 2.83 2.81 2.81 
Mode 6 3.08 3.09 3.10 3.11 -- 

 570 

Results indicate the enhanced SCA method provides accurate estimates of mode shapes and frequencies 571 

for human-induced vibrations and is capable to capture low-energy modes that is infeasible by SSI 572 

method. The non-stationary characteristics are reflected in the reconstructed modal responses with time-573 

varying modal frequencies and possibly including the components of pedestrian excitations. 574 

6 CONCLUSIONS 575 

This study proposes an enhanced SCA method for structural modal identification. Through direct 576 

application to field test data, the method is validated to be capable of providing comparative results 577 

about modal parameters from ambient vibration data as the classic OMA method NExT/ERA. 578 

Compared with traditional SCA method, the proposed method has the advantage of accurately 579 

identifying highly similar modes that is beneficial for structural modal testing using limited sensors. 580 

The enhanced SCA method has no assumption regarding the nature of excitation forces and is validated 581 

to be effective for analysing non-stationary signals including vehicle-induced and human-induced 582 

vibrations. For vehicle-induced vibrations, small changes in mode shapes and modal frequencies due to 583 

the time-varying feature can be captured. For human-induced vibrations, the mode shape changes are 584 

negligible in this study while the recovered modal response signals are non-stationary, reflecting small 585 

changes of modal frequencies as well as the components of pedestrian excitations. The proposed method 586 

could identify easily the low-energy and closely-spaced modes, indicating better performance than the 587 

SSI method.  588 

Compared with other OMA methods, the enhanced SCA method in this study has less dependence on 589 

parameter selection and potentially fits the requirements of automatic modal identification on field test 590 

data.  591 
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