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Abstract 

In this study, a new screening technique for the detection of two types of oil adulterants in cold 

pressed rapeseed oil was investigated. The calibration models built with four different 

multivariate classifiers (SIMCA, PLS-DA, LDA-KNN, and LDA-SVM) were based on 

spectral fingerprints from either FT-IR and Raman instruments from authentic pure oils and in-

house admixtures of the oils involved. When refined sunflower oil was the adulterant, both FT-

IR and Raman produced effective models with high sensitivity of 86%, 93% respectively, when 

refined rapeseed oil was the adulterant the sensitivity decreased. This was explained by the  

chemical differences of the two adulterants. PLS-R quantification analysis estimated minimum 

detection levels of 15% (Raman) and 9% (FT-IR) when refined sunflower oil was the 

adulterant, and 22% (Raman) and 64% (FT-IR) when refined rapeseed oil was the adulterant. 

This initial study shows the potential of Raman spectroscopy to be utilized for the screening of 

cold pressed rapeseed oil authenticity. 

  

Practical Applications: 

It has been well documented in the past that high-value edible oils can be easily adulterated 

with lower cost oils for economic gain. Although the cold pressed rapeseed oil industry has not 

experienced such fraud, it would be prudent to have analytical techniques available to 

authenticate genuine oils quickly. This would further strengthen cold pressed rapeseed oils 

reputation as a product free from substitutional fraud. These calibration models can tool the 

industry and regulatory bodies with a screening method to detect authenticity in realistic levels.  
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1. Introduction  

Cold pressed rapeseed oil (CPRO) is produced when the seeds harvested from the oilseed rape 

crop (also known as canola depending on geographical region) are mechanically crushed at 

low temperature. The oil is collected and the sediment removed through filtration or 

sedimentation tanks. Once free from sediment the oil is bottled and ready for sale. The 

advantages to this type of processing are that the oil has a pleasant taste, bright color, and can 

be used in both hot and cold cooking. Manufacturing cold pressed rapeseed oil is still a 

relatively new industry, the earliest producers in Britain started production around mid-2000’s. 

Cold pressed rapeseed oil is marketed as a high-quality product, and consequently its retail 

value is at the high end of the edible oil market [1]. High-value edible oils are an easy target 

for adulteration as they can be mixed with low-value edible oils without critically changing 

either the taste or the appearance of the original oil. To secure the burgeoning cold pressed 

rapeseed oil industry from any future threats it would be sensible to develop a screening 

technique capable of quickly and accurately detecting adulterants. 

With regards to the cold pressed rapeseed oil adulteration, there has been little work which 

looks specifically at analytical methods to detect authentication. There has been some research 

which has investigated the differences between refined rapeseed oil (RRO) and cold pressed 

edible oils including rapeseed [2]. For clarity when this paper refers to a “refined” oil it is 

regarding oils which have been conventionally solvent extracted, refined, bleached and 

deordorised, as is common with many low-cost edible oils. Common oil components which are 

found in refined rapeseed oil and not cold pressed rapeseed oil are trans fatty acids[3], 

steradienes[4], cis-phytol [2] and 3-MCPD-esters [5]. The detection above certain levels of any 

of these in cold pressed rapeseed oil would point towards adulteration. The advantage of using 

a targeted chemical technique is that low levels (<10%) of adulteration can be confidently 

identified and quantified. These techniques include gas chromatography[6], liquid 
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chromatography[7] and genomic analysis [8].  The disadvantages are that these techniques are 

often costly, require skilled technicians and take long periods of time to generate results. Cold 

pressed rapeseed oil has yet to be analyzed for purity using commonly available spectroscopic 

techniques. With the aid of chemometrics, spectroscopy can be adapted to become a non-target 

technique which can be an alternative to traditional wet chemistry procedures. Vibrational 

spectroscopy techniques can replace targeted molecular techniques if the prediction model is 

particularly strong, it can also be used as a screening method in tandem with chemical 

quantitative methods. Both Raman and Fourier transform-infrared spectroscopy (FT-IR) have 

been shown to be effective tools for the authentication of many edible oils. Raman spectroscopy 

has been successfully used to classify different types of vegetable oils [9,10]. It has also been 

used extensively to detect adulteration of extra virgin olive oil with low value oils [11–14]. On 

the other hand, FT-IR has been shown to be able to classify vegetable oils [15,16], and detect 

adulterants in extra virgin olive oil [17–19]. There has currently been no work which has yet 

explored the feasibility of spectroscopy to control cold pressed rapeseed oil authentication. 

Although one study has used FT-IR to detect waste cooking oil in refined rapeseed oil [20].  

Raman peaks are formed when there are changes to the polarizability of a bond, while FT-IR 

spectra peaks are formed when there is a change in the dipole movement of a bond. This means 

that some molecular bonds can be Raman active but not FT-IR active and vice versa, therefore 

they could be viewed as complementary techniques [21]. It should be stated that this study 

focuses on comparing the two spectroscopies, rather than an investigation into their tandem 

use. This research is testing two types of spectroscopy and four types of chemometric 

techniques which are essential for multivariate data analysis and classification, to evaluate their 

suitability for cold pressed rapeseed oil authentication. 

This study consists of strategically designed binary oil mixtures of a) cold pressed rapeseed oil 

and refined rapeseed oil, b) cold pressed rapeseed oil and refined sunflower oil (RSO), c) cold 
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pressed rapeseed oil and either refined rapeseed oil or refined sunflower oil. These adulterants 

were chosen after input from industry insiders because both exhibit properties which make 

them attractive to potential fraudsters; they are low cost and readily available while refined 

rapeseed oil has the added advantage of being very similar in its chemical composition to cold 

pressed rapeseed oil [22]. Refined, bleached, deodorized rapeseed oil was chosen over partially 

refined rapeseed oil (degummed and solvent extracted oil) because these oils are not 

commercially available and are therefore unlikely to be readily available to potential fraudsters 

because they are not commercially sold. Few if any large refining plants produce cold pressed 

rapeseed oil as well. The probability of a partially refined oil being used as an adulterant is slim 

at this present time.  

Vibrational spectroscopy was chosen as a technique because it already has some applications 

and a great potential for further development in the food industry; analysis points can be set up 

at many points of the manufacturing process to offer quick, constant feedback regarding the 

quality of the product. In summary, the overall aim of this study is to develop a first of its kind 

rapid spectroscopic screening technique based on either FTIR or Raman which can detect 

refined rapeseed oil or refined sunflower oil substitution fraud in cold pressed rapeseed oil with 

high confidence. 

2. Materials and Methods 

2.1. Sample Preparation and study design 

The cold pressed rapeseed oils (CPRO), refined rapeseed oils (RRO) and refined sunflower 

oils (RSO) used for this study were all donated by producers of reputable oil processors and 

spanned across two production years (2014-2016). All the cold pressed rapeseed oils were from 

British or Irish origins and were produced only by cold pressing and no additional refining 
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processes were used. All oils were measured for general quality parameters including peroxide 

value [23] acid value [24] and fatty acid composition [1] using typical methods and the values 

were found nominal (see Supplementary Material). All samples fell within expected parameter 

ranges for such oils. The oils were then frozen at -20 ⁰C and defrosted when required.  Three 

separate cases were studied:  RSO as an adulterant in CPRO, RRO as an adulterant in CPRO 

and either RSO or RRO as adulterants in CPRO with RSO or RRO. To achieve that three 

calibration sets were constructed: a) with binary mixtures of CPRO:RRO, b) with binary 

mixtures of CPRO:RSO and c) with binary mixtures of CPRO:RSO and CPRO:RRO. These 

calibration sets had corresponding independent validation sets which were approximately a 

third smaller in size. The calibration set containing CPRO and RRO contained mixtures made 

from seven CPRO’s and five RRO. The corresponding validation set contained mixtures made 

with three different CPRO’s and two RRO’s. The calibration set containing CPRO and RSO 

also contained mixtures made from seven CPRO’s and five RSO’s. The corresponding 

validation set contained three CPRO’s and RSO’s. The mixtures were made from different 

brands of CPRO in each validation and calibration set i.e., the seven CPRO’s used in the 

CPRO/RRO calibration set were different from the CPRO’s used in the CPRO/RSO calibration 

set. The oils present in the calibration sets were not used in the validation sets and vice versa, 

this ensured no bias within the model. A complete gradient of oil mixtures was used for the 

calibration and validation (4-97% and 7-98%) because no previous work on cold pressed 

rapeseed oil spectroscopic analysis has been done before, therefore approximate limits of 

detection were unknown.  

2.2. Raman and FT-IR spectral acquisition 

 A DeltaNu Advantage 1064 Raman Spectrometer was used along with NuSpec software to 

acquire the spectra. The 1064 nm laser power was set to “high”, integration time was “10 
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seconds”, and the number of spectra for each acquisition was set to “2”. Each sample was taken 

in duplicate and averaged. The FT-IR instrument used was a Thermo Scientific Nicolet iS5 

spectrometer (Thermo Fisher Scientific, MA, USA) equipped with a standard Id5 ATR 

accessory. The number of scans was 32 and the data spacing set to 0.482 cm-1. Each sample 

was taken in triplicate and averaged. The spectral acquisition took place across several days. 

2.3. Data Analysis: Pre-processing, Classification, and Quantification  

 For the spectra pre-processing, Standard Normal Variate (SNV) and 1st derivative were applied 

to reduce the scattering effect of the spectra. The smoothing technique Savitzky-Golay was 

then employed followed by Pareto scaling. The Raman and FT-IR spectra were cut at certain 

places to remove areas that held no information. The areas of the FT-IR spectra which were 

included ranged from 654.32 - 1875.43 cm-1 and from 2520.02 - 3120.74 cm-1. The Raman 

areas for inclusion were from 800.314 to 1800.22 cm-1. A trial data fusion system was also 

investigated, where the Raman and FT-IR spectra were fused and analyzed with the same 

method as for the single spectroscopy techniques. All chemometric data analysis was 

performed with in-house Matlab routines (Mathworks inc., USA). For classification analysis 

four different techniques were used to illustrate the most effective, these were; partial least 

squares – discriminant analysis (PLS-DA)[25], soft independent modeling of class analogy 

(SIMCA)[26], linear discriminant analysis - k-nearest neighbor (LDA-KNN)[27], and linear 

discriminant analysis - support vector machine (LDA-SVM) [28]. 

PLS-DA is a chemometric technique often paired with spectroscopic data to predict the 

probability that a sample belongs to a certain class [29]. Soft independent modelling of class 

analogies is another technique which this paper also investigates. In SIMCA, a principal 

component analysis is first performed on each class in the dataset to establish principal 

components which account for a large part of the variation within the classes. The residual 
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variance from an unknown sample is then compared with the calculated variance of each class 

and a prediction is made as to the likelihood that the unknown sample belongs to a certain class 

[30]. LDA-KNN is a completely non-parametric approach which compares calibration and 

validation datasets. It classifies validation samples according to the classes of the k closest 

calibration samples, where k is the number of neighbours for the decision [31]. Support vector 

machines (SVM’s) define a function that describes the decision boundary that optimally 

separates two classes by maximising the distance between them. The support vectors are 

selected in the calibration set and the classification rule is derived from these objects [32]. The 

four classifiers will be compared to establish which technique produces the most promising 

results based on sensitivity, specificity, precision and false positive rate, the equations for 

which can be found in Oliveri and Downey [33]. For quantification analysis, partial least 

squares – regression (PLS-R) was used to produce a root mean square error of prediction 

(RMSEP) value. The RMSEP can then be used to estimate levels of detection as shown in 

Downey and Kelly [34]. 

3. Results and Discussion  

3.1. Initial Spectra Exploration   

Principal component analysis (PCA) was used as an unsupervised data exploration step to 

visualize the differences between the various classes of edible oils of the study. The PCAs were 

built using datasets of Raman and FT-IR spectra (Figs. 1, 2) and contain both pure oils and oil 

mixtures. The PCA plot of Raman spectral data in Fig. 1A showed a clear separation between 

pure oil classes, with some samples of the mixture class close to pure sunflower oil and some 

close to pure cold pressed rapeseed oil. In Fig. 2A the separation is much less defined, although 

the refined rapeseed oils are loosely congregated towards the top and cold pressed appear more 

towards the bottom of the PCA plot. When all five classes were combined in a PCA plot of 
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Raman spectral data, sunflower oil and its admixtures are separate from the three classes 

containing only rapeseed oil which are tightly grouped (Fig. 3). The PCA plot of FT-IR spectral 

data of cold pressed rapeseed oil, refined sunflower oil and mixtures of the two (Fig. 2A) 

showed a clear separation between the two pure oils with mixtures occupying the space 

between the two pure oils. The PCA plot of refined rapeseed oil, cold pressed rapeseed oil and 

its mixtures (Fig. 2B) showed there was little grouping of the three classes. The pure oil classes 

appear close together, suggesting that both cold pressed rapeseed oil and refined rapeseed oil 

produce very similar FT-IR spectra. When five classes were visualised the sunflower oil and 

its admixtures formed clear groups while cold pressed rapeseed oil and refined rapeseed oil 

remained congregated together (Fig. 3). These diagrams illustrate the difficulties in clearly 

separating refined rapeseed oil from cold pressed rapeseed and it would therefore be expected 

to be a harder adulterant to detect than refined sunflower oil.  

 A spectral comparison of the oils can indicate a difference in chemical composition, therefore 

an initial visual comparison of the spectra was observed. The wavelength at which spectral 

variation(s) occur can be used to indicate what compound(s) are responsible for specific regions 

of absorption. Any difference between the mixtures should show a gradual change in spectra 

composition as the ratio of oils changes. The raw Raman spectra were not suitable for a visual 

comparison analysis (Fig. 4a) therefore the pre-processed spectra were superimposed (Fig. 4 

b/c).  Superimposed pre-processed spectra of cold pressed rapeseed oil and refined rapeseed 

oil admixtures (4-97%) were similar apart from variation around the regions at 1150-1200 cm-

1 and 1500-1600 cm-1 (Fig. 4b).  

It is established both in-house (data not shown) and in the literature that cold pressed rapeseed 

oil and refined rapeseed oil have almost identical fatty acid compositions. The areas of spectral 

variation are not taken up by large peaks corresponding to fatty acids, therefore the variation 

is likely to come from minor compounds within in the oils. A study by Baeten et al.[35], using 
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Raman spectroscopy identified these areas as parts of the spectra where the carotenoids β-

carotene and lutein absorb. One of the main differences between cold pressed rapeseed oil and 

refined rapeseed oil is their pigment composition. Pigments including chlorophyll and 

carotenoids are removed during the bleaching stage of refinement while cold pressed rapeseed 

oils retain their pigments [36]. These compounds are likely to be very important when using 

vibrational spectroscopy to differentiate between the two oils. When cold pressed rapeseed oil 

and refined sunflower oil mixtures spectra were superimposed (Fig. 4c), there were more 

regions of variation than when refined rapeseed oil and cold pressed oil were superimposed 

(Fig. 4b). The regions between 1150-1200 cm-1 and 1500-1600 cm-1 again showed variation 

which would indicate differences in pigment levels. This explanation would be further 

strengthened by the fact that the refining process removes nearly all of the pigments in refined 

sunflower oil [37]. The other areas of variation in this oil set are likely down to the difference 

in fatty acid composition between the two oils [38]. The variation in the spectra around 800-

1100 cm-1 corresponds to the –CH2- group [9]. The difference in fatty acid composition 

between the two oils and therefore the difference in –CH2- chain lengths within the oil mixtures 

are likely to be responsible for this variation. There is also variation around the region 1660 

cm-1 which corresponds to cis- carbon double bonds. The number of double bonds between the 

two oils differs significantly; rapeseed oil 110-143 cm-1  and sunflower oil 188-193 cm-1  [39]. 

There was no variation in the region of trans double bonds (1670 cm-1), probably because their 

levels are so small that they fall below the limits of detection and resolution of this 

spectroscopy. 

The superimposed raw FT-IR spectra of cold pressed rapeseed oil and refined rapeseed oil 

showed no variation within the spectra of oil mixtures. When typical pre-processing techniques 

were applied to the spectra, there was still no visible distinction achieved. The Raman spectra 

suggests that pigments can cause variation between these oil admixtures, and because of this 
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the infrared regions where pigments would be expected to influence, were analyzed for 

variation. A study by Baranska et al. [40] found β-carotene to be associated with peaks in the 

infrared spectrum at 965 and 950 cm⁻¹. Close visual inspection of this region, showed no 

variation with regards to cold pressed rapeseed oil and refined rapeseed oil mixtures. The 

regions of the FT-IR spectra which may assist in discrimination between these two oils, does 

not appear to be visible with only visual inspection.  

When the FT-IR spectra of admixtures containing refined sunflower oil and cold pressed 

rapeseed oil were superimposed (Fig. 5) there was clear variation in the region 880-1050 cm1. 

This area of the spectra has been identified as corresponding to saturated fatty acids content 

[41]. The two oils differ in their saturated fatty acid content with cold pressed rapeseed oil 

having around 7% [42] while refined sunflower oil has between 9-13%, which would explain 

the variation. This could be an important area of spectral information with regards to 

classification analysis. The reason that FT-IR does not appear to show the same variation 

associated with pigmentation that Raman shows, is that the different energy sources emitted 

from the instruments excite molecules in different ways. Therefore it is possible the infrared 

signal is not as readily absorbed by pigment molecules as the Raman signal. It is also possible 

the other peaks in the FT-IR spectra are blocking the pigment variation peaks.   

2.2. Classification Analysis  

Four types of supervised classification techniques (SIMCA, PLS-DA, LDA-KNN, LDA-SVM) 

were used to build the chemometric models. These classification techniques were used to 

classify three distinct dataset scenarios. The suitability of each model was shown by the 

successful classification of samples in a validation dataset. The results showed that successful 

classification is dependent upon multiple variables including; the type of adulterant, the number 

of classes and the classifier technique used (Table 1, 2). 
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Scenario #1 (3 classes with 2 different types of oils): CPRO adulterated with RRO 

The results showed that Raman spectroscopy was able to achieve an average model sensitivity 

of 93% (Table 1) while FT-IR achieved 86% average sensitivity (Table 2). Raman 

spectroscopy also produced a lower FPR across the three classes than FT-IR. It would seem 

that Raman spectroscopy is better suited than FT-IR spectroscopy for this three-class problem. 

It should, however be noted that the FT-IR spectra was able to obtain a respectable 

classification rate, although the regions of spectra associated with this remain unclear. The 

reason for Raman spectroscopy better performance compared to FT-IR may be down to the 

ability of the spectra to show absorbance peaks associated with pigmentation (Fig. 4b) that 

should be discriminative due to the different pigment profiles of the two oils [37]. Also, subtle 

variations in fatty acid composition could contribute to the differentiation between the three 

classes even if they are largely invisible to the naked eye (spectral pre-processing usually 

enables enhancement of these minute differences). With regards to the individual classifiers, 

LDA-KNN and LDA-SVM performed best for both Raman and FT-IR, regarding this scenario.  

Scenario #2 (3 classes with 2 different types of oils): CPRO adulterated with RSO  

Raman spectroscopy exhibited an average sensitivity of 93% (Table 1) while FT-IR produced 

an average sensitivity of 96% (Table 2). FT-IR was also able to produce a lower FPR across 

the three classes. The most successful combination was shown to be FT-IR spectroscopy 

coupled with LDA-SVM modeling. Although less sensitive than FT-IR, Raman spectroscopy 

still achieved competitively high classification rates, also with LDA-SVM classification. There 

were many regions of the Raman spectra which were likely to be important for discriminating 

classes (Fig. 4c) as discussed earlier.  

Scenario #3 (5 classes, with 3 different types of oils): CPRO adulterated with either RSO or 

RRO 
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The final dataset tested was a combination of the two datasets previously mentioned, resulting 

in five classes; CPRO, RRO, RSO, CPRO:RRO and CPRO:RSO. Ternary oil mixtures were 

not investigated because classification accuracy decreases with an increasing number of 

adulterants [43] and in fact, binary adulteration is a more common form of adulteration. As a 

result of the increased class number in this scenario, the accuracy of the models decreased, 

compared with the previous three class datasets (scenario 1 and 2). Raman spectroscopy was 

found to be considerably more effective than FT-IR when dealing classifying five possible 

classes, as it achieved 88% average model sensitivity compared to 69% produced by FT-IR. 

This may be due to multiple factors including the ability of Raman to detect pigment variation 

and differences in molecule activity to Raman and FT-IR. The most accurate classification 

models for this scenario were LDA-KNN for Raman and PLS-DA for FT-IR spectroscopy. It 

should be noted that simple data fusion techniques to combine the two types of spectra serially 

produced inadequate classification regarding the three scenarios when compared with single 

spectroscopic techniques (experiments conducted but data not shown).    

3.3. PLS-R quantification analysis  

Partial least squares regression (PLS-R) is a quantitative modeling technique which generates 

predictor components against known variables in a linear output. The relationship between the 

two variables can be used to show variability between calibration and validation datasets. The 

analysis can only be utilized for three class analysis i.e., 0-1 where 0 is the first pure oil and 1 

is the second pure oil, with the binary mixtures of the two being the values between 1 and 0. 

The PLS-R results (Table 3) reflect the classification results with regards to the success of the 

spectroscopy technique and classification problem. When concerning sunflower oil as an 

adulterant, FT-IR produced the highest R2 value (0.99) with an estimated minimum detection 

limit of 9%. The dataset where refined rapeseed oil was the adulterant showed that Raman 
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spectroscopy produced spectra better suited for accurate quantification (R2=0.95). The 

minimum detection levels with refined rapeseed oil as an adulterant was 22% which is higher 

compared to refined sunflower oil as an adulterant. The similarities between refined rapeseed 

oil and cold pressed rapeseed oil meant that it was likely to be more difficult to quantify than 

any other type of edible oil adulterant. With regards to comparable studies, there has been little 

published that looks at pre-determined mixtures of cold pressed rapeseed oil and refined 

rapeseed oil, as this study does. A study by Vetter [2] showed that a cis-phytol level above 

0.5% could be used as a marker for refinement in cold pressed oils. The study used only pure 

cold pressed oils and pure refined oils, therefore it was not known to what level cis-phytol 

could be detected in admixtures of cold pressed rapeseed oil and refined rapeseed oil would 

have. Bruhl [3] claimed that >0.1% trans fatty acids in cold pressed rapeseed oil would confer 

adulteration, however, the study did not pursue this opportunity to test this concept on 

admixtures and therefore could not establish a limit of detection of adulteration of cold pressed 

rapeseed oil with refined rapeseed oil.  

This paper is the first to investigate specifically, cold pressed rapeseed oil authentication with 

current spectroscopic techniques and advanced multivariate analysis. It indicates there is a 

niche that spectroscopy could occupy in cold pressed rapeseed oil authentication. Its strengths 

are speed, low maintenance and non-destructive technique. More specifically, Raman 

spectroscopy was shown to be the most promising in this study and it showed a sound ability 

to classify pure cold pressed rapeseed oil from admixtures of cold pressed rapeseed oil and 

adulterants (Table 1). Other advantages of Raman spectroscopy over other techniques e.g. FT-

IR, is that it can be utilised as a portable device, which would allow flexible on-site analysis. 

For quantifying the amount of cold pressed rapeseed oil adulterated with refined rapeseed oil, 

it is unlikely spectroscopy would be suitable. Even wet chemistry techniques previously 

mentioned [2,3] were not tested on admixtures of cold pressed rapeseed oil and refined 
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rapeseed oil. However, when viewed from a real-world perspective this is not a pressing issue, 

as classification of an adulterated oil would be enough to raise concerns in the screening step 

as developed here, and it could then be further analysed with targeted analytical techniques 

such as GC-MS or LC-MS to ascertain how much adulterant is in the oil.  

4. Conclusions  

The various combinations of vibrational spectroscopy and chemometric analysis produced 

outputs which varied in performance regarding this analytical problem. Both FT-IR and Raman 

spectroscopy showed clearly the ability to detect adulteration in cold pressed rapeseed oil with 

sunflower oil at relatively low levels. Raman spectroscopy produced, however, consistently 

higher classification rates than FT-IR, with all of the three top performing classifiers reaching 

above 88% model sensitivity, which was also coupled with low error margins. Detection of 

refined rapeseed oil addition proved more challenging due the chemical similarities between it 

and cold pressed rapeseed oil. Regarding this adulteration scenario, Raman spectroscopy 

coupled with LDA modelling was able to achieve an average model sensitivity of 93%. The 

performance of the four classifiers showed that both LDA and PLS-DA models performed 

much better than SIMCA. The LDA-KNN and LDA-SVM models produced higher 

classification rates than the often used PLS-DA model, which would suggest there is room to 

improve the already established models. This feasibility work shows the potential of vibrational 

spectroscopy, and especially Raman, as rapid screening techniques to identify common oil 

replacement fraud in cold pressed rapeseed oil. They are techniques which could easily 

transferred into an industrial setting and screen large sample numbers, quickly with little-

specialised training need. 

 

Abbreviations:  
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CPRO – Cold Pressed Rapeseed Oil; RRO – Refined Rapeseed Oil; RSO – Refined Sunflower 

Oil. 
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