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Abstract 

In the present study, we have modified bovine serum albumin (BSA) by covalently conjugating 

with anacardic acid (AA) and gemcitabine (GEM) and further used for development of docetaxel 

(DTX) loaded nanoparticles (AA-GEM-BSA NPs). AA is supposed to provide tumor targeting 

through VEGF receptors overexpressed in tumors, while the combination of GEM and DTX is 

supposed to provide synergistic activity by targeting multiple pathways. The conjugate was 

synthesized via carbodiimide chemistry and characterized by 
1
H NMR, FTIR, MALDI-TOF and 

elemental analysis. Conformational changes owing to conjugation of AA and GEM were 

estimated via fluorescence, Raman and CD spectroscopy, while changes in physiochemical 

properties were studied by differential scanning calorimetry (DSC), thermogravimetry (TGA) 

and contact angle goniometry (CAG). Synthesized conjugate was further transformed into DTX 

loaded NPs and freeze dried. Scanning Electron Microscopy (SEM) and Atomic Force 

Microscopy (AFM) demonstrated formation of spherical NPs having particle size, 163±8 nm, 

PDI, 0.13±0.09 and ZP, -27±1 mV. Cellular uptake in MCF-7 and MDA-MB-231 revealed 

hNTs, OATP1B3 independent, clathrin mediated internalization followed via nuclear co-

localization of C-6 loaded AA-GEM-BSA NPs, responsible for significantly higher apoptosis 

index. Pharmacokinetic profile of DTX loaded AA-GEM-BSA NPs revealed 6.12 and 3.27-fold 

and 6.28 and 8.9-fold higher AUC and T1/2 values of DTX and GEM as compared to Taxotere
® 

and Gemzar
®
, respectively. Interestingly, the developed NPs were found safe with no marked 

effect on RBCs, lower hepato and nephro toxicity. Data in hand suggest promising potential of 

developed NPs in ameliorating the pharmacokinetic and therapeutic profile of combinatorial 

regimen of DTX and GEM. 



Key words: Combination chemotherapy, Self-assembled nanoparticle, Targeted drug delivery, 

Biodistribution, DMBA breast cancer model, Drug-polymer conjugate.   



1 INTRODUCTION 

Combination therapy with two or more drugs has emerged as a promising approach for the 

synergistic therapeutic efficacy and to suppress the cancer drug resistance, as different drug 

molecules can exert their therapeutic effects at different stages of the growth cycles, leading to 

synergistic anticancer response.[1] In addition, it also overcome the deleterious adverse effects 

associated with higher doses of individual drugs by enhancing the therapeutic efficiency via 

multi-facet pharmacodynamics actions.[2] Among the various combination regimens, Docetaxel 

(DTX) and Gemcitabine (GEM) is well tolerated and is found to be efficient as first-line therapy 

for advanced, metastatic non-small-cell lung, metastatic uterine leiomyosarcoma and metastatic 

breast cancer.[3-5] 

GEM is an inactive analogue of nucleoside deoxycytidine, which upon intracellular 

phosphorylation yields the di- and triphosphate active moieties, that inhibit ribonucleotide 

reductase and integrates into DNA, leading to the termination of DNA synthesis.[6] Whereas, 

DTX functions by stabilizing tubulin and induces phosphorylation of bcl-2, promoting apoptosis 

which results in inhibition of mitotic and interphase arrest.[7] GEM is highly hydrophilic in 

nature (water solubility of ~83 mg/ml), with a short T1/2 (half-life of 32–84 min) and rapidly 

decomposed into its inactive uracil metabolite (2′-deoxy-2′,2′-difluorouridine (dFdU)), which 

accounts for up to 99% of metabolic product.[8] Consequently, frequent higher doses of GEM 

have to be administered to achieve the therapeutic level, which leads to enhanced dose dependent 

toxicity. While, DTX is highly hydrophobic with very less water solubility and DTX formulation 

for clinical application (Taxotere
®
) consists of a 40 mg/ml of DTX in a vehicle composed of high 

concentration of Tween 80
®
 as solubilizer and ethanol as co-solvent, which results into severe 

anaphylactic (hypersensitivity) toxicity and even death.[9] In order to decrease undesired side 



effects due to polysorbate 80, all patients have to be treated with dexamethasone 3 days prior to 

the treatment, which leads to compromised immune response in patients.[10] Because of these 

side effects, patient dropout rate of docetaxel therapy is quite high by the end of second/third 

treatment cycle. Some formulation strategies have been reported to circumvent the problems of 

individual drug.[11, 12] According to Wei, star-shaped mannitol-core PLGA-TPGS diblock 

copolymer and polydopamine-based surface modification of novel NPs-aptamer bioconjugates 

showed promising potential in elevating the anti-cancer efficacy of DTX.[13, 14] However, the 

studies were carried out with single drug and no combinatorial drug delivery system has been 

employed. Nevertheless, few reports of liposomal based nanoformulation for combination 

therapy of DTX and GEM were published. According to Liang et al. and Yang et al, the 

liposomal formulation demonstrated higher in vitro and in vivo therapeutic efficacy.[15, 16] 

However, the formulations demonstrated higher release pattern of GEM within 24 h owing to its 

hydrophilic nature. Moreover, the reports did not address the deliverability and pharmacokinetic 

of drugs having extremely different physicochemical properties, which are still the major hurdles 

of combination therapy. 

In the present study, we hypothesize that the poor physicochemical properties of the GEM can be 

fruitfully modified by conjugating it with albumin protein. The polymeric conjugate of the GEM-

albumin could increase drug stability against deamination from cytidine deaminase (CDA) 

resulting in enhanced plasma half-life of the drug.[17] But upon conjugation of GEM, the 

hydrophilicity of albumin would remarkably increase which reduces the affinity towards DTX. 

Thus, to regain the hydrophobic and hydrophilic balance of albumin, hydrophobic anacardic acid 

(AA) was conjugated to free -NH2 groups of BSA. In addition to this, AA conjugation to albumin 

also provides additional hydrophobic domains, which is anticipated to enhance DTX protein 



binding affinity. Hence, considering the above mentioned complexities associated with GEM, 

development of prodrug of GEM could effectively improve the solubility profile, stability, cell 

uptake and target specificity of GEM.  Furthermore, by conjugating AA, the AA-GEM-BSA 

conjugate was then transformed into NPs, which could also mollify solubility related hurdles of 

DTX and significant solvent related toxicities including allergic, hypersensitivity and 

anaphylactic reactions can be resolved. In addition, presence of AA is also anticipated to 

improve the tumour selectivity (via affinity towards VEGF receptors, overexpressed in tumor 

angiogenesis) of developed NPs. The simple manufacturing process and use of relatively cost 

effective excipients offer high level of industrial scalability and applicability. 

2 MATERIALS AND METHODS 

2.1 Materials 

GEM and DTX were provided as gift sample by Fresenius Kabi Oncology Limited, Gurgaon, 

India. BSA, Anacardic acid (AA), chlorpromazine (CPZ), genistein (GEN) Dimethyl sulfoxide 

(DMSO), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Triton X-100 

and ethylene diamine tetra acetic acid (EDTA), N,N'-Carbonyldiimidazole (CDI), 1-Ethyl-3-(3-

dimethylaminopropyl)-carbodiimide (EDC), N hydroxyl succinimide (NHS), Minimum essential 

medium (MEM), Dulbecco's Modified Eagle Medium (DMEM), fetal bovine serum (FBS), 

antibiotic–antimycotic solution  were procured from Sigma Aldrich, USA. Pyridine, and diethyl 

ether were purchased from Merck. Pyridine were dehydrated over phosphorus pentoxide, 

respectively, and distilled prior to use. Ultrapure deionized water (LaboStar Ultrapure Water 

Systems, Germany) was used for all the experiments. All other reagents used were of analytical 

grade. 



2.2 Methods 

2.2.1 Synthesis of AA-GEM-BSA Conjugate 

The detailed synthesis of conjugate is mentioned in the supporting information.  

2.2.2 Preparation of DTX loaded AA-GEM-BSA NPs 

AA-GEM-BSA conjugate was further transformed into NPs via high pressure homogenization 

method with slight modification and extensively optimized using Box-Behnken design via 

design of expert (Please refer supporting information).[18, 19] Briefly, 100 mg of AA-GEM-

BSA conjugate was dissolved in 10 ml of water. To this aqueous solution, 2 ml of 1:1 ratio of 

ethanol and chloroform, containing 10 mg DTX, was added dropwise (1 ml/min), under a low 

shear forces (magnetic stirrer) at 1200 rpm for 1 h in order to form a crude emulsion. The above 

emulsion was subjected to high-pressure homogenization (20000 psi for 10 cycles). Finally, 

residual chloroform and ethanol were evaporated by rotary evaporation. The aqueous dispersion 

containing NPs was then centrifuged at 5000 rpm for 5 minutes to pelletized free drug and the 

supernatant was sterilized by 0.22 µm filter and lyophilized using 5%w/v mannitol. (Please refer 

supporting information) 

2.2.3 Characterization of GEM-BSA NPs 

2.2.3.1 Particle size, zeta potential and entrapment efficiency (%EE) 

The developed AA-GEM-BSA NPs were evaluated for their mean particle size, PDI, ZP by 

using Zeta Sizer (Nano ZS, Malvern Instruments, UK). All measurements were carried out after 

dilution with distilled water.  

The percentage of DTX encapsulated (%EE) in AA-GEM-BSA and BSA NPs was determined 

by using validated HPLC method (please refer supplementary information).[20] Briefly, NPs 

were centrifuged and the obtained pellet was dissolved in methanol/1 N NaOH mixture (50:50 



v/v) and sonicated for 5 min. The solution was centrifuged at 5000 rpm for 5 min and the 

supernatant was analyzed using the following formula: 

                         
                     

                                     
     

2.2.3.2 Shape and Morphology 

The surface morphology of the developed DTX loaded NPs was analyzed by SEM (S-3400N, 

Hitachi, Japan) by placing a drop of colloidal dispersion of AA-GEM-BSA NPs over a glass 

coverslip previously adhered to an aluminium stub by a bi-adhesive carbon tape. The drop was 

air-dried for ~30 min and samples were visualized using SEM at 10 kV. 

Further, the three-dimensional (3D) surface morphology of the NPs was also observed via AFM. 

A Bruker Multimode 8 atomic force microscope with Nanoscope V controller was used for the 

AFM measurements. Measurements were made in air under ambient conditions using QNM 

mode. Analysis was obtained using a V-shaped ScanAsyst air probe from Bruker (nominal 

spring constant 0.4 Nm
-1

; nominal resonant frequency 70 kHz; nominal length 600 nm). AFM 

analysis was performed by placing a drop of NPs on the silicon mica and then allowed to dry for 

~30 min.  

2.2.4 In vitro cell culture experiments 

2.2.4.1 Cells 

MCF-7 and MDA-MB-231 were purchased from ATCC, Manassas, VA, USA and were cultured 

as per ATCC guidelines.  



2.2.4.2 Cell uptake and internalization studies  

Qualitative cell uptake and nuclear co-localization study 

The cell uptake of AA-GEM-BSA NPs were evaluated as per our previous reports with slight 

modifications.[20] Briefly, Coumain-6 (C-6) was used as a model dye to evaluate the cellular 

uptake of drug in different cell types. C-6 loaded AA-GEM-BSA NPs were prepared by 

following the same preparation of method except taking C-6 instead of DTX. Thereafter, MCF-7 

and MDA-MB-231 cells were cultured onto a 6-well plate at a density of 50,000 cells/well and 

incubated with C-6 loaded AA-GEM-BSA NPs for 4 h. After incubation the cells were washed 

with Hank's Buffered Salt Solution (HBSS) for three times and fixed with 2.5% glutaraldehyde 

(Merck, India) and permeabilized with 0.2% Triton X-100. The nuclei of the cells were stained 

with DAPI (10 µg/ml) (Sigma, USA) and observed under the CLSM (Olympus FV1000). 

Quantitative cell uptake study 

In case of quantitative cell uptake analysis, DTX loaded NPs and free DTX were incubated with 

MCF-7 and MDA-MB-231 cells cultured in 6-well plate for different time intervals of 0.5, 1, 2 

and 3 h. Furthermore, in order to confirm the targeting ability towards of the developed 

nanoparticles VEGF receptors overexpressed in MCF7 and MDA-MB-231 cells, uptake study, in 

presence and absence of AA was also evaluated. After different incubation time intervals, the 

cells were washed with HBSS three times to remove the extracellular drugs. Further cells were 

permeabilized with the 0.2% Triton X-100 and internalized drug was extracted with methanol. 

The cell lysate was collected and centrifuged (Sigma K 300, USA) at 10,000 rpm for 10 min and 

the supernatant was subjected to HPLC analysis for quantification of internalized drugs. 



2.2.4.3 Intracellular trafficking  

The intracellular localization of DTX, GEM and DTX loaded AA-GEM-BSA NPs into the 

lysosomes and endosomes was determined using LysoTracker
®
 (an acidic organelle specific dye; 

Ex/ Em 577/590 nm). MCF-7 and MDA-MB-231 cells were treated with DTX, GEM and C-6 

loaded AA-GEM-BSA NPs at a concentration of 5 µg/ml. After the incubation for 24 h, the 

media was aspirated and cells were washed thrice with HBSS and further incubated with the 

media containing LysoTracker
®

 Red (1 µM) for 30 min in the dark. Thereafter, the cells were 

washed thrice using HBSS and visualized under CLSM under red channel. 

2.2.4.4 Annexin-V apoptosis assay 

The in vitro therapeutic efficacy of DTX loaded AA-GEM-BSA NPs was further assessed as a 

capability to induce apoptosis in MCF-7 and MDA-MB-231 cells, via standard phosphatidyl 

serine externalization assay based on Annexin-V binding.[21] Briefly, MCF-7 and MDA-MB-

231 cells were seeded at a density of 5x10
4
 cells per well in the 6-well tissue culture plate 

(Costars, Corning Inc., NY, USA) and kept to attach overnight at 37 ºC and 5% CO2. The media 

was then aspirated and cells were treated with media containing samples, equivalent to 10 µg/ml 

of DTX. After 6 h of incubation, the cells were washed thrice with HBSS and stained with 

Annexin-V-Cy3.18 conjugate (AnnCy3) and 6-carboxyfluorescein diacetate (6-CFDA) following 

the manufacturer's protocol (Annexin V-Cy3™ Apoptosis Detection Kit, Sigma, USA). 

2.2.4.5 In vitro hemolysis 

The toxicity profile of the developed NPs and marketed formulations (Taxotere
®
 and Gemzar

®
) 

was evaluated by in vitro hemolysis assay as per our previous reports.[22] RBCs were incubated 

with free drugs (GEM, DTX and combination of GEM and DTX), marketed formulation 

(Taxotere
®
, Gemzar

®
 and combination of Taxotere

®
 and Gemzar

®
) and DTX loaded AA-GEM-



NPs (equivalent to 0.5 mg/ml of DTX), while, Triton X-100 and PBS were used as positive and 

negative control. After incubation the supernatant was analyzed at 540 nm for hemoglobin (Hb) 

content and the % hemolysis was determined using following equation: 

% hemolysis = 100x(Abs-Abs0)/(Abs100-Abs0) 

Where, Abs, Abs100 and Abs0 are the absorbance of the sample, positive and negative control, 

respectively. 

2.2.5 In vivo pharmacokinetics 

2.2.5.1 Animals and dosing 

Female Sprague Dawley (SD) rats of 220-230 g were supplied by the central animal facility 

(CAF), National Institute of Pharmaceutical Education & Research (NIPER), India following the 

approval of all the animal protocols by the Institutional Animal Ethics Committee (IAEC). Prior 

to experiments, the animals were acclimatized under natural light/dark at temperature of 25 ± 2 

°C and relative humidity of 50-60% conditions. After 1 week of acclimatization, the animals 

were randomly distributed into different groups each containing 5 animals. 1
st
, 2

nd
 and 3

rd
 group 

of animals received Gemzar
®

, Taxotere
®
, and DTX loaded AA-GEM-BSA NPs, respectively. All 

the samples were parentrally administered via tail vein at a dose equivalent to 2 and 10 mg/kg 

weight of DTX and GEM, respectively. At predetermined time points, ~0.2 ml blood samples 

were collected from the tail vein into the centrifuge tubes containing heparin (40 IU/ml of 

blood). Further, plasma was separated by centrifuging (3000 rcf for 5 min) the blood samples at 

4 °C. To 100 µl of plasma, 200 µl of acetonitrile was added to precipitate proteins and again 

centrifuged at 10,000 rpm for 10 min at 4 °C. The supernatant was then separated and analyzed 

for drug content by validated HPLC method (please refer supplementary information). 



2.2.5.2 Pharmacokinetic data analysis 

The pharmacokinetic data was analyzed by one compartmental model, using Kinetica software 

(Thermo scientific). Required pharmacokinetics parameters like total area under the curve 

(AUC)0-∞, peak plasma concentration (Cmax), terminal phase half-life (t1/2) and time to reach the 

maximum plasma concentration (Tmax) were determined. 

2.2.6 Toxicity evaluation 

After 7 days of different treatment (Gemzar
®

, Taxotere
®
, combination of Gemzar

®
 and 

Taxotere
®
, and DTX loaded AA-GEM-BSA NPs), the treated and control animals were 

sacrificed and blood was collected by cardiac puncture. Thereafter, the plasma was separated and 

analyzed for various toxicity markers viz. alanine transaminase (ALT), aspartate transaminase 

(AST), blood urea nitrogen (BUN) and creatinine by commercially available diagnostic kits 

(Accurex Pvt. Ltd., India). From the same group of animals, for the estimation of oxidative stress 

marker, Malondialdehyde (MDA), liver was isolated and homogenized in 5 volumes of PBS (pH 

7.4). In addition, liver, kidney and spleen tissues, excised from each group, were processed as 

per the routine protocol and further stained with hematoxylin and eosin (H&E) for 

histopathological evaluations. 

2.2.7 In vivo haemotoxicity 

The effect of Gemzar
®

, Taxotere
®
, combination of Gemzar

®
 and Taxotere

®
, and DTX loaded 

AA-GEM-BSA NPs treatment on RBCs as compared to control (without treatment) was 

accessed to analyze haematotoxicity profile in in-vivo conditions. Briefly, after 7 days of 

treatment, RBCs pellet was collected as per the protocol mentioned above. The RBCs pellet was 

then suspended in 3-fold volume of 0.5% glutaraldehyde in phosphate buffer (pH 7.4) for 60 min 



and further washed four times with 10-fold distilled water. Finally, fixed RBCs were imaged 

under SEM. 

2.2.8 In vivo bio-distribution  

In-vivo bio-distribution of NPs was analyzed by qualitative estimation of fluorescence from C-6 

loaded nanoformulation within tumor and organs following i.v. adminstration.[23] Briefly, tumor 

bearing female Sprague Dawley (SD) rats were divided into three groups, administered with free 

C-6, C-6 loaded BSA NPs, and C-6 loaded AA-GEM-BSA NPs (equivalent to 0.1 mg/kg of C-6) 

via tail vein. After the incubation of 24 h, the animals were sacrificed, then the organs (liver, 

lung, heart, spleen and kidney) and tumor were excised and sectioned. The sections were then 

visualized by CLSM for the C-6 fluorescense. 

2.2.9 In vivo antitumor efficacy 

DMBA induced breast cancer model was used to evaluate the antitumor efficacy of the 

developed NPs as per our previous protocol with slight modification.[24, 25] Briefly, DMBA, 

dissolved in soya bean oil, was orally administered to the rats at 45 mg/kg dose for three 

consecutive weeks with weekly interval. Once the average tumor volume reached about 100 

mm
3
, tumor bearing animals were separated and randomly divided into different groups each 

containing 5 animals. A single dose of Taxotere
®

, Gemzar
®
, combination of both Taxotere

®
 and 

Gemzar
® 

and DTX loaded AA-GEM-BSA NPs (each equivalent to 2 mg/kg of DTX) was 

administered to the first 4 groups of animals, while, the 5
th

 group (control) received normal 

saline via I.V. route. The tumor volume was measured on every alternate day with a digital 

caliper up to 15 days. In addition, survival of the animals was analyzed using the Kaplan−Meier 

survival plot. 



2.2.10 Statistical analysis 

All the data are expressed as mean ± standard deviation (SD) and mean ± standard error of mean 

(SEM) for all in vitro and in vivo results, respectively. Statistical analysis was performed using 

Sigma Stat (version 3.5) utilizing one-way ANOVA followed by Tukey−Kramer multiple 

comparison test. p<0.05 was considered as statistically significant difference. 

3 RESULTS 

3.1 Characterization of AA-GEM-BSA NPs 

3.1.1 Shape and Morphology of NPs 

The quality attributes (size, PDI, ZP and % drug loading) of developed nanoformulation (AA-

GEM-BSA NPs) are shown in Table 1. In addition, SEM and AFM analysis confirmed the 

formation of spherical and smooth surface NPs (Figure 1). Moreover, the results were in good 

correlation with the results obtained from zeta sizer. 

3.2 In vitro cell culture experiments 

3.2.1 Cell uptake 

3.2.1.1 Qualitative cell uptake and nuclear co-localization 

To support our hypothesis of improved cellular uptake followed by nuclear uptake owing to 

modification of BSA with AA and GEM, cell uptake and nuclear co-localization assay were 

performed in MCF-7 (Figure 2 A and B) and MDA-MB-231 (Figure 2 C and D) cells. As 

evident from the green florescent panel (b) of Figure 2, C-6 loaded AA-GEM-BSA NPs showed 

significantly higher cellular uptake in both cells lines suggestive of efficient internalization of 

NPs. Further, the nuclear co-localization of AA-GEM-BSA NPs (Figure 2 A and C) was also 

investigated and compared with non-modified NPs (BSA NPs) (Figure 2 B and D), which 

demonstrates remarkable fluorescence overlap (Figure 2, A and C, panel c) of DAPI (blue 



florescence of nucleus staining dye, Figure 2, A and C, panel a) and C-6 (green fluorescence of 

C-6 loaded NPs; Figure 2, A and C, panel b) in case of AA-GEM-BSA NPs. In contrast, plain 

BSA NPs exhibited higher C-6 fluorescence intensity in the cytoplasm (Figure 2, B and D).  

Efficient nuclear co-localization was also demonstrated via box (Figure 2, panel f) and line 

series analysis (Figure 2, panel f) which validated the overlap of green florescence in case of 

AA-GEM BSA NPs. Further, remarkably higher nuclear co-localization was evident via 

Pearson's coefficient between C-6 loaded AA-GEM-BSA NPs and DAPI was found to be 0.91 

and 0.83 (Figure 2, A and C, panel h), while, the Pearson's coefficient in case of C-6 loaded NPs 

was found to be 0.43 and 0.44 in MCF-7 and MDA-MB-231, respectively (Figure 2, B and D, 

panel h). 

3.2.1.2 Quantitative cell uptake 

Time and concentration dependent quantitative cell uptake was also studied, which demonstrated 

significant enhancement in the cellular uptake of DTX when encapsulated in AA-GEM-BSA 

NPs as compared to free DTX and DTX loaded BSA NPs (Figure 2 (II)). Furthermore, 

pretreatment of MCF-7 and MDA-MB-231 cells with AA could not restrain AA-GEM-BSA NPs 

from entering the cells, however, a prominent difference in the DTX concentration was noticed. 

3.2.2 Intracellular trafficking  

Subcellular fate of DTX, GEM, combination of DTX and DTX loaded BSA NPs and DTX 

loaded AA-GEM-BSA NPs was evaluated by using LysoTracker
®
 Red dye. Figure 3 shows the 

comparative formation of lysosomes following the treatment of cells with DTX , GEM, 

combination of DTX and GEM, DTX loaded BSA NPs and DTX loaded AA-GEM-BSA NPs for 

24 h. Cells incubated with DTX loaded AA-GEM-BSA NPs and DTX loaded BSA NPs 

exhibited significantly higher red fluorescence intensity (LysoTracker
®
 Red dye, Figure 3, panel 



a) as compared to the cells treated with free drugs and their combination. Furthermore, to 

validate the overlapping of LysoTracker
® 

fluorescence with the differential interface contrast 

images of cells (Figure 3, panel c), vertical (Figure 3, panel d) and horizontal (Figure 3, panel 

e) line series analysis was performed, which demonstrated significant overlapping of 

LysoTracker
® 

red fluorescence signals with the vibrations of white lines (corresponding with 

cells signals), revealing significantly higher lysosome formation in case of NPs treatment.   

3.2.3 Annexin-V apoptosis assay 

Significantly higher levels of apoptosis index was observed in case of DTX loaded AA-GEM–

BSA NPs in comparison with individual drugs and their combination (DTX+GEM) in both 

MCF-7 and MDA-MB-231 cell lines (Figure 4). The apoptotic index in case of DTX, GEM and 

their combination (DTX+GEM) was found to be 0.54, 0.42 and 0.72, respectively in MCF-7 cell 

lines. This went even higher up to 0.67 and 0.98 in case of blank AA-GEM-ALB NPs and DTX 

loaded AA-GEM-BSA NPs, respectively. Similar trend was observed in MDA-MB-231 cell 

lines. 

3.2.4 In vitro hemolysis 

Complete hemolysis was noticed when incubated with Triton X 100 (positive control), while, no 

hemolysis was found in case of PBS, pH 7.4 (negative control). Incubation of RBCs with free 

DTX, free GEM, combination of free GEM and DTX, Taxotere
®
, Gemzar

®
 and combination of 

marketed formulations demonstrated almost 21.07, 20.83, 37.18, 25.75, 21.52 and 41.06 % 

hemolysis, respectively. In contrast, DTX loaded NPs demonstrated no sign of hemolysis and 

found to be comparable with negative control (Figure 7 F). 



3.3 In vivo study 

3.3.1 Pharmacokinetics 

Different pharmacokinetic parameters of DTX following i.v. administration of Taxotere
®
 and 

DTX loaded AA-GEM-BSA NPs is summarized in Table 2. The AUC(0-∞) and T1/2 value of DTX 

was found to be 6.12 and 6.28-fold higher, respectively, in case of DTX loaded AA-GEM-BSA 

NPs in comparison with Taxotere
® 

(Figure 5). AA-GEM-BSA NPs demonstrated 3.72 and 8.90-

fold higher AUC(0-∞) and T1/2 values of GEM as compared to Gemzar
®
. 

3.3.2 Toxicity evaluation 

Figure 6 (I) represents the different levels of biochemical parameters following the treatment of 

marketed formulations, their combination and DTX loaded AA-GEM-BSA NPs. No significant 

difference was observed in biomarkers levels between the control and the DTX loaded AA-

GEM-BSA NPs treated groups. A significant increase in AST, ALT and MDA levels was 

noticed in Taxotere
®
 and Gemzar

® 
treated animals as compared to control animals.  

In line with the hepatotoxic results, BUN and creatinine levels were found to be significantly 

higher when the animals were treated with Taxotere
®
, Gemzar

®
, their combination (Taxotere

®
, 

Gemzar
®
) as compared with control.  

The in vivo toxicity was further estimated by histopathological examinations of kidney, liver and 

spleen. Histological sections of animals treated with Taxotere
®
, Gemzar

®
 and their combination 

exhibited pronounced level of toxicity as compared to the control animals (Figure 6 (II)). 

Interestingly, animals treated with DTX loaded AA-GEM-BSA NPs demonstrated normal 

parenchymal cell physiology without having sign of inflammation, lesions and necrosis. 



3.3.3 In vivo hemolysis 

The hemolytic effect was evaluated via isolating RBCs from the animals, treated with different 

sample and observed by SEM for any alteration in morphology. As evident from the Figure 7, 

Taxotere
®
, Gemzar

® 
and their combination exhibited severe alteration and surface deformities in 

shape and morphology of RBCs, indicative of hemolytic toxicity. In line with the in vitro 

hemolysis results, no noticeable change in morphology of RBCs was observed in the animals 

treated with DTX loaded AA-GEM-BSA NPs. 

3.3.4 In vivo bio-distribution  

Figure 8 (I) and (II) depicts bio-distribution of C-6 fluorescence on i.v. administration of free C-

6 and C-6 loaded NPs after 24 h, in various organs and tumor. The organ distribution profile of 

C-6 loaded NPs were significantly differed as compared to free C-6, which suggests higher green 

fluorescence in tumor sections of animals administered with C-6 loaded AA-GEM-BSA NPs and 

C-6 loaded BSA NPs. In contrast, higher fluorescence of free C-6 was observed in kidney, liver, 

heart and spleen as compared with C-6 loaded NPs, while, insignificant difference in 

fluorescence intensity was found in lungs tissue. 

3.3.5 In vivo antitumor efficacy 

Figure 8 (III) shows the antitumor activity and tumor burden of marketed formulation Gemzar
®
, 

Taxotere
®
, their combination and DTX loaded AA-GEM-BSA NPs following the i.v. 

administration. DTX loaded AA-GEM-BSA NPs treated animals demonstrated significant 

suppression of tumor growth (p < 0.001) as compared to control group. After 15 days of 

treatment, tumor size was found to be 35.72% in case of DTX loaded AA-GEM-BSA NPs as 

compared to untreated group (tumor size of 158.29%). 

4 DISCUSSION 



In the preset report, we have hypothesized a system for the combination therapy of GEM and 

DTX for synergistic efficacy and reduced toxicity. In order to overcome the challenges of GEM 

(high water solubility ~83 mg/ml and very short plasma half-life ~45 min), conjugate of AA-

GEM-BSA was synthesized to overcome the high solubility issues by having proper hydrophilic-

lypophilic balance. In addition, AA was supposed to provide functionality by targeting VEGF 

receptors to improve the tumor selectivity of NPs and transport of the drugs from cell membrane 

to nuclear (site of action of GEM) and perinuclear region (site of action of DTX) through ligand-

receptor interaction leading to enhanced tumor load of the drugs and therapeutic efficacy. The 

BSA conjugate of the GEM was synthesized via conjugating 4-(N) position of GEM with –

COOH groups of the BSA through a hydrolysable amide linkage, to protect its deamination from 

cytidine deaminase (CDA), which may result in increase of drug stability, plasma half-life and 

also minimizes non-specific drug toxicity on normal tissue by preventing in vivo random 

distribution of the drug via  enhanced permeability and retention (EPR) effect.[26] 

To prove our hypothesis, AA-GEM-BSA conjugate was synthesized by using EDC/NHS 

carbodiimide chemistry and characterized via 
1
H NMR and FTIR. The degree of modification, 

for AA, was evaluated via TNBS method, which was found to be 13.35%, i.e., 24.4 µM AA 

molecules were conjugated with the equimolar concentration of amine groups in the BSA. The 

conjugation of GEM with the carboxyl group was evaluated via calorimetric titration method, 

which demonstrated 24.6 µM GEM were conjugated with the BSA. Ratio of AA, GEM and BSA 

was found to be 24.4µM: 24.6 µM: 3.0303µM (~8 moles of AA and GEM conjugated with 1 

mole of BSA). Increase in BSA molecular weight owing to conjugation of AA and GEM was 

confirmed by MALDI-TOF, which demonstrates ~7.9 and ~8.5 moles of AA and GEM 

conjugated to BSA. Shift in gel electrophoresis bands further confirmed the higher molecular 



weight of AA-GEM-BSA conjugate. The elemental analysis showed increase in the nitrogen 

content in case of GEM-BSA conjugate due to the presence of additional 3 nitrogen atoms (1 in 

–NH2 group and 2 in pyrimidine ring) of GEM. In case of AA-GEM conjugate only percent 

content of carbon was increased and could be attributed to the presence of long carbon chain in 

AA. Slight decrease in the sulfur content could be explained by absence of sulfur in both AA and 

GEM and increased molecular weight of the final conjugate. 

Conjugation of AA and GEM resulted in alteration of native conformational structure of BSA, 

evaluated via measuring intrinsic fluorescence quenching, CD and Raman spectroscopy. BSA 

displays fluorescence due to the presence of tryptophan moieties at position 134 and 212 in 

subdomain IB and IIA, respectively. Upon conjugation of both GEM and AA, the fluorescence 

of BSA was found to be significantly quenched and could be ascribed to the conformational 

alteration surrounding the tryptophan moieties.[27] In line with the fluorescence quenching, CD 

spectra overlay also demonstrated alteration in the 3D structure of GEM-BSA, AA-BSA and 

AA-GEM BSA conjugate as compared with native BSA. Furthermore, structural changes in 

amide I band (α-helical conformation from peptide C = O stretching vibration, at ~1650 cm
-1

), 

amide III band (C-N bond stretching and in-plane N-H bond bending) and skeletal vibration 

regions was evaluated via Raman spectroscopy.[28] Table S 7 demonstrates increase (I1246/I1337 

ratio; from 0.697 to 1.158) and decrease (I934/I1003 ratio; from 0.678 to 0.366) in intensity of BSA 

on conjugation of AA and GEM, which might be due to the increase in random coil and loss of 

secondary structural content in BSA, respectively.[29] This conformational change in AA-GEM-

BSA conjugate is expected for higher cellular uptake of modified NPs as compared to native 

BSA NPs via gp18 and gp30 receptors (over expressed in cancer cells, responsible for uptake of 



conformationally altered albumin), in addition to the SPARC (Secreted Protein, Acidic and Rich 

in Cysteine), mediated uptake of albumin.[30, 31] 

The effect of AA and GEM conjugation on the thermal property of BSA was tested by TGA 

analysis, which demonstrated two major phases of degradation. The initial degradation phase 

was observed between room temperature to the ~105 °C, this loss of weight could be due to the 

loss of water molecules in the samples.[32] On further increasing the temperature, the conjugates 

and native BSA demonstrates second phase of weight loss, which exhibits 10.46, 7.10 and 

13.70% higher decomposition in case of GEM-BSA conjugate, AA-BSA conjugate and AA-

GEM-BSA conjugate, respectively, as compared to BSA at 300 °C. Furthermore, thermal 

property of the conjugates was also evaluated via DSC analysis, which depicts presence of no 

endothermic peaks at ~273°C, corresponding to melting point of GEM, signifying loss of 

crystalline structure on conjugation with BSA.    

The wettability of the synthesized conjugates was measured by contact angle analysis. It is 

evident from Figure S 4 (C) and (D), on conjugating GEM with BSA, the hydrophilicity of the 

system was increased resulting in stronger affinity towards the water droplet indicating 

significantly higher wettability. In contrast, as compared to BSA, owing to its lipophilic nature of 

AA, AA-BSA conjugate demonstrated higher contact angle with water droplet indicating lower 

affinity towards water droplet. Interestingly, on conjugation of both AA and GEM the 

amphiphilic nature of the system was found to be comparative to BSA and could be attributed to 

the hydrophilic-lipophilic balance provided by both AA and GEM.  

The synthesized AA-GEM-BSA conjugate was then utilized for the preparation of NPs by high 

pressure homogenization and extensively optimized via Box-Behnken design. The critical 

quality attributes such as size and PDI of developed NPs were found to be 139±7 nm, 0.13±0.04 



and 163±8 nm, 0.13±0.09 in case of BSA NPs and AA-GEM-BSA NPs, respectively. 

Interestingly, BSA NPs exhibited ZP -35±2 mV, while in case of AA-GEM-BSA NPs the ZP 

was found to be -27±1 mV. This depreciation in ZP could be attributed to reduction in amino 

groups following the conjugation with AA.  

To improve the storage stability of the formulations, NPs were freeze dried by using 

cryoprotectant. Among various cryoprotectants (Table S7), mannitol was employed as the 

optimized one owing to formation of stable network around the NPs leading to minimal changes 

in the critical quality attributes of NPs. The powder X-ray diffraction (PXRD) spectra of 

developed NPs demonstrate absence of characteristics peaks of DTX and GEM, suggesting 

existence of drugs in the amorphous form rather than crystalline form. Furthermore, the stability 

of the developed NPs at accelerated storage conditions were also evaluated, which demonstrates 

excellent storage stability at accelerated storage condition (Table S 11). 

In vitro release study demonstrated significant retardation of DTX release from AA-GEM-BSA 

NPs as compared to BSA NPs. This depreciation could be due to the conjugation of AA and 

GEM, which acts as a barrier for the release of drug from the albumin matrix as compared to 

BSA NPs. Further, the release kinetics of NPs was also evaluated which demonstrated Higuchi 

kinetics of drug release, depicting involvement of initial diffusion followed by erosion, 

disintegration from the matrix of NPs.[33] Figure S 8 demonstrated higher release of GEM from 

NPs at pH 5.5 as compared to pH 7.4 in the presence of protease. In plasma stability studies, 

GEM showed rapid degradation into its inactive metabolite dFdU (~64%), while, this was ~16% 

in case of NPs following the 24 h incubation in plasma. The sustained release and enhanced 

stability against enzymatic degradation could be attributed to the stability of amide bond.[34] 



Furthermore, higher drug release at pH 5.5 can be a useful property to get maximum release of 

GEM at tumor environment.  

To support our hypothesis of improved cellular uptake followed by nuclear uptake owing to 

modification of BSA with AA and GEM, cell uptake and nuclear co-localization assay were 

performed in MCF-7 and MDA-MB-231 cells. Random distribution of green fluorescence 

throughout the cell (nuclear and perinuclear region) was observed in case of C-6 loaded AA-

GEM-BSA NPs which could be attributed to the modification of BSA with AA. In contrast, BSA 

NPs demonstrated negligible C-6 fluorescence in the nuclear portion of cells. Furthermore, 

quantitative cell uptake study demonstrated higher cellular uptake of DTX loaded AA-GEM-

BSA NPs as compared to free drug and DTX loaded BSA NPs.  This appreciation in the cell 

permeability in case of NPs could be attributed to the gp 18 and gp 30 transporters, 

overexpressed in breast cancer cell lines.[35] Furthermore, by conjugating with AA, BSA NPs 

can be directed to the desired site of drug action (nuclear and perinuclear region), owing to 

higher affinity of AA towards ER-selective Nuclear Receptor Alternative Site Modulators 

(NRAMs) and zinc fingers of the DNA Binding Domain (estrogen-responsive elements; 

resulting from high metal-chelating property of AA).[36, 37] The transport of hydrophobic 

moieties such as AA is also reported to alter the conformation and permeability of the nuclear 

pore complex leading to increased nuclear trafficking.[38]  

The cell uptake study revealed efficient internalization of NPs, which might be ascribed to 

different mechanism of internalization. Thus to further explore the Intracellular trafficking or 

fate of NPs in MCF-7 and MDA-MB-231 cell lines, LysoTracker® red dye was used. As evident 

from Figure 3, negligible fluorescence of LysoTracker® red dye was seen in case of control 

cells (without treatment) and cells incubated with DTX, GEM and combination of DTX and 



GEM. In contrast, cells treated with NPs exhibits significantly higher fluorescence, 

demonstrating radical increase in the lysosome formation within the MCF-7 and MDA-MB-231, 

indicative of endocytic uptake of NPs through endo-lysosomes pathway.  

The transportation of DTX and GEM across the cell membrane requires specific transporters 

such as hNTs (human equilibrative nucleoside transporters, hENTs and human concentrative 

nucleoside transporters, hCNTs) and OATPs (organic anion transporting polypeptide) 

transporters, respectively, which acts as a limiting factor for their therapeutic efficacy. Thus, to 

explore the reliance on hNTs and OATPs, MCF-7 and MDA-MB-231 cells were pre-incubated 

with dipyridamole (hNTs and OATP1B3 inhibitor) followed by treatment with NPs and free 

drugs.[39, 40] Table S24 depicts, dipyridamole mediated transporters inhibition, which 

significantly increased the IC50 value of free drugs. In contrast, insignificant change in IC50 was 

observed in case of NPs in both MCF-7 and MDA-MB-231 cells. The insignificant change in 

IC50 or resistance towards drug cytotoxicity suggested existence of additional endocytic cell 

uptake or internalization mechanism, bypassing hNTs and OATPs mediated uptake in case of 

DTX loaded NPs. To further explore the plausible mechanism of NPs uptake, the cells were pre 

incubated with different inhibitors (GNT; caveolae uptake inhibitor and CPZ; clathrin uptake 

inhibitor). As evident from Table S24, increase in IC50 values was observed in case of NPs 

treatment, pre-incubated with GNT and CPZ. However, increase in IC50 or resistance, when the 

cells were pre-incubated with GNT, was not as prominent as compared to CPZ, indicating 

contribution of both clathrin and caveolae dependent cell uptake mechanism, while clathrin 

mediated uptake as primary mechanism. The results were in line with the cell uptake study 

revealing clathrin and caveolae mediated endocytic pathway of NPs.[41] 



The cell cytotoxicity experiments revealed significantly higher concentration and time dependent 

cell cytotoxicity of NPs as compared to that of GEM, DTX and combination of both GEM and 

DTX. The increased cytotoxicity could be ascribed to enhanced cellular uptake of NPs via 

clathrin dependent endocytosis and higher stability of GEM against CDA mediated degradation. 

The cell cytotoxicity was further corroborated by in vitro DNA damage and Annexin-V 

apoptosis assay. DNA damage is the primary mechanism of cytotoxicity in case of GEM, while, 

it is also reported that microtubule-targeting agents, such as DTX, also exhibits DNA damage by 

disrupting intracellular trafficking of DNA repair proteins.[42] DTX loaded AA-GEM-BSA NPs 

exhibited significantly higher DNA damage as compared to the combination of GEM and DTX, 

which could be attributed to the enhanced availability of DTX and GEM in case of NPs. The 

results depicted, cytotoxicity potential of both GEM and DTX was preserved on conjugation and 

encapsulation within the NPs, respectively, and is efficiently transported to the nuclear and 

perinuclear fraction of the MCF-7 and MDA-MB-231 cells. Furthermore, Annexin-V apoptosis 

assay revealed higher apoptotic index in MCF-7 and MDA-MB-231 cell lines, when incubated 

with NPs, in comparison with individual drugs and their combination. 

The Hemolytic toxicity of marketed formulations (Taxotere
®
, Gemzar

®
), their combination and 

DTX loaded NPs demonstrated severe Hemolytic toxicity of the marketed formulations and their 

combination while insignificant changes in NPs as compared to control (RBCs treated with PBS) 

Figure 7 F. This relatively lower hemolysis, observed in case of NPs, could be ascribed to the 

absence of Tween 80 and ethanol (solvent system of Taxotere
®
) and reduced exposure of 

individual drug.   

Taxotere
®
 and DTX loaded NPs were evaluated for their pharmacokinetics profiles after i.v. 

administration. AA-GEM-BSA NPs demonstrated improved pharmacokinetic profile showing 



significant amelioration in the DTX and GEM levels with 6.12 and 3.27-fold and 6.28 and 8.9-

fold higher AUC and T1/2 values as compared to Taxotere
® 

and Gemzar
®
, respectively. This 

increment of AUC and T1/2 values could be due to increase in circulation time of the drug owing 

to sustained release from NPs and enhancement in circulation half-time owing to longer albumin 

blood half-life (achieved through protein recycling via different physiological mechanisms). The 

increase in blood residence time of drugs could be by virtue of the enhanced molecular weight 

and encapsulation within the BSA NPs, leading to reduced susceptibility towards renal clearance 

or filtration.[43]  

Taxotere
®
 and Gemzar

® 
are primarily excreted via hepatobiliary and renal clearance, 

respectively, thus, demonstrates significant hepato and renal toxicity. Figure 6 depicts 

significantly higher levels of AST and ALT in group of animals treated with Gemzar
®
, 

Taxotere
®
 and their combination, while, DTX loaded AA-GEM-BSA NPs demonstrated 

insignificant difference in AST and ALT levels in comparison with the control animals. In 

addition, the MDA levels further validated the absence of toxicity or oxidative stress in group of 

animals treated with NPs. Furthermore, various nephrotoxicity markers such as BUN and 

creatinine levels were also measured, which demonstrated significantly higher levels in case of 

marketed formulations as compared to control and NPs treated animals. Relatively lower toxicity 

profile in case of NPs treatment could be attributed to absence of vehicle, long circulation time 

and sustained release of drugs. The histopathological evaluation of liver, spleen and kidney was 

performed to analyze solvent and drug induced toxicity. As evident from the Figure 6 (III), no 

indication of toxicity was found in case of treatment with NPs, while, severe lesions, loss of 

cellular integrity and inflammation was observed, when treated with Gemzar
®
, Taxotere

®
 and 

their combination. In vivo real time Hemolytic activity after i.v. administration of formulations 



was evaluated for qualitative Hemolytic toxicity via SEM. RBCs isolated from the animals 

treated with marketed formulations, demonstrated significant alteration in surface morphology 

with pronounced surface roughness/ deformity and even change in physiology while no visual 

change could be detected in case of RBCs from NPs treated groups as compared to RBCs taken 

out from control animals. 

The organ distribution of C-6 loaded NPs were assessed by in-vivo imaging to evaluate the 

potential of developed nanoformulations to effectively target drugs into the tumor environment 

bypassing non targeted organs i.e., heart, liver, kidney, lung, spleen, etc. After 24 h of 

administration significantly higher fluorescence intensity was observed in tumor, while, lower 

fluorescence was found in non-targeted organs when the animals were administered with C-6 

loaded AA-GEM-BSA NPs. Interestingly, the fluorescence intensity of C-6 loaded AA-GEM-

BSA NPs was found to be even higher compared with plain C-6 loaded BSA NPs in tumor. This 

observation could be attributed to higher affinity of AA towards VEGF receptors, overexpressed 

in tumor angiogenesis, confirming tumor targeting potential of developed AA-GEM modified 

BSA NPs. 

Further, the in vivo pharmacodynamic efficacy of developed NPs was tested in DMBA induced 

breast cancer tumor model. Treatment with DTX loaded AA-GEM-BSA NPs demonstrated 

significant reduction in the tumor burden in comparison with marketed formulations (Gemzar
®
, 

Taxotere
®
) and their combination. The higher C-6 fluorescence intensity in tumor sections and 

increased therapeutic efficacy in case of NPs could be attributed to sustained pharmacokinetic 

pattern responsible for longer availability of DTX and GEM in the blood compartment and by 

the virtue of enhanced permeation and retention (EPR). According to reports, the endothelial 

transportation of native BSA NPs from blood vessels to tumor environment takes place via 



SPARC (Secreted Protein, Acidic and Rich in Cysteine) and caveolae (mediated by gp60 

transporters) mechanism. Enhanced efficacy and tumor accumulation in case of developed AA-

GEM BSA NPs could be attributed to higher uptake by both clathrin (mediated by AA affinity 

towards VEGF receptors) in addition to the caveolae mediated uptake.[44, 45] Furthermore, 

pronounced increase in SPARC and VEGF expression is reported to be upregulated in multiple 

tumors, will ensure selective distribution of drug loaded NPs in the tumor vicinity, which, in 

turn, is expected to enhance the therapeutic efficacy of the loaded drug with reduced drug 

induced toxicity. Kaplan Meier survival curve (Figure 8 (D)) showed enhanced survival time of 

tumor bearing rats in NPs treated groups as compared to DMBA control and other groups 

suggestive of lower toxicity and higher safety of the developed combinatory strategy. 

5 CONCLUSION  

In the present report, a combinatory strategy was hypothesized to deliver GEM and DTX in a 

single smart delivery vehicle. AA functionalized DTX loaded NPs demonstrated sustained 

release, higher cellular uptake in the perinuclear and nuclear region (nuclear co-localization) via 

hNTs and OATP1B3 independent clathrin mediated internalization, significant reduction in IC50 

value and higher apoptotic index. Interestingly, developed NPs showed significant improvement 

in pharmacokinetic and pharmacodynamics by simultaneously alleviating the toxicities 

associated with marketed formulations. Fruitful outcomes of the present strategy offer an 

additional research horizon of drug macromolecule conjugates to overcome the limitations of 

hydrophobic and hydrophilic drugs molecules and has the promising potential to act as a 

platform technology for the delivery of potent but difficult to deliver drugs with limited clinical 

efficacy.  

ACKNOWLEDGEMENT 



The authors are thankful to the Director NIPER, James Graham Brown Cancer Center 

(University of Louisville, KY, USA) and Strathclyde Institute of Pharmacy & Biomedical 

Sciences (University of Strathclyde, Glasgow, U.K.) for necessary infrastructure and facilities. 

Varun Kushwah is also grateful to the Council of Scientific and Industrial Research (CSIR), 

GOI, New Delhi (Grant ID 09/727(0107)/2013-EMR-I), United States-India Educational 

Foundation, New Delhi (Grant ID PS00218456) and Commonwealth commission in the UK 

(Grant ID INCN-2015-29) for providing research funding and fellowships. He was the 2016-17 

Fulbright-Nehru Doctoral and 2015-16 Commonwealth Split-site PhD research fellow at 

University of Louisville, Louisville, KY and University of Strathclyde, Glasgow, U.K., 

respectively. 

Conflict of Interest and Disclosure 

The authors report no financial interest that might pose a potential, perceived, or real conflict of 

interest.  



REFERENCE 

[1] N.K. Swarnakar, K. Thanki, S. Jain, Enhanced antitumor efficacy and counterfeited 

cardiotoxicity of combinatorial oral therapy using Doxorubicin-and Coenzyme Q10-liquid 

crystalline nanoparticles in comparison with intravenous Adriamycin, Nanomedicine: 

Nanotechnology, Biology and Medicine 10(6) (2014) 1231-1241. 

[2] M. Das, R. Jain, A.K. Agrawal, K. Thanki, S. Jain, Macromolecular bipill of gemcitabine and 

methotrexate facilitates tumor-specific dual drug therapy with higher benefit-to-risk ratio, 

Bioconjugate chemistry 25(3) (2014) 501-509. 

[3] R.G. Maki, J.K. Wathen, S.R. Patel, D.A. Priebat, S.H. Okuno, B. Samuels, M. Fanucchi, 

D.C. Harmon, S.M. Schuetze, D. Reinke, Randomized phase II study of gemcitabine and 

docetaxel compared with gemcitabine alone in patients with metastatic soft tissue sarcomas: 

results of sarcoma alliance for research through collaboration study 002, Journal of Clinical 

Oncology 25(19) (2007) 2755-2763. 

[4] M.L. Hensley, J.A. Blessing, R. Mannel, P.G. Rose, Fixed-dose rate gemcitabine plus 

docetaxel as first-line therapy for metastatic uterine leiomyosarcoma: a Gynecologic Oncology 

Group phase II trial, Gynecologic oncology 109(3) (2008) 329-334. 

[5] D. Mavroudis, N. Malamos, A. Alexopoulos, C. Kourousis, S. Agelaki, E. Sarra, A. 

Potamianou, C. Kosmas, G. Rigatos, T. Giannakakis, Salvage chemotherapy in anthracycline-

pretreated metastatic breast cancer patients with docetaxel and gemcitabine: a multicenter phase 

II trial, Annals of oncology 10(2) (1999) 211-215. 

[6] W. Plunkett, P. Huang, Y.-Z. Xu, V. Heinemann, R. Grunewald, V. Gandhi, Gemcitabine: 

metabolism, mechanisms of action, and self-potentiation, Seminars in oncology, 1995, pp. 3-10. 

[7] F. Lavelle, M. Bissery, C. Combeau, J. Riou, P. Vrignaud, S. Andre, Preclinical evaluation of 

docetaxel (Taxotere), Seminars in oncology, 1995, pp. 3-16. 

[8] A.M. Storniolo, S. Allerheiligen, H.L. Pearce, Preclinical, pharmacologic, and phase I studies 

of gemcitabine, Seminars in oncology, 1997, pp. S7-2-S7-7. 

[9] S. Jain, G. Spandana, A.K. Agrawal, V. Kushwah, K. Thanki, Enhanced antitumor efficacy 

and reduced toxicity of docetaxel loaded estradiol functionalized stealth polymeric nanoparticles, 

Molecular pharmaceutics 12(11) (2015) 3871-3884. 

[10] F.K. Engels, R.A. Mathot, J. Verweij, Alternative drug formulations of docetaxel: a review, 

Anti-cancer drugs 18(2) (2007) 95-103. 

[11] N.V. Koshkina, E.S. Kleinerman, Aerosol gemcitabine inhibits the growth of primary 

osteosarcoma and osteosarcoma lung metastases, International journal of cancer 116(3) (2005) 

458-463. 

[12] M.N. Khalid, P. Simard, D. Hoarau, A. Dragomir, J.-C. Leroux, Long circulating poly 

(ethylene glycol)-decorated lipid nanocapsules deliver docetaxel to solid tumors, Pharmaceutical 

research 23(4) (2006) 752-758. 

[13] W. Tao, X. Zeng, J. Wu, X. Zhu, X. Yu, X. Zhang, J. Zhang, G. Liu, L. Mei, Polydopamine-

based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer 

targeting and enhanced therapeutic effects, Theranostics 6(4) (2016) 470. 

[14] W. Tao, X. Zeng, T. Liu, Z. Wang, Q. Xiong, C. Ouyang, L. Huang, L. Mei, Docetaxel-

loaded nanoparticles based on star-shaped mannitol-core PLGA-TPGS diblock copolymer for 

breast cancer therapy, Acta biomaterialia 9(11) (2013) 8910-8920. 



[15] L. Sun, D.-S. Zhou, P. Zhang, Q.-H. Li, P. Liu, Gemcitabine and γ-cyclodextrin/docetaxel 

inclusion complex-loaded liposome for highly effective combinational therapy of osteosarcoma, 

International journal of pharmaceutics 478(1) (2015) 308-317. 

[16] Y. Fan, Q. Wang, G. Lin, Y. Shi, Z. Gu, T. Ding, Combination of using prodrug-modified 

cationic liposome nanocomplexes and a potentiating strategy via targeted co-delivery of 

gemcitabine and docetaxel for CD44-overexpressed triple negative breast cancer therapy, Acta 

biomaterialia 62 (2017) 257-272. 

[17] V. Khare, S. Kour, N. Alam, R.D. Dubey, A. Saneja, M. Koul, A.P. Gupta, D. Singh, S.K. 

Singh, A.K. Saxena, Synthesis, characterization and mechanistic-insight into the anti-

proliferative potential of PLGA-gemcitabine conjugate, International journal of pharmaceutics 

470(1) (2014) 51-62. 

[18] T.H. Kim, H.H. Jiang, Y.S. Youn, C.W. Park, K.K. Tak, S. Lee, H. Kim, S. Jon, X. Chen, 

K.C. Lee, Preparation and characterization of water-soluble albumin-bound curcumin 

nanoparticles with improved antitumor activity, International journal of pharmaceutics 403(1) 

(2011) 285-291. 

[19] N.P. Desai, C. Tao, A. Yang, L. Louie, Z. Yao, P. Soon-Shiong, S. Magdassi, Protein 

stabilized pharmacologically active agents, methods for the preparation thereof and methods for 

the use thereof, Google Patents, 2004. 

[20] B. Hoang, M.J. Ernsting, A. Roy, M. Murakami, E. Undzys, S.-D. Li, Docetaxel-

carboxymethylcellulose nanoparticles target cells via a SPARC and albumin dependent 

mechanism, Biomaterials 59 (2015) 66-76. 

[21] C.P. Dora, F. Trotta, V. Kushwah, N. Devasari, C. Singh, S. Suresh, S. Jain, Potential of 

erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro 

cytotoxicity and oral bioavailability, Carbohydrate polymers 137 (2016) 339-349. 

[22] S. Jain, P.U. Valvi, N.K. Swarnakar, K. Thanki, Gelatin coated hybrid lipid nanoparticles 

for oral delivery of amphotericin B, Molecular pharmaceutics 9(9) (2012) 2542-2553. 

[23] X. Li, F. Qin, L. Yang, L. Mo, L. Li, L. Hou, Sulfatide-containing lipid 

perfluorooctylbromide nanoparticles as paclitaxel vehicles targeting breast carcinoma, 

International journal of nanomedicine 9 (2014) 3971. 

[24] S. Jain, T. Garg, V. Kushwah, K. Thanki, A.K. Agrawal, C.P. Dora, α-Tocopherol as 

functional excipient for resveratrol and coenzyme Q10-loaded SNEDDS for improved 

bioavailability and prophylaxis of breast cancer, Journal of drug targeting 25(6) (2017) 554-565. 

[25] S. Tripathi, V. Kushwah, K. Thanki, S. Jain, Triple antioxidant SNEDDS formulation with 

enhanced oral bioavailability: Implication of chemoprevention of breast cancer, Nanomedicine: 

Nanotechnology, Biology and Medicine 12(6) (2016) 1431-1443. 

[26] D. Chitkara, A. Mittal, S.W. Behrman, N. Kumar, R.I. Mahato, Self-assembling, 

amphiphilic polymer–gemcitabine conjugate shows enhanced antitumor efficacy against human 

pancreatic adenocarcinoma, Bioconjugate chemistry 24(7) (2013) 1161-1173. 

[27] M. Ghali, Static quenching of bovine serum albumin conjugated with small size CdS 

nanocrystalline quantum dots, Journal of Luminescence 130(7) (2010) 1254-1257. 

[28] B.A. Bolton, J.R. Scherer, Raman spectra and water absorption of bovine serum albumin, 

The Journal of Physical Chemistry 93(22) (1989) 7635-7640. 

[29] V. Lin, J. Koenig, Raman studies of bovine serum albumin, Biopolymers 15(1) (1976) 203-

218. 



[30] J. Schnitzer, J. Bravo, High affinity binding, endocytosis, and degradation of 

conformationally modified albumins. Potential role of gp30 and gp18 as novel scavenger 

receptors, Journal of Biological Chemistry 268(10) (1993) 7562-7570. 

[31] J. Schnitzer, A. Sung, R. Horvat, J. Bravo, Preferential interaction of albumin-binding 

proteins, gp30 and gp18, with conformationally modified albumins. Presence in many cells and 

tissues with a possible role in catabolism, Journal of Biological Chemistry 267(34) (1992) 

24544-24553. 

[32] M.W. Ahmad, C.R. Kim, J.S. Baeck, Y. Chang, T.J. Kim, J.E. Bae, K.S. Chae, G.H. Lee, 

Bovine serum albumin (BSA) and cleaved-BSA conjugated ultrasmall Gd 2 O 3 nanoparticles: 

Synthesis, characterization, and application to MRI contrast agents, Colloids and Surfaces A: 

Physicochemical and Engineering Aspects 450 (2014) 67-75. 

[33] T. Higuchi, Mechanism of sustained‐action medication. Theoretical analysis of rate of 

release of solid drugs dispersed in solid matrices, Journal of pharmaceutical sciences 52(12) 

(1963) 1145-1149. 

[34] E. Moysan, G. Bastiat, J.-P. Benoit, Gemcitabine versus modified gemcitabine: a review of 

several promising chemical modifications, Molecular pharmaceutics 10(2) (2012) 430-444. 

[35] A.M. Merlot, D.S. Kalinowski, D.R. Richardson, Unraveling the mysteries of serum 

albumin—more than just a serum protein, Frontiers in physiology 5 (2014) 299. 

[36] L. Caboni, D.G. Lloyd, Beyond the Ligand‐Binding Pocket: Targeting Alternate Sites in 

Nuclear Receptors, Medicinal research reviews 33(5) (2013) 1081-1118. 

[37] D.J. Schultz, N.S. Wickramasinghe, M.M. Ivanova, S.M. Isaacs, S.M. Dougherty, Y. 

Imbert-Fernandez, A.R. Cunningham, C. Chen, C.M. Klinge, Anacardic acid inhibits estrogen 

receptor α–DNA binding and reduces target gene transcription and breast cancer cell 

proliferation, Molecular cancer therapeutics 9(3) (2010) 594-605. 

[38] B. Naim, D. Zbaida, S. Dagan, R. Kapon, Z. Reich, Cargo surface hydrophobicity is 

sufficient to overcome the nuclear pore complex selectivity barrier, The EMBO Journal 28(18) 

(2009) 2697-2705. 

[39] M. Karlgren, A. Vildhede, U. Norinder, J.R. Wisniewski, E. Kimoto, Y. Lai, U. Haglund, P. 

Artursson, Classification of inhibitors of hepatic organic anion transporting polypeptides 

(OATPs): influence of protein expression on drug–drug interactions, Journal of medicinal 

chemistry 55(10) (2012) 4740-4763. 

[40] J.R. Mackey, R.S. Mani, M. Selner, D. Mowles, J.D. Young, J.A. Belt, C.R. Crawford, C.E. 

Cass, Functional nucleoside transporters are required for gemcitabine influx and manifestation of 

toxicity in cancer cell lines, Cancer research 58(19) (1998) 4349-4357. 

[41] K.R. Chaudhari, A. Kumar, V.K.M. Khandelwal, M. Ukawala, A.S. Manjappa, A.K. 

Mishra, J. Monkkonen, R.S.R. Murthy, Bone metastasis targeting: a novel approach to reach 

bone using Zoledronate anchored PLGA nanoparticle as carrier system loaded with Docetaxel, 

Journal of controlled release 158(3) (2012) 470-478. 

[42] M.S. Poruchynsky, E. Komlodi-Pasztor, S. Trostel, J. Wilkerson, M. Regairaz, Y. Pommier, 

X. Zhang, T.K. Maity, R. Robey, M. Burotto, Microtubule-targeting agents augment the toxicity 

of DNA-damaging agents by disrupting intracellular trafficking of DNA repair proteins, 

Proceedings of the National Academy of Sciences 112(5) (2015) 1571-1576. 

[43] R.E. Kontermann, Strategies for extended serum half-life of protein therapeutics, Current 

Opinion in Biotechnology 22(6) (2011) 868-876. 

[44] I. Neil, Nab technology: a drug delivery platform utilizing endothelial gp60 receptor-based 

transport and tumor-derived SPARC for targeting, Drug Deliv Rep  (2007) 37-41. 



[45] M. Simons, An inside view: VEGF receptor trafficking and signaling, Physiology 27(4) 

(2012) 213-222. 

 

  



FIGURES 

Figure 1: Surface morphology analysis via (A) SEM image (B) AFM image of (a) BSA NPs and 

(b) AA-GEM-BSA NPs 

Figure 2: (I) Confocal images of MCF-7 cells incubated with (A) AA-GEM-BSA NPs, (B) BSA 

NPs, MDA-MB-231 cells incubated with (C) AA-GEM-BSA NPs, (D) BSA NPs. Panel a and b 

represents the DAPI stained nucleus and C-6 loaded NPs in the same cells, respectively and 

panel c reflects the overlay images of panels a and b. Panel d shows a DIC image of the treated 

cells, and panel e represents high resolution images of panel c. The box analysis (f) line analysis 

plots (g), and scatter plot analysis (h) show interaction of DAPI and C-6. Scale bar denotes 30 

μm. (II) Quantitative cell uptake in (A) MCF-7 and (B) MDA-MB-231 cell lines at 

concentrations (a) 10 µg/ml, (b) 15 µg/ml and (c) 20 µg/ml. 

Figure 3: Intracellular fate of (A) DTX, (B) GEM, (C) DTX+GEM (D) DTX loaded BSA NPs 

(E) DTX loaded AA-GEM-BSA NPs shown by staining with LysoTracker® Red after 24h. 

Panel (a) Images under the red fluorescence channel of LysoTracker®; Panel (b) Corresponding 

differential interface contrast images of cells (c) Superimposition of Panel (a) and Panel (b); 

Panel (d) and (e) in all the images show vertical and horizontal line series analysis of 

fluorescence along the white line, respectively. 

Figure 4: Apoptosis assay of (A) DTX, (B) GEM, (C) DTX+GEM, (D) AA-GEM-BSA NPs and 

(E) AA-GEM-BSA NPs against (I) MCF-7 and (II) MDA-MB-231cell lines; (a) green channel 

depicts the fluorescence from carboxy fluorescein (cell viability marker dye); (b) red channel 

depicts fluorescence from Annexin Cy3.18 conjugate (cell apoptosis marker dye) (c) represents 

the overlay image whereas (d) depicts the differential contrast image of representative cells. 

Scale bar denotes 30 μm. 



Figure 5: Plasma concentration-time profiles of Taxotere
®
, Gemzar

®
, and NPs following i.v. 

administration in rats 

Figure 6: (I) Biochemical markers (A) AST (B) ALT (D) BUN (E) creatinine levels in plasma 

and (C) MDA level in liver homogenate after 7 days following administration of (b) Gemzar
®
, 

(c) Taxotere
®
, (d) Gemzar

®
 + Taxotere

®
 (e) DTX loaded AA-GEM-BSA NPs as compared to (a) 

control. Values are expressed as Mean ± SD (n = 5); ***, significant difference at p < 0.001, 
ns

, 

insignificant and (II) Histopathological sections of (A) kidney, (B) liver and (C) spleen following 

the treatment with free drugs and NPs 

Figure 7: SEM micrographs of RBCs indicative of (A) control and different groups treated with 

(B) Gemzar
®
, (C) Taxotere

®
, (D) Gemzar

®
 + Taxotere

®
, (E) DTX-AA-GEM-BSA NPs and (F) 

Hemolytic toxicity of various formulations. Values expressed as Mean ± SD (n = 3). 

Figure 8: Fluorescence intensity of (I) C-6 loaded AA-GEM-BSA NPs, (II) Free C-6 in (a) 

tumor, (b) heart, (c) kidney, (d) liver, (e) lung and (f) spleen and (III) (A) Comparison of % 

change in tumor volume and (B) % tumor burden of different formulations (***, significant 

difference at p < 0.001, 
ns

, insignificant) (C) Representative photographs of excised tumors from 

different treatment groups and (D) Kaplan–Meier survival curve depicting the survival rate of 

tumor bearing animals received different treatments. The P values are for the log rank test.  



TABLES 

Table 1: Particle size, PDI and entrapment efficiency of DTX loaded NPs 

S. 

No. 

Formulation 

Size (diameter in 

nm) 

PDI 

Zeta 

(mV) 

% Drug loading 

DTX GEM 

1.  DTX loaded BSA NPs 139±7 0.13±0.04 -35±2 7.9±0.5 - 

2.  

DTX loaded AA-GEM-

BSA NPs 

163±8 0.13±0.09 -27±1 9.1±0.6 3.7±0.2 

Values are presented as mean ± SD (n = 6) 

  



Table 2: Pharmacokinetic parameters of Taxotere®, Gemzar®, and NPs following i.v. 

administration 

 Parameters 

Samples C30min 

(ng/ml h) 

AUC(0-24) 

(ng/ml h) 

AUC(0-∞) 

(ng/ml h) 

T1/2 

(h) 

MRT 

(h) 

Taxotere
®

 1280±51 3550±76 3970±63 4.2±0.2 4.7±0.4 

Gemzar® 1240±70 3670±90 4110±63 4.1±0.6 4.8±0.3 

DTX (AA-GEM-BSA NPs) 1130±76 17600±493 24300±534 26±2 37±2 

GEM (AA-GEM-BSA NPs) 1000±110 9500±324 15300±476 37±2 50±4 

Values are expressed as mean ± SEM (n=5) 
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Statement of Significance 

The present report is the original state of art technology to selectively target dual drug (DTX and 

GEM) loaded BSA NPs via exploring tumor targeting potential of AA, having high affinity 

towards VEGF receptors (angiogenesis marker) overexpressed in tumor. The AA and GEM bio-

conjugated BSA was synthesized and further used to develop DTX loaded nanoparticles (AA-

GEM-BSA NPs). The optimized NPs were further evaluated via extensive in-vitro and in-vivo 

studies, demonstrating ameliorated cellular uptake, pharmacokinetic and toxicity profile of 

drugs. Conclusively, DTX loaded AA-GEM-BSA NPs, holds promising potential in increasing 

the therapeutic efficiency of drugs and overcoming solvent and drug mediated side effects and 

can be explored further as a scalable platform technology for difficult to deliver drugs. 

*Statement of Significance


