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Kinetostatic-model-based Stiffness Analysis of 

Exechon PKM 

As a comparative newly-invented PKM with over-constraints in kinematic chains, the 

Exechon has attracted extensive attention from the research society. Different from the 

well-recognized kinematics analysis, the research on the stiffness characteristics of the 

Exechon still remains as a challenge due to the structural complexity. In order to achieve 

a thorough understanding of the stiffness characteristics of the Exechon PKM, this paper 

proposed an analytical kinetostatic model by using the substructure synthesis technique. 

The whole PKM system is decomposed into a moving platform subsystem, three limb 

subsystems and a fixed base subsystem, which are connected to each other sequentially 

through corresponding joints. Each limb body is modeled as a spatial beam with uniform 

cross-section constrained by two sets of lumped springs. The equilibrium equation of 

each individual limb assemblage is derived through finite element formulation and 

combined with that of the moving platform derived with Newtonian method to construct 

the governing kinetostatic equations of the system after introducing the deformation 

compatibility conditions between the moving platform and the limbs. By extracting the 

66 block matrix from the inversion of the governing compliance matrix, the stiffness of 

the moving platform is formulated. The computation for the stiffness of the Exechon 

PKM at a typical configuration as well as throughout the workspace is carried out in a 

quick manner with a piece-by-piece partition algorithm. The numerical simulations reveal 

a strong position-dependency of the PKM’s stiffness in that it is symmetric relative to a 

work plane due to structural features. At the last stage, the effects of some design 

variables such as structural, dimensional and stiffness parameters on system rigidity are 

investigated with the purpose of providing useful information for the structural 

optimization and performance enhancement of the Exechon PKM. It is worthy 

mentioning that the proposed methodology of stiffness modeling in this paper can also be 

applied to other overconstrained PKMs and can evaluate the global rigidity over 

workplace efficiently with minor revisions. 

 

 

1. Introduction 

 

Compared with their counterparts of traditional serial 

kinematic machine (SKM) tools, parallel kinematic 

machines (PKMs) with lower mobility claim the 

advantages of high stiffness, small moving mass and 

compact volume by utilizing the parallel arrangements of 

motion system. This makes PKMs with lower mobility a 

promising alternative solution for high-speed machining 

(HSM) of extra large scale components with complicated 

geometries. For instance, the commercial success of 

Sprint Z3 head has applied in aeronautical industries 

[1,2]. Another commercial attemption was the use of 

Tricept robots in automotive industries, which however 

has seen little acceptance so far due to technical reasons 

[3-6]. Other propositions of using PKMs for HSM can 

also be traced in recent publications [7-10]. More 

recently, the Exechon PKM has been proposed and 

patented by Neumann under the motivation of reducing 

the number of passive joints and non-actuated degree of 

freedom [11]. The prototyping system has been 

developed and its improved performance has been 

demonstrated through primary experiments [12]. 

As one of the most overwhelming concerns in the 

early design stage of such a PKM designed for HSM 

applications where high rigidity and high positioning 

accuracy are required, stiffness has attracted extensive 

attention from the research societies [13-22]. Among all 

the studies towards the stiffness modeling and evaluation, 

the finite element method (FEM) [13,14], the matrix 

structure method (MSM) [15,16], the virtual joint 

method (VJM) [17,18] and the screw-based method 

(SBM)
 
[19-22] are the most common used approaches. 

For example, Pairs proposed a FE model for a planar 

parallel manipulator with flexible links and analysed the 

system dynamics [13]. Huang et al. proposed a stiffness 

model for a tripod-based PKM by decomposing the 

overall system into two separate substructures and 



formulating the stiffness expressions of each substructure 

with virtual work principle [16]. A similar model of the 

3-DOF CaPaMan parallel manipulator is established by 

Ceccarelli and Carbone who considered the kinematic 

and static features of the three legs in view of the 

motions of every joint and link [17]. Li and Xu proposed 

an intuitive method based upon an overall Jacobian to 

formulate the stiffness matrix of a 3-PUU translational 

PKM. In their model, the compliances subjected to both 

actuations and constraints are considered and the overall 

stiffness matrix of the lower mobility parallel 

manipulator can be derived intuitively [19]. Following 

the same track, Huang and Liu et al proposed a stiffness 

modelling approach for the lower mobility parallel 

manipulators using the generalized Jacobian [20]. 

Different from abundant investigations on the 

stiffness of the PKMs as mentioned above, the studies 

focusing on the stiffness of the Exechon PKM are quite 

scare. Bonnemains and co-workers [23] derived a static 

model for Tripteor by taking into account the nonlinear 

compliances of joints and legs, with which the static 

behaviour of the system was analyzed. They then 

extended the static model to a dynamic one with the 

energy method [24]. This dynamic model was then used 

to study the impact of component deformations on the 

generated surfaces. Li et al [25] established an analytical 

stiffness model for Exechon X150 with the screw theory 

and the virtual work principle. Based on the proposed 

model, the mechanism’s stiffness at typical 

configurations was analysed and compared with FE 

simulations. More recently, Bi [26] formulated a stiffness 

matrix for the Exechon X700 PKM by using the 

kinetostatic method. Based on kinematic Jacobian 

matrices, the impacts of stiffness from both axial and 

torsional compliances of actuated legs were considered 

and the distributions of stiffness in each individual 

direction were predicted. 

It is worthy to mention that a lack of consideration of 

the compliance of limb body as well as the 

orientation-dependency of the spherical joint of the 

Exechon PKM can be traced in most of the above studies. 

Although the effects of these factors can be included if a 

FE model is applied, however, adopting the FEM to 

analyze the stiffness of the Exechon PKM seems to be a 

second priority choice in that it might require 

reconstruction or re-meshing of kinematic chain 

assemblages when the PKM’s configuration is changed 

within the working envelope. 

The present work has a different perspective in that it 

aims to achieve a thorough understanding of the stiffness 

characterisitics of the Exechon PKM, which can be 

summarized in two aspects: (1) To predict the Exechon 

stiffness not only at typical configurations but also 

throughout the workspace accurately in a 

computational-effective manner. (2) To figure out the 

influences of major design variables and quantify the 

contribution of each individual compliant component to 

the global stiffness. For this purpose, a kinetostatic 

model for the Exechon PKM is developed by considering 

the flexibilities of both actuated and passive joints as 

well as limb structures. With the proposed kinetostatic 

model, the stiffness of the PKM is computed followed by 

a parameter study to provide useful information for the 

structural optimization and rigidity enhancement. The 

reminder of the paper is organized as follows. Firstly, the 

structure of the Exechon module and its inverse 

kinematics are briefly described in Section 2. Secondly, a 

kinetostatic stiffness model is established using the 

technique of substructure synthesis in Section 3. Then, a 

parametric analysis is conducted in Section 4. Finally, 

the research work in this paper is summarized and 

conclusions are drawn in Section 5. 

 

2. Kinematic Modeling 

 

A CAD model for the Exechon module is shown in 

Fig. 1. 

 

Fig. 1.  Structure of the Exechon module 
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As shown in Fig. 1, the Exechon module consists of a 

moving platform, a fixed base and three kinematic limbs. 

Limb 1 and limb 2 are symmetrical with respect to limb 

3. Limb 1 (and 2) connects the base to the platform by a 

universal (U) joint followed by a prismatic (P) joint and 

a revolute (R) joint in sequence, where the P joint is 

driven by a lead screw linear actuator. The constitution 

of limb 3 is slightly different from limb 1 and limb 2 in 

that it connects to the moving platform by a spherical (S) 

joint. An electrical spindle can be mounted on the 

platform to implement high-speed milling. Driven 

independently by three servomotors, one translation 

along z axis and two rotations about x and y axes can be 

achieved. 

For the convenience of analysis, a schematic diagram 

of the Exechon module is depicted in Fig. 2. Herein, Ci 

(i=1~3) denotes the rear end of the i
th

 limb; A1 and A2 are 

the centers of universal joints in limb 1 and limb 2; A3 is 

the center of the spherical joint in limb 3; Bi (i=1~3) 

denotes the geometric center of the i
th

 revolute joint, 

respectively. △A1A2A3 and △B1B2B3 are assumed to be 

isosceles right triangles, and ∠A3=∠B3=90°. 

 
Fig. 2.  Schematic diagram of the Exechon module 

 

To facilitate the formulation, Cartesian coordinate 

systems are set as follows. The global coordinate system 

A-xyz is attached to the base, where A is the center point 

of A1A2. The x axis is parallel to AA3 and the y axis is 

parallel to A1A2 while the z axis is determined by the 

right-hand rule. The body-fixed coordinate system B-uvw 

is placed at the center point B of B1B2, with the u axis 

parallel to BB3, the v axis parallel to BB2 and w 

perpendicular to △B1B2B3. The limb reference frame 

Bi-xiyizi is established at the center point Bi, with zi 

coincident with the limb. Herein, xi (i=1~3) is parallel to 

the axis of the i
th

 revolute joint, while yi (i=1~3) is 

decided by the right-hand rule. For clarity, only one limb 

reference frame in limb 1 is depicted in Fig. 2. 

The transformation matrix R0 of the frame B-uvw 

with respect to the frame A-xyz can be formulated as 

0
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where “s” and “c” denote “sin” and “cos” functions, 

respectively; ,  and φ are Euler angles in terms of 

precession, nutation and rotation. 

As shown in Fig. 2, the position vector of point Bi 

measured in the A-xyz can be given as 

0 0i i i i id   b R b r a s                         (2) 

where r and ai represent the vectors of points B and Ai 

measured in the A-xyz frame, respectively; bi0 represents 

the vector of point Bi measured in the B-uvw frame; di 

denotes the distance between Ai and Bi; si is unit vector 

of the i
th

 limb. And there exist 
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where rp, rb are the radii of the platform and the base, 

respectively; βi (i=1~3) is the position angle of a joint, 

and β1=-π/2, β2=-3π/2, β3=0; px, py and pz are coordinates 

of point B measured in A-xyz. 

Taking ,  and pz as independent coordinates, and 

considering the constrains of revolute joints, one can 

obtain the followings 

  

0

tan

sin cos tan( )

x z

y x b z

p p

p p r p
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          (4) 

Eq. (4) is the parasitic motions of the Exechon 

module. The inverse position analysis can be conducted 

as follows: 

i i id  b a                                 (5) 

Ti i
i ix iy iz
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d


    

b a
s                      (6) 

 

3. Kinetostatic Modeling 
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In this section, the substructure synthesis technique is 

applied to formulate the kinetostatic equations of the 

Exechon module based on which the stiffness 

expressions of the Exechon PKM can be extracted. Due 

to the structural complexity of the Exechon, the 

following hypotheses and approximations are made to 

facilitate the analytical derivation: 

(1) The base and the platform are treated as rigid 

bodies for their high rigidities; 

(2) The limb body is modeled as a hollowed spatial 

beam with a constant rectangular cross-section according 

to its structural feature; 

(3) The revolute, universal and spherical joints are 

simplified to virtual lumped springs with equivalent 

stiffness coefficients at their geometric centers which can 

be calculated through FE computation or semi-analytical 

method [27]. 

(4) The frictions and inertial forces as well as damping 

effects are neglected though they can be easily integrated 

into the governing equations of the system. 

 

3.1. Stiffness formulation and equilibrium equation 

derivation of an individual limb assemblage 

 

The assemblage of an individual UPR/SPR limb in 

the Exechon module is shown in Fig. 3. 

 

Fig. 3.  Assembly of a UPR/SPR limb 

 

According to the assembling relationships and 

structural features of the limb, one can classify all the 

components in an individual limb into three categories 

when formulating the stiffness expression: (1) the limb 

body; (2) the R joint (including part 1 and part 2); (3) the 

U/S joint (including lead-screw assembly, guideway 

assembly and carriage assembly). Since all the joints in 

the limb assemblage are simplified into virtual lumped 

springs with equivalent stiffness, the UPR/SPR limb can 

thus be modelled as a uniform spatial beam constrained 

by two sets of lumped springs as shown in Fig. 4.  

 

Fig. 4.  Simplified force diagram of an individual limb 

 

Herein, ksx, ksy, ksz and ksu, ksv, ksw are the equivalent 

spring constants of three translational and three torsional 

virtual springs of the spherical joint in limb 3. Similarly, 

kuxi, kuyi, kuzi and kuui, kuvi, kuwi are the equivalent spring 

constants of three translational and three torsional virtual 

springs of the universal joint in limb i (i=1, 2); krxi, kryi, 

krzi and krui, krvi, krwi are the equivalent spring constants of 

three translational and three torsional virtual springs of 

the revolute joint in the i
th

 limb assembly, respectively. 

With the consideration of structural constraint features, 

the values of the spring constants of ksu , ksv, ksw, kuui, kuvi, 

krui are set to be zero. 

As shown in Fig. 3, a revolute joint consists of two 

components denoted as Part 1(including rotors and 

bearings) and Part 2(one complex entity). Assume the 

stiffness of Part 1 is defined as 

rP1 r1 r1 r1 r1 r1 r1diag[ ]x y z u v wk k k k k kk            (7) 

where kr1x, kr1y, kr1z and kr1u, kr1v kr1w are three linear 

stiffness coefficients and three angular stiffness 

coefficients along and about three perpendicular axes at 

the mass center of Part 1, which can be determined 

through the commercial software ANSYS. Note that 

kr1u=0 according to its kinematic constraint features. In a 

similar way, the stiffness of Part 2 can be denoted as 
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rP2 r2 r2 r2 r2 r2 r2diag[ ]x y z u v wk k k k k kk          (8) 

where kr2x, kr2y, kr2z and kr2u, kr2v kr2w are three linear 

stiffness coefficients and three angular stiffness 

coefficients along and about three perpendicular axes at 

the centroid of Part 2. 

Therefore, the stiffness of a revolute joint can be 

regarded as a serial aggregation of Part 1 and Part 2 

1 1 1
r rP1 rP2 r r r r r( ) diag[ 0 ]i xi yi zi vi wik k k k k    k k k   (9) 

A universal joint is composed of lead-screw 

assembly (including front bearing, lead screw and rear 

bearing), guideway assembly and carriage assembly. 

Therefore, the stiffness of the universal joint kui can be 

calculated through the superposition of each part as 

addressed. The expression of kui can be formulated as 

1 1 1 1
u ul ug uc( )i

     k k k k                       (10) 

where kul, kug and kuc are the stiffness of lead-screw 

assembly, guideway assembly and the carriage assembly, 

respectively. 

The lead-screw assembly is serially comprised of the 

front bearing, the lead screw and the rear bearing, which 

only provides a constraint to the carriage in axial 

direction. Thus, its stiffness can be expressed as 

ul uldiag[0 0 0 0 0]zkk                      (11) 

where kulz is the stiffness of the lead-screw assembly in 

the axial direction, and 

1
1 1

ul F R( ) /z i nk l d l EA k k


                   (12) 

where l is the length of limb body; ln is half of the width 

of the carriage assembly; E is the Yong's modulus of the 

lead screw; A is its cross-sectional area; kF and kR are the 

axial stiffness of the front bearing and the rear bearing, 

respectively. They can be determined from bearing 

datasheets and finite element analysis. 

The guideway assembly can be simplified into a 

virtual lumped spring with stiffness in six directions. 

Apparently, this virtual lumped spring does not provide 

constraints to the carriage along the axial direction of the 

guideway. Therefore, the stiffness of the guideway 

assembly can be formulated as 

ug ug ug ug ug ug ugdiag[ ]x y z u v wk k k k k kk          (13) 

where kugz=0. kugx, kugy and kugz are three translational 

stiffness coefficients along three Cartesian axes of x, y 

and z; kugu, kugv and kugw are three rotational stiffness 

about three Cartesian axes of x, y and z. The coefficients 

in Eq. (13) can be determined through finite element 

analysis and semi-analytical fitting. 

Similarly, the stiffness matrix of the carriage assembly 

kuc can be expressed as 

uc uc uc uc uc uc ucdiag[ ]x y z u v wk k k k k kk          (14) 

where kucz=kucu=kucv=0. kucx, kucy and kucz are three 

translational stiffness coefficients along three Cartesian 

axes of x, y and z; kucu, kucv and kucw are three rotational 

stiffness about three Cartesian axes of x, y and z. Similar 

to the guideway assembly, coefficients in Eq. (14) can be 

determined through finite element analysis and 

semi-analytical fitting. 

Substituting Eqs. (11)~(14) into Eq. (10), one can 

formulate the stiffness of universal joint assembly as 

u u u u udiag[ 0 0 ]i xi yi zi wik k k kk                (15) 

The derivation of stiffness of a spherical joint is the 

same to a revolute joint except stiffness of the carriage in 

that the values of the stiffness coefficients about three 

perpendicular axes are set to be zero. 

Therefore, the stiffness matrix of the spherical joint ks in 

limb 3 can be denoted as 

s s s sdiag[ 0 0 0]x y zk k kk                     (16) 

The simplified spatial beam shown in Fig. 4 can be 

meshed into finite elements with each node having three 

linear and three angular coordinates along and about 

three axes. Fig. 5 shows the e
th

 element of the i
th

 limb in 

element reference frame e e e e

i i i iN x y z . 

 

Fig. 5.  Definition of spatial beam element 
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Herein, e and e+1 denote two adjacent nodes of the 

element; ui (i=1~12) represents the nodal coordinates and 

the frame of e e e e

i i i iN x y z  is parallel to the limb frame 

Bi-xiyizi. 

To simplify the formulation, each limb body is 

discretized into n elements with Bi, Ai and Ci being nodes 

of elements. As a result, a set of equilibrium equations of 

the i
th

 limb in frame Bi-xiyizi can be formulated with 

adequate boundary conditions and can be expressed as 

i i ik u f                                   (17) 

where ki is the stiffness matrix of each limb body; ui and 

fi are the general coordinates vector and external loads 

vector of the i
th

 limb body and can be expressed as 

T
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where εBi, ξBi, εAi, ξAi, εCi and ξCi are linear and angular 

coordinates of nodes Bi, Ai and Ci in the frame Bi-xiyizi; 

fBi, τBi, fAi, τAi, fCi and τCi are reaction forces and 

moments at Bi, Ai and Ci measured in Bi-xiyizi, 

respectively. The nodal coordinates can be related to ui 

by 

1 2

1 2

,
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B B
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where 1B
AiN , 2B

AiN , 1A
AiN  and 2A

AiN  are 

transformation matrices of nodes Bi and Ai with respect 

to ui in the frame Bi-xiyizi, respectively. 

Thus, the coordinate transformation can be made to 

express Eq. (17) in the reference coordinate system A-xyz 

as 

i i iK U F                                  (20) 

where T
i i i iK T k T , i i iU T u , i i iF T f . Herein, Ti is 

the transformation matrix of the i
th

 limb body fixed frame 

with respect to the global reference and we have 

diag[ ]i i iT R R                           (21) 

where Ri is transformation matrix of Bi-xiyizi with respect 

to A-xyz and can be determined from the inverse 

kinematic analysis. 
 

3.2. Equilibrium equation derivation of the moving 

platform 

 

The free body diagram of the moving platform is 

shown in Fig. 6. 

 

Fig. 6.  Force diagram of the moving platform 

According to Fig. 6, the static equations of the 

moving platform can be formulated 
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where FBi and TBi are the reaction force vectors at the 

interface between the moving platform and the i
th

 limb 

body measured in A-xyz; rBi is the vector pointing from 

point B to Bi measured in A-xyz; FP and τP are the 

external force and moment acting on the moving 

platform (including the gravity of the moving platform), 

respectively. And there exist 

Bi i BiF R f , Bi i BiT R                      (23) 

3.3. Deformation compatibility conditions 

As mentioned above, the moving platform connects 

with three limbs through three revolute joints, each of 

which can be treated as a virtual lump spring with 

equivalent stiffness. The displacement relationship 

between the platform and the limb can be demonstrated 

as Fig. 7, in which BiM and BiL are the interface points 

associated with the moving platform and a limb, 

respectively. iB  and εBi are displacements of BiM and 

BiL measured in the limb coordinate system Bi-xiyizi; 

kr1i=diag[krxi kryi krzi] is the equivalent linear stiffness 

matrix of the i
th

 revolute joint and kr2i=diag[krui krvi krwi] is 

the equivalent angular stiffness matrix of the i
th

 revolute 

joint. 
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Fig. 7.  Displacement relationship between the platform and 

the limb body 

 

The elastic motion of the moving platform 

T
T T

P P P
   U ε ξ  is caused by the deflections of three 

flexible limbs. The elastic displacement iB of BiM 

(fixed on the moving platform) can be derived as follows 

T
p

ri
i i B R D U                              (24) 

where 3 3
ˆir

i
 
 
ID B , ˆ

iB  is the skew-symmetric 

matrix of vector bi. 

Thus the reaction forces of the revolute joint in the i
th

 

limb can be expressed as 

1 T T
r1 p

2 T
r2

( )B ri
Bi i Ai i i i

B
Bi i Ai i i

   


 

f k N T U R D U

k N T U
             (25) 

Similarly, the reactions of universal joint in the i
th

 (i=1~2) 

limb can be expressed as 

1 T
u1

2 T
u2

A
Ai i Ai i i

A
Ai i Ai i i

  


 

f k N T U

k N T U
                       (26) 

where ku1i=diag[kuxi kuyi krzi] and ku2i=diag[kuui kuvi krwi] are 

the equivalent stiffness of a universal joint in related 

directions. 

The reactions of the spherical joint in limb 3 are 

1 T
3 s1 3 3 3

3

A
A A

A

  


 0

f k N T U


                        (27) 

where ks1=diag[ksx ksy ksz] is the linear stiffness of the 

spherical joint in limb 3. 

 

3.4. Governing equilibrium equation of the system 

Substituting Eqs. (25) ~ (27) into Eqs. (20) and (22), 

one can write the equilibrium equations of the Exechon 

PKM as 

KU F%% %                                   (28) 

where K  is the global stiffness matrix; U  and F  

are the general coordinates and external loads vectors. 

And there exist 
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3.5. Formulation of stiffness matrix of the moving 

platform 

 

Eq. (29) gives the formulation of the global stiffness 

matrix, from which it can be found that it is non-diagonal, 

indicating that the stiffness of the moving platform is 

coupled with those of the limb structures. In order to 

evaluate the rigidity of the moving platform, the concept 

Bi
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Platform

LiBMiA

 iA
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 iB

Platform Limb i 



of compliance is adopted, which is mathematically 

expressed as 

1[ ]H H


C K% %                               (35) 

where H=18n+6 is the dimension of the stiffness matrix, 

n is the discrete nodes number of each limb. 

With Eq. (35), the compliance matrix of the platform 

can be obtained as the last 66 block matrix in C% and 

is denoted as Cp. Therefore, the stiffness of the platform 

in the body fixed frame B-uvw can be expressed 

according to the duality of compliance as 

1
T 1 T 1

p 0 p 0 0 ( 18 ) ( 18 ) 0| H n H n


 

  
 
 

K = T C T T K T%   (36) 

where T0=diag[R0 R0] is the transformation matrix of the 

platform body fixed frame with respect to the global 

reference. 

It is noted that the overall stiffness of the Exechon 

machine is greatly influenced by its hand axes. 

Compared to the parallel part, the hand axes are quite 

soft due to its unique serial structures. As a result, the 

comparatively softer serial part has detrimental effects on 

machining properties with no doubt. However, it is worth 

noting that in the present study the compliance of serial 

hand axes is not included subject to the following reason. 

The basic consideration is that the serial part of an 

Exechon-type machine could be in different forms when 

designed to achieve various tasks such as milling, 

drilling, riveting, etc. In other words, the serial parts can 

be regarded as a reconfigurable plug-and-play unit with 

different functions and structures. As a result, the 

stiffness of this serial part can only be determined 

according to its specific structures. On the contrary, the 

parallel kinematic part of an Exechon-type machine 

possesses a common architecture and can be regarded as 

a general flexible supporting structure for the serial part. 

With this thought, the overall stiffness of the hybrid 

machine can be calculated through the superposition of 

the serial hand axes stiffness Km and the parallel platform 

stiffness Kp with kinematic transformations.  

 

4. Stiffness Analysis 

4.1. Parameters of an exemplar system 

 

The major geometrical parameters of an example 

system of the Exechon module are listed in Table 1. 

Herein, s denotes the stroke of the moving platform; max 

and max denote the maximum rotation angle of 

precession and nutation respectively; dmax and dmin 

represent the maximum and minimum distances between 

Ai and Bi; the meaning of the other symbols can be 

referred to aforementioned context. 

Table 2 gives the stiffness coefficients of three 

perpendicular axes of joints in their local frames, which 

are calculated through ANSYS software. 

 

Table 1  The geometrical parameters of the Exechon PKM  

rP 

mm 

rb  

mm 

s  

mm 

dmin  

mm 

dmax  

mm 

max 

() 

max 

() 

ln  

mm 

220 600 550 736 2600 40 30 188.5 

 

Table 2  The stiffness coefficients of joints in local frames 

(unit: N/um, 106N.m/rad) 

kux kuy kuz kuw ksx ksy ksz kr1x kr1y 

380 530 1006 18 380 530 530 23 23 

kr1z kr1v kr1w kr2x kr2y kr2z kr2u kr2v kr2w 

623 18 18 112 214 100 24 20 20 

 

According to the parameters above of the example 

system, the following numerical simulation and analysis 

can be conducted. 

 

4.2. Stiffness matrix at extreme position 

 

By solving Eq. (36), one can easily obtain the 

stiffness of the platform at any given configuration. 

Taking the Exechon PKM at the extreme position for 

example, where pz=1.3 m, =0

, =0


, the results are 

listed in Eq. (37). 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

P

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

12.1618 0 18.9769 0 19.9853 0

0 15.1464 0 28.6007 0 0.7276
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K
6

38.9526 0
10

0 28.6007 0 49.9638 0 -0.0140

19.9853 0 38.9526 0 23.5366 0

0 0.7276 0 0.0140 0 1.2975

 
 
 
 

 
 

 
 
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 (37) 



From the perspective of physics, the stiffness matrix 

denotes the ability of the moving platform to resist 

deflection subject to external loads. For the sake of 

clarity, the diagonal elements in the matrix are defined as 

principle stiffnesses while the non-diagonal elements as 

coupled stiffnesses. For content limitation, only the 

linear principle stiffnesses and the angular principle 

stiffnesses are analyzed. 

As can be seen from the matrix, the linear principle 

stiffnesses along u and v axes are much less than that 

along w axis. This implies that the PKM claims the 

highest rigidity performance along the w direction of the 

platform. On the contrary, the angular principle 

stiffnesses about u and v axes are much higher than that 

about w axis, indicating a 'weakest' rigidity about the w 

direction of the platform. 

In order to validate the accuracy of the proposed 

model, a numerical stiffness model for the Exechon 

PKM module shown in Fig. 1 is developed in ANSYS 

Workbench to evaluate the stiffness properties at a 

typical configuration where pz=1.075 m, =0

, =0


. For 

this purpose, a 1000 N force is applied at the center of 

the platform along u, v and w axes, respectively. Then a 

static analysis is conducted, leading to corresponding 

deformations of the PKM as demonstrated in Fig. 8. The 

obtained analytical stiffness results are listed in Eq. (38).

 

 

Fig. 8.  Deformations of the Exechon PKM: (a) in u direction, (b) in v direction, and (c) in w direction. 

 

11 12 13 14 15 16

21 22 23 24 25 26
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P
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   (38) 

As can be clearly seen from Fig. 8, the deformations 

of the limb bodies and the joints are quite large thus can 

not be ignored and should be considered during stiffness 

estimation. On the contrary, the elastic deformations of 

the base and the platform are comparatively smaller, 

verifying the assumption of rigid base and platform is 

reasonable. With force-deflection relationships along the 

three perpendicular projections, the stiffness values of 

the platform are obtained and compared with analytical 

results as listed in Table 3. 

Table 3  Comparison of analytic and numerical results 

 k11 k22 k33 

Analytic results (N/um) 16.994 21.394 197.891 

FEA simulations (N/um) 17.168 20.596 205.931 

Calculation errors 1.02% 4.01% 3.90% 

As can be seen, errors between the analytical results 

and the FEA simulations are less than 5%. This indicates 

that the assumed analysis can follow the actual design, 

thus can be applied to the stiffness evaluation of the 

Exechon PKM. 

 

4.3. Stiffness distributions over workspace 

 

A numerical approach is applied to evaluate the 

PKM's stiffness properties throughout the workspace. In 

the numerical simulation, the workspace is partitioned 

into a finite number of elements. Each element is 

represented by the coordinates of its centre point, and its 

stiffness is calculated accordingly. For the sake of 

generality, the following illustrates the distributions of 

the six principle stiffnesses over the work plane at pz=1.3 

m as shown in Fig. 9. 

From Fig. 9, it can be easily observed that the six 

principle stiffnesses are axisymmetric over the given 

work plane. This is coincident with the structural features 

that limb 1 and limb 2 are symmetrical with respect to 

z
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x
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limb 3. It also indicates that the stiffness properties of the 

PKM are strongly dependent on the mechanism's 

configurations. For example, the linear principle stiffness 

along u axis k11 varies from the minimal value of 

3.7410
6
 to the maximal value of 1.2510

7
, and the 

linear principle stiffness along v axis k22 changes from 

3.0110
6
 to 1.5310

7
. The linear principle stiffness along 

w axis k33 varies from 2.0310
8
 to 2.1210

8
. 

Another observation can be found that the linear 

stiffness along w axis is much larger than those along the 

other axes while the angular stiffness about w axis claims 

the smallest among the three angular stiffnesses, 

implying that the PKM has a 'strong' rigidity along the w 

axis while a 'weak' rigidity about the w axis. 
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Fig. 9.  Stiffness distributions over work plane of pz=1.3 m: (a) linear stiffness along u axis, (b) linear stiffness along v axis, (c) 

linear stiffness along w axis, (d) angular stiffness about u axis, (e) angular stiffness about v axis, and (f) angular stiffness about w 

axis. 

Besides the two rotational capacities about the x/y 

axes, the Exechon PKM also possesses a translational 

capacity along the z axis. The following depicts the 

variations of the six principle stiffnesses with respect to 

the change of pz, i.e., the central distance between the 

platform and the base, in which pz is set to vary from 

0.75 m to 1.3 m. The precession angle and nutation angle 

keep unchanged. For the sake of generality, =0

, =0


. 
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Fig. 10.  Variations of principle stiffness with respect to pz 

It can be observed from Fig. 10 that the principle 

stiffnesses k11, k22 and k66 decrease monotonously to the 

increment of pz while the other three principle stiffnesses 

increase monotonously. The decreasing stiffnesses along 

u/v axes and about w axis is obvious if only the limbs are 

regarded as cantilevers. The reason for the increasing 

stiffnesses along w axis and about u/v axes may lie in 

that a larger central distance between the platform and 

the base means a smaller tilting angle of the limbs. 

 

4.4. Parametric analysis 

 

In this subsection, the effects of some design 

variables on the stiffness properties of the PKM are 

investigated. Some structural parameters, dimensional 

parameters and stiffness parameters are taken as design 

variables and their influences on system stiffness 

analyzed as follows. 

4.4.1  Structural parameter effects 

Fig. 11 shows the variations of the six principle 

stiffnesses with respect to the changes of limb body 

cross-section, in which the equivalent width w1 changes 

from 0.08 m to 0.18 m and the equivalent height h1 

changes from 0.2 m to 0.3 m. 



From Fig. 11, it can be easily found that the six 

principle stiffnesses increase monotonously with the 

increment of limb body cross-section. This is obviously 

consistent with the physical fact that a larger 

cross-section means a higher rigidity of the limb body 

and thus ‘stiffens’ the PKM. 

Another observation is that the equivalent width of 

the limb body cross-section w1 seems to have a ‘stronger’ 

influence on k11, k22 and k66 than that of h1. From this 

point of view, it is suggested to pay more attention to the 

determination of the width of the limb body when design 

such a PKM. 
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Fig. 11.  Variations of principle stiffness with respect to w1 and h1: (a) linear stiffness along u axis, (b) linear stiffness along v axis, 

(c) linear stiffness along w axis, (d) angular stiffness about u axis, (e) angular stiffness about v axis, and (f) angular stiffness about w 

axis. 
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Fig. 12.  Variations of principle stiffnesses with respect to rp and rb: (a) linear stiffness along u axis, (b) linear stiffness along v axis, 

(c) linear stiffness along w axis, (d) angular stiffness about u axis, (e) angular stiffness about v axis, and (f) angular stiffness about w 

axis. 

4.4.2  Dimensional parameter effects 

Fig. 12 shows the variations of the six principle 

stiffnesses with respect to the changes of the radii of the 

platform and the base, in which the radius of the platform 

rp changes from 0.2 m to 0.8 m and the radius of the base 

rb changes from 0.2 m to 0.8 m. 

As can be seen clearly from Fig. 12, the variation 

curves of k11 , k22 and k33 are symmetric about the line of 

rp=rb, which means that the two dimensional parameters 

of rp and rb have the same 'intensity' on the linear 

stiffnesses. About this symmetry axis, the effects of 

dimensional parameters on the three principle stiffnesses 



are different in that k11 and k22 increase monotonously 

with the increment of rp and rb while k33 decreases 

monotonously with the increment of rp and rb. With this 

observation, it might be considerable to take a strategy of 

rp=rb during the conceptual design stage for this kind of 

PKM module. The three angular stiffnesses k44, k55 and 

k66 increase monotonously with the increment of rp and 

rb. The variation curves of the three angular principle 

stiffnesses are different in that the base radius rb has a 

'stronger' impact on k44 and k55 while almost having the 

same intensity as rp on k66. This phenomenon can be 

explained like that when the radius of the base rb is 

constant, the bigger the radius of the platform rp becomes, 

the easier the platform rotates about its axis. 

4.4.3  Stiffness parameter effects  

The following demonstrates the variations of the six  

principle stiffnesses with respect to the stiffness 

coefficients of the revolute joint, the universal joint and 

the spherical joint. 

For the convenience of analysis, some physical 

quantities are defined. For example, define 

non-dimensional factor ki as ki=kii/kii0 in which kii0 is the 

principle stiffness of the example system in the 

corresponding directions shown in Eq. (37). Assume λsx 

is the amplification factor of ksx shown in Table 2. In a 

similar way, λsy, λsz, λux, λuy, λuz, λuw, λr1x, λr1y, λr1z, λr1v, λr1w, 

λr2x, λr2y, λr2z, λr2u, λr2v and λr2w are defined.  

Fig. 13 shows the variations of ki with respect to the 

stiffness of the spherical joint. It can be observed that ki 

keeps unchanged with respect to λsy indicating that the 

stiffness in y direction of the spherical joint ksy has no 

influence on the six principle stiffnesses. k2 and k6 

increase with the increment of λsx and the increasing 

tendency becomes slowly when λsx ≥ 3, indicating that ksx 

only affects the linear stiffness k22 and the angular 

stiffness k66 in a small scale. Similarly, k1, k3 and k5 

increase with the increment of λsz while the others keep 

unchanged. Therefore, it is considerable to pay more 

attention to the linear stiffness of a spherical joint in z 

axis. 
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Fig. 13.  Variations of ki with respect to ks: (a) variations of ki with respect to λsx, (b) variations of ki with respect to λsy, and (c) 

variations of ki with respect to λsz. 

 

Fig. 14 shows the variations of ki with respect to 

three linear stiffnesses kux, kuy and kuz along three 

perpendicular axes and angular stiffness kuw about the z 

axis of a universal joint. It is clear that λuy and λuw have 

no influence on ki indicating that the linear stiffness 

along the z axis kuz and the angular stiffness about the z 

axis kuw have no influence on the six principle stiffnesses. 

Comparing Fig. 14(a) with Fig. 14(c), it can be found 

that k1 and k6 increase monotonously with the increment 

of λux while k2, k3 and k4 increase with the increment of 

λuz. The linear stiffnesses along x and z directions should 

be paid more attention to rather than the angular stiffness 

in the universal joint. 

Fig. 15 shows the variations of ki with respect to the 

stiffness of the revolute joint. As shown in Fig. 3, the 

revolute joint is consist of Part 1 and Part 2. Assume λr1x, 

λr1y λr1z and λr1v, λr1w denote amplification factors of linear 

stiffnesses and angular stiffnesses along and about three 

perpendicular axes in Part 1 of the revolute joint while 

λr2x, λr2y λr2z and λr2u, λr2v and λr2w are those of Part 2 of the 

revolute joint. As shown in Fig. 15, the stiffness of two 

parts of the revolute joint have the same intensity on the 

principle stiffnesses of the platform. Obviously, the 

linear stiffness along the y axis and the angular 

stiffnesses about the x and z axes have no effect on the 

stiffness of the platform. And k1, k2 and k6 increase 

monotonously with the increment of λr1x, λr2x, λr1v and λr2v. 

k6 keeps unchanged while the others increase 

monotonously with the increment of λr1z and λr2z. 

Compared the effects of the linear stiffness along the y 



axis and that along the z axis, it seems that stiffness 

along the z axis has a 'stronger' impact on the principle 

stiffness. 
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Fig. 14.  Variations of ki with respect to ku: (a) variations of ki with respect to λux, (b) variations of ki with respect to λuy, (c) 

variations of ki with respect to λuz, and (d) variations of ki with respect to λuw. 

 

With the analysis on Figs. 13~15, it is suggested that 

more attention should be paid to the linear stiffnesses 

along x and z axes as well as the angular stiffness about y 

axis when design such a PKM. 

 

5. Conclusions 

 

This paper has produced an in-depth study on the 

stiffness characteristics of the Exechon module through 

the kinetostatics methodology. The stiffness model 

proposed in this paper considers the deflections of the 

limb structure, the revolute joint assembly, the spherical 

joint and the universal joint. Compared with finite 

element models, the analytical model proposed in this 

paper is much more succinct and can be numerically 

solved with high computational efficiency. The major 

conclusions and contributions of this study can be 

summarised as the followings: 

(1) An analytical kinetostatic model for the stiffness 

analysis of Exechon PKM is established with the 

technique of substructure synthesis, in which the limb 

assemblage flexibility is accounted through FE 

formulation by treating it as a spatial beam with a 

uniform cross-section supported by two sets of lumped 

virtual springs of joints. The proposed methodology of 

stiffness modelling is also applicable to other kinds of 

PKMs. 

(2) Based on the proposed kinetostatic model, the 

stiffness matrix of the platform is formulated, and the 

distributions of six principle stiffnesses are predicted to 

demonstrate a strong position-dependency and symmetry 

relative to work plane aroused by the symmetric 

structural features. Compared with traditional FE method 

and virtual joint method, the present method for stiffness 

evaluation is much more concise and effective.  

(3) Parametric effects including structural, dimensional 

and stiffness parameters on the PKM's rigidity properties 

are explored to offer significant guidances for the early 

design stage of such a PKM module. 

Readers should note that two limitations of the 

proposed model are: (1) the cross-section of the limb is 

assumed to be constant. This assumption should be 

modified in our future study so that the model proposed 

can be more accurate. (2) the kinetostatic model 

proposed can be easily extended to a elastodynamic 

model thus can be used to evaluate the dynamic stiffness 

and steady responses which is currently under research 

by the authors and the in-depth analysis will be presented 

elsewhere. 
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Fig. 15.  Variations of ki with respect to kr: (a) variations of ki with respect to λr1x, (b) variations of ki with respect to λr1y, (c) 

variations of ki with respect to λr1z, (d) variations of ki with respect to λr1v, (e) variations of ki with respect to λr1w, (f) variations of ki 

with respect to λr2x, (g) variations of ki with respect to λr2y, (h) variations of ki with respect to λr2z, (i) variations of ki with respect to 

λr2u, (j) variations of ki with respect to λr2v, and (k) variations of ki with respect to λr2w. 
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