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ARTICLE INFO ABSTRACT 

ARTICLE HISTORY: Application of Classical numerical methods (CNM) for Digital 

maximum power point tracking (DMPPT) confronts g limited 

range of operation, PV array dependence and accuracy of the 

initial guess. In addition, the DC-DC converter cannot be treated 

as a black box for DMPPT, by ignoring the effects of the 

converter topological design and dynamics. In order to address 

such issues Hybrid Techniques (HT) have been presented, along 

with theoretical analysis to determine the optimum performance 

of DMPPT applications on various DC-DC converter designs. 

In this paper, the HT is a combination of the modified 

incremental conductance method (MINC) and modified CNM. 

An overview of  MCNM, which  applied to the photovoltaic 

(PV) application, has also been presented. The HT not only 

address the issues confronted by the CNM, but also remove the 

steady state error for the conventional MPPT technique. To 

measure the effectiveness of the proposed MCNM techniques, 

Boost, 2-Stage Switch Capacitor Based (2-SSC) Boost, and 

Optimum Buck Converters (OBC) have been employed. 

Simulation and experimental results are provided to validate the 

effectiveness of the proposed techniques. 

KEYWORDS: 

Digital maximum power 

point (DMPP) tracking 

(DMPPT), classical root-

finding algorithms, 

photovoltaic (PV), Dc-Dc 

converter topologies. 



 

 

Nomenclature: 

 

MPP Maximum Power Point 

Pmpp Power at MPP 

Δ P Change in power 

Vmpp Voltage at MPP 

Voc Open circuit voltage 

Δ V Change of voltage 

Impp Current at MPP 

Δ I Change of current 

Ish Short circuit current 

D Duty cycle 

Δ D Change in duty ration 

MPPT Maximum Power Point Tracking 

e Tolerance error 

Δ Change 

Δ PPV/ Δ VPV Change in power over change of voltage 

Δ PPV/ Δ IPV Change in power over change of current 

𝐃𝐦𝐚𝐱 Predefined maximum limit for the duty cycle 

Δ PPV/ Δ D Change in power over change in duty ratio 

STC Standard test conditions 

INC Incremental Conductance 

MINC Modified Incremental Conductance 

CNM Classical Numerical Methods 

MCNM Modified Classical Numerical Methods 

BSM Bisection Search Method 

RFM Regula Falsi Method 

NRM Newton Raphson Method 

SM Secant Method 

BNM Brent Numerical Method 

MBSM Modified Bisection Search Method 

MRFM Modified Regula Falsi Method 

MNRM Modified Newton Raphson Method 

MSM Modified Secant Method 

MBNM Modified Brent Numerical Method 

HT Hybrid Techniques 

 

1. Introduction 

Solar energy attains the most credible position amongst all the available renewable energy sources due to its 

reliability and cleanliness [1-3]. However, installation expenses, dependency on weather condition and low-

efficiency, remain the steep drawbacks of solar energy. In order to confront such issues, maximum power point 

tracking techniques have been proposed by researchers to extract maximum output from the PV arrays. 

Considering the PV curve, the point offering optimum power remains MPP [4]. Different MPPT techniques with 

a categorical digital and analog classification has been presented by researchers in [5]. 



Steady-state oscillations and slow transient response, remain two of the most common issues for many of the 

conventional MPPT techniques [6]. Moreover, CNM have also been utilized for DMPPT of PV systems [5, 7-10]. 

Shortcomings of such techniques, as algorithm numerical stability, discretization error and quantization error have 

been explored in [10]. However, the issues confronted while implementing DMPPT for various Dc-Dc converter 

topologies, limited range of operation, PV array dependence and accuracy of the initial guess have not been 

addressed. This paper addresses such concerns by proposing HT and theoretically analysing the conditions for 

optimum performance of DMPPT by HT on various converter topologies. The HT offers lower computational 

complexity, faster dynamic response, easy implementation, PV array independence, accuracy of initial guess and 

fewer overshoots.  

Considering the problems of CNM, an amalgamation of MCNM and MINC has been utilized to realize the HT. 

As, the bisection search method (BSM) is reliable, yet converges slowly. Reliability of BSM is offset by its 

disappointing linear convergence. Moreover, it typically involves log2
b−a

δ
 iterations in order to attain a certain 

accuracy tolerance δ [11, 12]. Further, Newton-Raphson method (NRM) remains much more efficient than BSM. 

However, calculation of derivative is required by NRM, which adds to its complexity [13]. In certain cases, if 

initial guess is too far away from the root, the NRM may not converge. This causes tangent line offshoot. However, 

it remains faster than BSM. By contrast, Secant Method (SM) is quick at convergence, but may diverge without 

reliable initial guesses [5]. Furthermore, Brent’s method usually converges quickly to a root, yet for occasional 

difficult functions, it generically requires O(n) or O(n2) number of iterations to find a root; n being the number of 

steps required by BSM for convergence [11]. Moreover, as observed in [10] all the numerical methods for MPPT 

application require predefined information for the initial guesses and closed bracketed limited. Therefore, we 

present HT that places a stricter bound on the search for the MPP. Here, DMPPT [6, 14, 15] is utilized instead of 

MPPT because all the CNMs and MCNMs under discussion have been implemented digitally (on DSP) and 

previous work on MPPT by CNMs is also reported to be digitally implemented [6, 10, 14]. 

The objectives of this paper are as follows:  

1. Highlight the issues confronted while implementing DMPPT for various Dc-Dc converter topologies and 

theoretically analyse the conditions for optimum performance. 

2. Present HT with direct control offering a combination of the MINC and MCNM techniques. In addition, 

practically and theoretically prove the improved performance of the proposed techniques. 

3. Provide comparative analysis of the HT and the MINC direct control technique. 



The paper is structured as follows: Section 2 introduces the DMPPT and the shortcomings in implementing 

DMPPT on various Dc-Dc converters. Subsequently, section 3 presents an overview of all the MCNM under 

consideration and investigates the combination of the MINC MPPT Technique with the MCNM to offer the 

proposed Hybrid DMPPT techniques. Further, section 4 presents simulation and experimental results for all the 

MPPT techniques under consideration. To further validate the outcomes, section 5 offers a discussion highlighting 

the improved performance of HT in terms of lower computational complexity, faster dynamic response, easy 

implementation, PV array independence, accuracy of initial guess and fewer overshoots. Lastly, conclusion of this 

work is offered in Section 6. 
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(d) Optimized Buck Converter. 

Figure. 1. Dc-Dc converter topologies. 

2. Shortcomings of DMPPT implementation on various Dc-Dc converter topologies 

Considering direct control MPPT techniques, duty cycle (D) is taken as the main control variable. Therefore, 

performances of DMPPT techniques with direct control, show a trade-off between the transient response and the 

steady state error. Here, the primary issue remains that a constant voltage change is never guaranteed with a 

constant step size change in duty cycle.  

A PV system can employ various Dc-Dc converter topologies. Here, the focus remains on the OBC [16] and 2-

SSC Boost converter. In case of a PV system employing the OBC, at operating points away from the MPP the 



system shows smaller steady state oscillations [17], as a content step change offers small change in voltage, 

however, at operating points closer to MPP large steady state response is observed, as the constant step change 

offers large change in voltage. For Boost converter or 2-SSC Boost converter the conditions are entirely opposite 

to the ones observed for OBC. Fig. 1 presents the various Dc-Dc converter topologies utilized and Table 1 presents 

the system parameters for OBC and 2-SSC Boost Converter. 

 

Table. 2 System parameters 

Parameters 2-SSC Boost Converter Optimized Buck Converter 

Switching frequency 20kHz 20kHz 

Sampling time 0.1s 0.1s 

Input capacitor 2200 μF 2200 μF 

Switch capacitor 1 μF - 

Inductor (L) 560 μH 560 μH 

Inductor (Lt) - 0.5 μH 

Filter capacitor 220 μF 220 μF 

Load 15Ω 1Ω 

 

 

Figure. 2. P-V curves under irradiance change. 

Kyocera KC85T PV panel has been employed to validate the effectiveness of the proposed DMPPT algorithms. 

Table 2 offers the PV performance parameters. Fig. 2 presents the power versus voltage (P-V) plots for the PV 

module under different irradiance conditions. 

Table. 2 performance parameters for the PV Module 

Table. 2 PV Module 

Parameters Value 

Vmpp 17.4 V 

VOC 21.7 V 

Impp 5.02 A 
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2.1 Change in Voltage for High Duty Cycle 

2.1.1 Boost Converter 

Fig. 1(a) presents the schematic diagram of the conventional boost converter. The effective resistance seen by 

the source for the boost converter can be presented as: 

     𝑅𝑝𝑣 =  
𝑉𝑝𝑣

𝐼𝑝𝑣
=  𝑅(1 − 𝐷)2    (1) 

As this region of operation can be considered as the constant current region so: 

    𝑉𝑝𝑣 = 𝑅(1 − 𝐷)2𝐼𝑠𝑐 =  𝑘(1 − 𝐷)2   (2) 

where, 𝑅𝐼𝑠𝑐 = 𝑘 

Differentiating (2) with respect to 𝐷, convergence rate of 𝑉𝑝𝑣 can be attained as 

    
𝛥𝑉𝑝𝑣

𝛥𝐷
= (2𝐷 − 2)𝑘 = 2(𝐷 − 1)𝑘    (3) 

As observed from equation (3), the change in voltage for Boost converter establishes a direct proportionality with 

duty cycle. Hence, the direction of convergence for both the input voltage and duty cycle remains same. As D is 

slightly reduced a considerable change in voltage is observed. But, as D continues to decrease the change lessens. 

 

2.1.2 2-Stage High Boost converter 

Similarly, for 2-SSC the effective resistance can be realized as, 

     𝑅𝑝𝑣 =  
𝑉𝑝𝑣

𝐼𝑝𝑣
=  

𝑅(1−𝐷)2

4
    (4) 

Convergence rate of 𝑉𝑝𝑣 can be attained as 

    
𝛥𝑉𝑝𝑣

𝛥𝐷
=

(𝐷−1)

2
𝑘     (5) 

Similarly, as observed from equation (5), the change in voltage for 2-SSC Boost converter establishes a direct 

proportionality with duty cycle. However, the change in voltage will be less than that observed with conventional 

boost convereter. 



2.1.3 Optimum Buck converter 

Fig. 1. (d) presents the design configuration of the OBC. The mathematical modelling of OBC can be done as 

presented in [16]. Here, DMPPT with direct implementation has been utilized. In order to compensate the hard 

switching losses such a converter has been employed. As, it offers minimum voltage and current stresses, less 

components and PWM control with soft switching utilizing only one switch.  

For OBC the effective resistance can be realized as, 

     𝑅𝑝𝑣 =  
𝑉𝑝𝑣

𝐼𝑝𝑣
=  

𝑅

𝐷2     (6) 

Convergence rate of 𝑉𝑝𝑣 can be attained as 

    
𝛥𝑉𝑝𝑣

𝛥𝐷
=  −

2𝐾

𝐷3     (7) 

As observed from equation (7), the change in voltage for OBC establishes an inverse proportionality with duty 

cycle. Hence, the direction of convergence for the input voltage and duty cycle remains opposite. As D is slightly 

reduced a small change in voltage is observed. But, as D continues to decrease the change increases. 

2.2 Change in Voltage for Duty Cycle Closer to MPP 

2.2.1 Boost Converter 

As it is evident that  

𝛥𝑃𝑝𝑣

𝛥𝐷
=  

𝛥𝐼𝑝𝑣𝑉𝑝𝑣

𝛥𝐷
−

𝐼𝑝𝑣𝛥𝑉𝑝𝑣

𝛥𝐷
    (8) 

At MPP:    
𝛥𝑃𝑝𝑣

𝛥𝐷
=  0     (9) 

Therefore,   0 =  
𝛥𝐼𝑝𝑣𝑉𝑝𝑣

𝛥𝐷
−

𝐼𝑝𝑣𝛥𝑉𝑝𝑣

𝛥𝐷
    (10) 

 

Change in voltage for duty cycle closer to MPP can be ascertained by, 

𝐼𝑝𝑣 =
1

𝑅(1−𝐷)2 𝑉𝑝𝑣     (11) 

Differentiating (11) with respect to D 



𝛥𝐼𝑝𝑣

𝛥𝐷
=

1

𝑅
[

(1−𝐷)2𝛥𝑉𝑝𝑣

𝛥𝐷
−(−2+2𝐷)𝑉𝑝𝑣

(1−𝐷)4 ]   (12) 

Substituting equation (12) into (10) we get 

𝑉𝑝𝑣 (
1

𝑅
[

(1−𝐷)2𝛥𝑉𝑝𝑣

𝛥𝐷
−(−2+2𝐷)𝑉𝑝𝑣

(1−𝐷)4 ]) +
𝐼𝑝𝑣𝛥𝑉𝑝𝑣

𝛥𝐷
= 0 (13) 

Further,     
𝛥𝑉𝑝𝑣

𝛥𝐷
=

(−2+2𝐷)𝑉𝑝𝑣
2

(
𝑉𝑝𝑣

(1−𝐷)2+𝑅𝐼𝑝𝑣)(1−𝐷)4
   (14) 

At MPP,     
𝛥𝑉𝑝𝑣

𝛥𝐷
=

(−2+2𝐷)𝑉𝑀𝑃𝑃
2

(
𝑉𝑀𝑃𝑃

(1−𝐷)2+𝑅𝐼𝑀𝑃𝑃)(1−𝐷)4
   (15) 

Substituting equation (1) into (15) we get, 

𝛥𝑉𝑝𝑣

𝛥𝐷
=

(−2+2𝐷)𝑉𝑀𝑃𝑃
2

2𝑉𝑀𝑃𝑃(1−𝐷)2   (16) 

𝛥𝑉𝑝𝑣

𝛥𝐷
=

(𝐷−1)𝑉𝑀𝑃𝑃

(1−𝐷)2     (17) 

2.2.2 2-Stage High Boost Converter 

Similarly, for 2-SSC the change in voltage with respected to D, closer to MPP can be realized as, 

𝛥𝑉𝑝𝑣

𝛥𝐷
=

(𝐷−1)𝑉𝑀𝑃𝑃

(1−𝐷)2     (18) 

 

2.2.3 Optimum Buck Converter 

For OBC the change in voltage with respected to D, closer to MPP can be realized as, 

𝛥𝑉𝑝𝑣

𝛥𝐷
=

−𝑉𝑀𝑃𝑃

𝐷
    (19) 

Considering equations (17, 18 and 19) it is clear that at MPPT where the change in change in power with respect 

to change in duty cycle is almost equal to 0, the response of input voltage remains fast for OBC and faster for 

Boost and 2-SSC Boost Converter. As at MPP, D is certainly less than 1 and voltage at MPP is optimum. Hence, 

the change of voltage for all converters remains large. Notable is the fact that at MPP conventional Boost and 2-

SSC Boost converter operate in a similar fashion.  

 

2.3 Change in Voltage for Low Duty Cycle 



2.3.1 Boost Converter 

Change in voltage for duty cycle away from MPP with low D can be ascertained by differentiating equation (1), 

𝛥𝑉𝑝𝑣

𝛥𝐷
=  𝑅

𝛥

𝛥𝐷
(𝐼𝑝𝑣(1 − 𝐷)2) = 𝑅 (

𝛥𝐼𝑝𝑣

𝛥𝐷
(1 − 𝐷)2 + (−2 + 2𝐷)𝐼𝑝𝑣) (20) 

Substituting 𝐼𝑝𝑣 into equation (20) we get, 

𝛥𝑉𝑝𝑣

𝛥𝐷
= 𝑅 (

𝛥𝐼𝑝𝑣

𝛥𝐷
(1 − 𝐷)2) +

(2𝐷−2)𝑉𝑝𝑣

(1−𝐷)2    (21) 

From equations (3) and (21), the directions of input voltage and the Duty cycle remain the same, so the change in 

voltage is essentially positive. Therefore, at low Duty cycle the change in voltage is high. 

 

2.3.2 2-Stage High Boost Converter 

Similarly, for 2-SSC the change in voltage with respected to D, away from MPP at low D can be realized as, 

𝛥𝑉𝑝𝑣

𝛥𝐷
=

𝑅

4
(

𝛥𝐼𝑝𝑣

𝛥𝐷
(1 − 𝐷)2) +

4(2𝐷−2)𝑉𝑝𝑣

(1−𝐷)2    (22) 

From equations (5) and (22), the directions of input voltage and the Duty cycle remain the same, so the change in 

voltage is essentially positive and higher than the conventional boost converter. 

 

2.3.3 Optimum Buck Converter 

For OBC the change in voltage with respected to D, at low D can be realized as, 

𝛥𝑉𝑝𝑣

𝛥𝐷
=  

𝛥𝐼𝑝𝑣

𝛥𝐷
(

𝑅

𝐷2) −
2𝑉𝑝𝑣

𝐷
     (23) 

From equations (7) and (23), the directions of input voltage and the Duty cycle remain opposite, so the change in 

voltage is essentially negative. As the term 
𝛥𝐼𝑝𝑣

𝛥𝐷
(

𝑅

𝐷2) is smaller than 
2𝑉𝑝𝑣

𝐷
. Therefore, at low Duty cycle the change 

in voltage is small and negative. 

 

3. Modified Numerical Methods 

3.1 Close Bracket Methods 

3.1.1 Modified Bisection Search Method (MBSM) 



The simplest root-finding algorithm is BSM [12, 13]. It requires the knowledge of two initial guesses. Moreover, 

BSM remains applicable on continues functions. Considering, a and b, as initial guesses, such that f(a) and f(b) 

have opposite signs. For BSM a midpoint between [a, b] is calculated, and determined whether root lies on the [a, 

(a + b)/2] or [(a + b)/2, b] point. This loop is iterated until the interval is sufficiently small.  

 

a b
f(a) m=a+b/2

f(b)

f(m)

a* b*

f

 

Figure. 3. MBS Method 

 

For MBSM a subinterval is introduced. The algorithm represented in Fig. 3 can be summarized as [18]: 

1) Set an integer k=1, a tolerance limit δ and ak=a, bk=b; where f(a)f(b)<0. 

2) Compute 𝑚 = (
𝑎𝑘+𝑏𝑘

2
)   (24) 

3) Compute for a subinterval (𝑎𝑘
∗ , 𝑏𝑘

∗) by 

(𝑎𝑘
∗ , 𝑏𝑘

∗) = {
(𝑎𝑘 , 𝑚𝑘) , 𝑖𝑓 𝑓(𝑎𝑘)𝑓(𝑚𝑘) < 0

(𝑚𝑘 , 𝑏𝑘) , 𝑖𝑓 𝑓(𝑚𝑘)𝑓(𝑏𝑘) < 0
}   (25) 

Compute for 𝑥𝑘 = −
𝑚

𝑐
, where 𝑐 =

𝑓(bk
∗ )−𝑓(ak

∗ )

bk
∗ −ak

∗ , 𝑚 = 𝑓(bk
∗ ) − 𝑐 ∙ bk

∗  𝑜𝑟 𝑚 = 𝑓(ak
∗ ) − 𝑐 ∙ 𝑎k

∗  

4) If |𝑓(𝑥𝑘)| < 𝛿, End 

Else (𝑎𝑘+1, 𝑏𝑘+1) = {
(𝑎𝑘

∗ , 𝑥𝑘) , 𝑖𝑓 𝑓(𝑎𝑘
∗ )𝑓(𝑥𝑘) < 0

(𝑥𝑘 , 𝑏𝑘
∗) , 𝑖𝑓 𝑓(𝑥𝑘)𝑓(𝑏𝑘

∗) < 0
} (26) 

And set k=k+1, Goto step 2. 

 

3.1.2 Modified Regula Falsi Method (MRFM) 

The RFM is an amalgamation of BSM and Secant Method (SM) [10]. It remains linearly convergent. 
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Figure. 4. MRF Method 

MRFM is almost similar to RFM. However, the algorithm differs in the following steps as represented in Fig. 4 

and in [9], where h0 and h1 are the tangents a and b are the initial guesses and f(a) and f(b) the corresponding 

functions: 

1) Set an integer k=1, a tolerance limit δ and ak=a, bk=b; where f(a)f(b)<0. 

IF f(𝑏𝑘)f(𝑎𝑘) < 0 𝑎𝑛𝑑 f(𝑏𝑘) > 0, 𝑇𝐻𝐸𝑁  

𝑐𝑘 = (
bk∙f(𝑎𝑘)∙0.5−ak∙f(b𝑘)

0.5∙f(𝑎𝑘)−f(bk)
)    (27) 

IF f(𝑏𝑘)f(𝑎𝑘) < 0 𝑎𝑛𝑑 f(𝑏𝑘) < 0, 𝑇𝐻𝐸𝑁 

𝑐𝑘 = (
bk∙f(𝑎𝑘)−ak∙f(b𝑘)∙0.5

f(𝑎𝑘)−0.5∙f(bk)
)    (28) 

2) If |𝑓(𝑐𝑘)| < 𝛿, End 

IF f(𝑐𝑘)f(𝑎𝑘) < 0 𝑇𝐻𝐸𝑁 𝑏𝑘 = 𝑐𝑘 

ELSE IF f(𝑐𝑘)f(𝑏𝑘) < 0 𝑇𝐻𝐸𝑁 𝑎𝑘 = 𝑐𝑘 

And set k=k+1 for the next iteration. 

 

3.2 Open Bracket Methods 

3.2.1 Modified Newton-Rapshon Method (MNRM) 

The NRM is a linearly convergent method and its iterative approach has been detailed in [5, 7, 12, 13]. In order 

to attain a quadratic convergence, MNRM provides modifications to NRM as presented in Fig. 5 and [13]: 

 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)𝑓′(𝑥𝑛)

[𝑓′(𝑥𝑛)]2−𝑓(𝑥𝑛)𝑓′′(𝑥𝑛)
   (29) 

Until |𝑓(𝑐𝑘)| < 𝛿. 
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Figure. 5. MNR Method 

In practical implementations, NRM employed for MPPT would probably diverge or be numerically unstable [5]. 

 

3.2.2 Modified Secant Method (MSM) 

SM approach requires two initial estimates. SM is in many ways similar to NRM. It offer an ease in order to 

reduce the necessity of utilizing two arbitrary values to estimate the derivative.  To calculate 𝑓′(𝑥𝑛) as presented 

in Fig. 6 and [13] MSM involves a fractional perturbation of the independent variable. 

 

𝑥𝑛+1 = 𝑥𝑛 −
𝜉𝑥𝑛𝑓(𝑥𝑛)

𝑓(𝑥𝑛+𝜉𝑥𝑛)−𝑓(𝑥𝑛)
   (30) 

Until |𝑓(𝑐𝑘)| < 𝛿. 𝜉 a small perturbation fraction. 
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Figure. 6. MS Method 

 

MSM provides a nice means to attain the efficiency of the NRM without having to compute derivatives. 

 



3.3 Combination of Numerical Methods 

3.3.1 Modified Brent Numerical Method (MBNM) 

BM utilizes the more precise solution between SM or BSM or the inverse quadratic interpolation [19]. It 

offers the speed of SM and reliability of BSM. For MBNM, a bisection step should be forced under the following 

circumstances as presented in Fig. 7 and [11]: 

1)  If five successive interpolation steps fail to reduce the size of the original interval or the last interval 

generated by a bisection step by a factor of two. 

2)  If an interpolation step produces a point, b, such that | f (b)| is not at least a factor of two smaller than 

the previous best point. 
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Figure. 7. MBN Method. 

 



3.4 Hybrid Technique with MINC and MCNM 
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Figure. 8. Flowchart of the HT with 2-Stage Switch Capacitor based Boost Converter 
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Figure. 9. Flowchart of the HT with Optimum Buck Converter 

 

Fig. 8 presents the flowchart for the direct control MINC method [17] and MCNM for Boost converter, 

whereas, Fig. 9 presents the flowchart for operation of HT on OBC. The initial guess need not be determined by 

mathematical modeling, but it is taken by the HT based on the PV current. As, change in current (ΔI) is trivial, in 



the constant current region. Therefore, MPP operational point can be estimated in such a region. Moreover, when 

considering a predefined tolerance error (𝑒), such a point is obtained when ΔI is marginally lower than 𝑒, as: 

∆𝐼 < 𝑒      (31) 

Here, the step size is the least. Moreover, because of least perturbation step at MPP, choice for 𝑒 is to be lesser 

than current changes and greater than zero, as: 

0 < 𝑒 < ∆𝐼     (32) 

Therefore the change in current is employed for determining the initial guesses. The limits of ∆𝐼 for HT have been 

placed by trial and error method. The HT operates the numerical method once it is in the ∆𝐼 limits mentioned, else 

it utilizes the MINC. 

4. RESULTS 

4.1 SIMULATION RESULTS: 

Matlab/Simulink software was utilized to simulate the performances of the MINC and HT. Table 1 and 2 present 

the system and PV module parameters utilized for the attaining the simulation results. The MPPT frequency was 

set to be 0.1 s.   

4.1.1 Simulation results for 2-SSC Boost Converter 
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c) HT with MRFM 
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d) HT with MNRM 

 

e) HT with MSM 

 

f) HT with MBNM 

Figure. 10. Simulation results for MCINC and HT for 2-SSC Boost Converter 

 

Table. 4 

Evaluation of MPPT techniques under discussion implemented on 2-SSC Boost Converter 

MPPT Technique No. of Steps Settling time Exact MPP Actual MPP Efficiency 

MINC - Oscillating 87 W 84.7 W 97.35 % 

HT with BSM 8 0.8 s 87 W 86.25 W 99.13 % 

HT with MRF 9 0.9 s 87 W 86.25 W 99.13 % 

HT with MNR 5 0.5 s 87 W 86.5 W 99.42 % 

HT with MSM 6 0.6 s 87 W 86.3 W 99.19 % 

HT with MBNM 4 0.4 s 87 W 86.5 W 99.42 % 

 

4.1.2 Simulation results for OBC 
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Figure. 11. Simulation results for MINC and HT for OBC 

 

Table. 5 

Evaluation of MPPT techniques under discussion implemented on OBC 

MPPT Technique No. of Steps Settling time Exact MPP Actual MPP Efficiency 

MINC - Oscillating 87 W 84.5 W 97.12 % 

HT with BSM 8 0.8 s 87 W 86.1 W 98.96 % 

HT with MRF 9 0.9 s 87 W 86.2 W 99.08 % 

HT with MNR 5 0.5 s 87 W 86.4 W 99.31 % 

HT with MSM 7 0.7 s 87 W 86.25 W 99.13 % 

HT with MBNM 4 0.4 s 87 W 86.2 W 99.08 % 

 

From time 0 s to 1 s the results are obtained under STC. Further, the irradiance changes from 1000 W/m2 to 

700 W/m2 at time 1 s. Finally, the irradiance is set back to 1000 W/m2 at time 2 s. PV voltage and PV power 

change for the 2-SSC Boost Converter and OBC of different HT and MINC have been presented in Fig. 10 and 

11, respectively. Here, the red plot shows Ppv and the blue plot displays Vpv. As observed, the MINC offers 

continuous oscillations about the MPP. Further, every mentioned HT remains reliable. Yet, HT with modified 

open bracket techniques remain faster than the rest. Here, HT with MBNM offers a mediocre speed between the 

open and close bracketed HT with MCNM. HT with MBSM and MRFM on both converters require almost 8 steps 

to converge to the MPP. The HT with MNRM entails 5 steps and MSM needs 6 steps. Finally, HT with MBNM 

requires almost 4 steps for topologies under consideration. The performance of MBNM carries a demerit of less 

reliability. As, it can offer very fast response at its normal operation, but with sudden changes in irradiance and 

temperature the operation turns slow due the forced bisection step. Table 4 and 5 present the performance 

evaluation for simulation results of the MPPT techniques under discussion implemented on 2-SSC Boost 

Converter and OBC, respectively. 

4.2 Experimental results 

4.2.1 Ipv and Vpv experimental results 

For experimental results presented in Figs. 12 and 13 the operational time is 50 s for each method. Here, irradiance 

is set from 1000 W/m2 to 700 W/m2 at time 20s. Further, at 35s the irradiance is set back to 1000 W/m2. PV voltage 

has been displayed in yellow, current in blue and power in red of all the mentioned MPPT methods. The plots 

display the input voltage showing that the open bracketed hybrid techniques for MPPT offer better performance 

in comparison to closed bracketed. In addition, MBNM offers a performance slightly better than close bracketed 

techniques. 
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Figure. 12. Experimental results for MCINC and HT with 2-SSC Boost Converter. 
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Figure. 13. Experimental results for MCINC and HT with OBC. 

 



5. Discussion 

As observed, conventional MPPT techniques including MINC confront issues of slower transient response and 

steady state oscillation. As presented in Figs. 10, 11, 12 and 13, the performances of HT offer lower computational 

complexity, faster dynamic response, exact MPP detection, easy implementation, PV array independence, 

accuracy of initial guess, fewer overshoots, stability and higher MPPT efficiency. Table. 5 presents the overall 

evaluation of the practical performance of all the techniques under consideration. 

Table 5 

Practical Performance of the Conventional and Modified HT 

MPPT technique Speed Exact MPP Complexity 

MINC M O S 

HT with BSM F E M 

HT with MRF F E M 

HT with MNR VF E C 

HT with MSM VF E C 

HT with MBNM F E C 

Note: O - Oscillating, E – Exact MPP, M – Medium, F – Fast, VF – Very Fast, S – Simple, C – Complex. 

Analysed parameters are: 

As presented in Fig. 9 the HT offers an amalgamation the MINC and MCNM. The hybrid combination offers 

the following advantages: 

A. Limited range of operation 

Direct implementation of CNM confront the issue of limited range of operation. A solution was presented in 

[10] by modeling the discretization error. However, the range of operation was limited to a few volts. Here the 

HT determines the range based of the change of current. Moreover, MPP can be tracked even in real weather 

conditions, with irradiance and temperature changes.  

B. PV array dependence 

Utilization of the MCINC in the HT has been the reason PV array independence of the HT. The technique 

presented in [9, 10] required predetermined PV panel knowledge. Whereas, the HT is PV array independent. 

C. Accuracy of the initial guess 

As reported in section 3.4 the HT, for both close and open bracketed methods, considers the constant current 

region for ascertaining its initial guesses or bracketed limits. As, the initial guess remains in the constant current 

region and near to the MPP the chances of overshoot, undershoot or incorrect root tracking become very less. 



D. Exact MPP detection with fewer overshoots 

In comparison to the direct implementation of CNM for MPPT, the HT is easier to implement and offers exact 

MPP detection. Owing to the close and open bracketed limits initialized in the constant current region, it remains 

less likely for open bracketed methods to drift away from the root due to a far off initial guesses. Therefore, exact 

MPP detection with fewer overshoots is assured. 

 

6. Conclusion 

The HT offers an improved performance for MPPT. As, the HT, due to its combination of MINC and MCNM, 

attains reliability, accuracy and speed. The shortcomings of CNM have also been addressed, as the HT is PV array 

independent, determines the range of operation based on real weather conditions and remains accurate in 

determining the initial guesses so that the numerical methods can operate accurately. Simulation and experimental 

results present a quite evident picture that the HT offers an improved performance for MPPT. It offer a moderated 

approach between the conventional MPPT techniques and the numerical methods. It is convenient because of the 

convergence at the MPP and the faster response as compared to the MINC. 

Acknowledgement 

The authors would like to thank the financial and technical assistance provided by the University of Malaya, UM 

Power Energy Dedicated Advanced Centre (UMPEDAC), Mohe HiCoe - the High Impact Research Grant -(H-

16001-00-D000032), Fundamental Research Grant Scheme FP065-2014A and Postgraduate Research Fund (PPP) 

Project Number: PG029-2015B. 

References 

[1] H. Fathabadi, "Novel standalone hybrid solar/wind/fuel cell/battery power generation system," Energy, 

vol. 140, pp. 454-465, 2017/12/01/ 2017. 

[2] Y. Luo, L. Zhang, Z. Liu, J. Wu, Y. Zhang, and Z. Wu, "Numerical evaluation on energy saving potential 

of a solar photovoltaic thermoelectric radiant wall system in cooling dominant climates," Energy, vol. 

142, pp. 384-399, 2018/01/01/ 2018. 

[3] M. D. Leonard and E. E. Michaelides, "Grid-independent residential buildings with renewable energy 

sources," Energy, vol. 148, pp. 448-460, 2018/04/01/ 2018. 

[4] R. Boukenoui, M. Ghanes, J. P. Barbot, R. Bradai, A. Mellit, and H. Salhi, "Experimental assessment of 

Maximum Power Point Tracking methods for photovoltaic systems," Energy, vol. 132, pp. 324-340, 

2017/08/01/ 2017. 

[5] A. Amir, A. Amir, J. Selvaraj, and N. A. Rahim, "Study of the MPP tracking algorithms: Focusing the 

numerical method techniques," Renewable and Sustainable Energy Reviews, vol. 62, pp. 350-371, 

2016/09/01/ 2016. 



[6] M. Mao, L. Zhang, P. Duan, Q. Duan, and M. Yang, "Grid-connected modular PV-Converter system 

with shuffled frog leaping algorithm based DMPPT controller," Energy, vol. 143, pp. 181-190, 

2018/01/15/ 2018. 

[7] W. Xiao, M. G. Lind, W. G. Dunford, and A. Capel, "Real-time identification of optimal operating points 

in photovoltaic power systems," IEEE Transactions on Industrial Electronics, vol. 53, pp. 1017-1026, 

2006. 

[8] J. Kim and A. Kwasinski, "Maximum power point tracking for multiple photovoltaic modules using root-

finding methods," in Energy Conversion Congress and Exposition (ECCE), 2014 IEEE, 2014, pp. 9-16. 

[9] S. Chun and A. Kwasinski, "Modified regula falsi optimization method approach to digital maximum 

power point tracking for photovoltaic application," in Applied Power Electronics Conference and 

Exposition (APEC), 2011 Twenty-Sixth Annual IEEE, 2011, pp. 280-286. 

[10] S. Chun and A. Kwasinski, "Analysis of classical root-finding methods applied to digital maximum 

power point tracking for sustainable photovoltaic energy generation," IEEE transactions on power 

electronics, vol. 26, pp. 3730-3743, 2011. 

[11] G. Wilkins and M. Gu, "A modified Brent’s method for finding zeros of functions," Numerische 

Mathematik, vol. 123, pp. 177-188, 2013. 

[12] R. L. Burden and J. D. Faires, "Numerical analysis. 2001," Brooks/Cole, USA, 2001. 

[13] S. C. Chapra, "Applied Numerical Methods with MATLAB for Engineers and Scientists (2012)," ed: 

McGraw Hill Publications. 

[14] M. Balato, L. Costanzo, and M. Vitelli, "Chapter 5 - DMPPT PV System: Modeling and Control 

Techniques," in Advances in Renewable Energies and Power Technologies, I. Yahyaoui, Ed., ed: 

Elsevier, 2018, pp. 163-205. 

[15] H. Luo, H. Wen, X. Li, L. Jiang, and Y. Hu, "Synchronous buck converter based low-cost and high-

efficiency sub-module DMPPT PV system under partial shading conditions," Energy Conversion and 

Management, vol. 126, pp. 473-487, 2016/10/15/ 2016. 

[16] B. Divakar and D. Sutanto, "Optimum buck converter with a single switch," IEEE transactions on power 

electronics, vol. 14, pp. 636-642, 1999. 

[17] A. Amir, A. Amir, J. Selvaraj, N. A. Rahim, and A. M. Abusorrah, "Conventional and modified MPPT 

techniques with direct control and dual scaled adaptive step-size," Solar Energy, vol. 157, pp. 1017-1031, 

2017/11/15/ 2017. 

[18] S. Tanakan, "A new algorithm of modified bisection method for nonlinear equation," Applied 

Mathematical Sciences, vol. 7, pp. 6107-6114, 2013. 

[19] R. P. Brent, Algorithms for minimization without derivatives: Courier Corporation, 2013. 

 


