
Dynamic grey-box modeling for online monitoring of extrusion
viscosity

Liu, X., Li, K., McAfee, M., Nguyen, B. K., & McNally, G. (2012). Dynamic grey-box modeling for online
monitoring of extrusion viscosity. Polymer Engineering & Science, 52(6), 1332-1341.
https://doi.org/10.1002/pen.23080

Published in:
Polymer Engineering & Science

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
 © 2012 Society of Plastics Engineers. This work is made available online in accordance with the publisher’s policies. Please refer to any
applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team.  We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:05. May. 2024

https://doi.org/10.1002/pen.23080
https://pure.qub.ac.uk/en/publications/902ea6d8-fcf7-45be-b837-398167f78399


Dynamic Gray-Box Modeling for On-Line Monitoring of
Polymer Extrusion Viscosity

Xueqin Liu,1 Kang Li,1 Marion McAfee,2 Bao Kha Nguyen,3 Gerard M. McNally3
1 Intelligent Systems and Control, School of Electronics, Electrical Engineering, and Computer Science,
Queen’s University Belfast, Belfast, BT9 5AH, UK

2 Department of Mechanical and Electrical Engineering, Institute of Technology Sligo, Sligo, Ireland

3 Polymer Processing Research Centre, School of Mechanical and Aerospace Engineering,
Queen’s University Belfast, Belfast, BT9 5AH, UK

Melt viscosity is a key indicator of product quality in
polymer extrusion processes. However, real time moni-
toring and control of viscosity is difficult to achieve. In
this article, a novel ‘‘soft sensor’’ approach based on
dynamic gray-box modeling is proposed. The soft sen-
sor involves a nonlinear finite impulse response model
with adaptable linear parameters for real-time predic-
tion of the melt viscosity based on the process inputs;
the model output is then used as an input of a model
with a simple-fixed structure to predict the barrel pres-
sure which can be measured online. Finally, the pre-
dicted pressure is compared to the measured value
and the corresponding error is used as a feedback sig-
nal to correct the viscosity estimate. This novel feed-
back structure enables the online adaptability of the
viscosity model in response to modeling errors and
disturbances, hence producing a reliable viscosity esti-
mate. The experimental results on different material/
die/extruder confirm the effectiveness of the proposed
‘‘soft sensor’’ method based on dynamic gray-box mod-
eling for real-time monitoring and control of polymer
extrusion processes. POLYM. ENG. SCI., 52:1332–1341,
2012. ª 2012 Society of Plastics Engineers

INTRODUCTION

Extrusion is a widespread practical method in polymer

processing, but controlling the quality of an extrudate ma-

terial and hence the final product, presents various prob-

lems. The feed materials can be highly variable and

unpredictable in nature, and the selection of appropriate

operating conditions for each material to obtain a desired

extrudate quality is a complex task. This results in large

amounts of energy and material being wasted during long

set-up times, by using nonoptimum operating conditions.

Real-time monitoring of the quality of the extrudate mate-

rial during the extrusion process is therefore desirable to

achieve reduced set-up times and improved operation of

the extrusion system. In comparison with melt temperature

and pressure, melt viscosity is largely recognized as one of

the most relevant indicators of melt quality as it is directly

related to the esthetic/dimensional properties of the melt

and the molecular orientation relating to the functional

properties of a polymeric extrudate [1, 2]. However, on-

line viscosity measurement to a required standard has

proved difficult to achieve due to the highly nonlinear and

significant time delay behaviors of the process.

Currently there are a few types of melt viscosity mea-

surement, including (1) off-line laboratory capillary rheom-

eter (LCR), which is most accurate but involves significant

time delay; (2) on-line side-stream rheometer, in which

melt is taken as a side stream from the flow line by a gear

pump for sampling, and results in time delay of several

minutes. Besides, the side stream may not always represent

the property of the bulk flow [3]; (3) in-line rheometer,

which is more relevant to the process control than the

above two methods since it is directly mounted in the main

process flow and has advantage of real time monitoring.

However, the cross section of the in-line rheometer is usu-

ally small, which results in a limitation to use in mass pro-

duction [1]; (4) torsional viscometer, which gives reliable

real time measurements but is expensive, particularly for

producers with several extrusion lines to instrument.

For the above reasons, an alternative approach to

obtain the viscosity, in the name of ‘‘soft computing,’’

‘‘inferential modeling,’’ or ‘‘soft sensor’’ has been pro-

posed and recently attracted significant academic and

industrial interests. This method involves the estimation
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of the melt viscosity based on the system inputs, such as

temperature and screw speed. Because of the inherent

nonlinearities of the extrusion process, linear modeling

techniques are limited in their effectiveness. Currently,

the majority of nonlinear modeling methods are based on

neural networks which have demonstrated their ability in

producing adequate nonlinear dynamic inferential models

for viscosity [4, 5]. The drawbacks of those methods are

that too many parameters need to be tuned with a limited

data set available; moreover, the black box modeling

methods lack physical insight into the applied process.

Therefore, the development of combining mechanistic and

parametric models has been investigated recently. A rheo-

logical model based on first principles of power-law equa-

tion was proposed by Chen et al. [1]. However, the pa-

rameters were obtained by off-line experiments and it is

not possible to adapt the model to varying operational

conditions and hence limits its application in real time

control. For a better solution, a gray-box model combined

with a hybrid method of genetic algorithm with fuzzy sys-

tem has been implemented, and the model parameter is

adaptive to the changing working conditions based on

simulation data [6]. It was also demonstrated that the

genetic programming algorithm not only outperforms the

neural network method, but also has a simple transparent

model structure [5].

In spite of the effectiveness of the gray-box modeling

technique assisted with genetic algorithms (GA), which

combines both fundamental first principles and experi-

mental data-driven approach, the existing methods are

inherently open-loop, and therefore suffer from all the

problems associated with open-loop systems, i.e., they are

intolerant to any changes in the extrudate material or

processing conditions. To tackle this problem, a soft sen-

sor with a feedback structure was proposed in previous

work [2, 7]. The soft sensor structure is based on that of

a state observer [8] where an open-loop estimator (viscos-

ity model) is combined with a feedback correction mecha-

nism performed by a pressure model. The novel feedback

structure enables the online adaptability of the viscosity

model in response to modeling errors and disturbances,

hence producing a reliable viscosity estimate. Both pres-

sure and viscosity models were developed using gray-box

modeling with GA [2, 7]. Potential to relate model param-

eters on different grades of the same polymer (low den-

sity polyethylene) has been demonstrated. However,

extension of the technique to materials exhibiting signifi-

cantly different properties and to processing in more com-

plex industrial extruders would result in more complex

models and loss of physical meanings. In this study,

greater use of first-principle models is employed with the

aim of identifying a simple model structure which, in

combination with a mechanism to correct for oversimplifi-

cations in the model, can capture the viscosity depend-

ence of a wide range of polymeric materials and different

machines and dies. More precisely, the dynamic models

in the proposed soft sensor structure are further investi-

gated and improved in this article: (1) the barrel pressure,

which can be applied to any extrusion process but also is

less dependent on the die design, is examined instead of

the die pressure; (2) a NFIR (nonlinear finite impulse

response) model for the pressure and the viscosity model

was identified respectively by the GA-based dynamic

gray-box modeling method instead of the NARX (non-

linear autoregressive with exogenous input) model, which

has the advantage of inherent stability, without the need

for feedback but exhibiting good performance; (3) both

pressure model and viscosity model are simplified to a

fixed structure with adaptable linear parameters which can

be easily and quickly adapted to different polymers,

extrusion machines and dies without extensive remodel-

ing, resulting in good practical applicability in industry.

It is worth noting that, from the control point view, it

is known that both the barrel temperature and screw speed

have significant effect on the quality of the final product

and the energy efficiency of the process [7]. Thus, both

barrel temperature and screw speed have been used as

input variables in this study. It is noted that similar work

has been reported recently in [9, 10] which developed

dynamic gray-box models relating melt pressure and melt

temperature to screw speed (or feed rate) along with ran-

dom binary sequence (or stair) type excitation for twin

screw extrusion. Different from [9, 10], in this study, four

input variables including three barrel temperatures and

screw speed, have been excited simultaneously with a

predesigned pseudorandom signal (PRS) and hence a wide

range of operating conditions has been covered for a sin-

gle screw extruder. Both pressure model and viscosity

model have been developed based on dynamic gray-box

models acting as a soft sensor for viscosity monitoring.

The article is organized as follows: The general

description of the extrusion process and the concept of

soft sensor are briefly explained next, followed by the first

principles and the methodology of the GA-based dynamic

gray-box modeling method. Then the experiment for data

generation with different materials, dies and extruders is

described in detail. Then the pressure model and the vis-

cosity model identified by the dynamic gray-box modeling

method are presented, followed by the integrated soft sen-

sor test and implementation. Conclusions are given at the

end of the article.

SOFT SENSOR FOR EXTRUSION PROCESS

Single Screw Extrusion Process

Single screw extrusion is one of the core operations in

polymer processing and therefore is the focus of this

study. A conventional single screw extruder is divided

into three main functional zones: a feed zone, a melting

zone and a metering zone. Each of the three zones must

perform a specific function to achieve a successful deliv-
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ery of the polymer melt to the die at a desired constant

melt temperature, pressure and viscosity [11].

Figure 1 depicts the diagram of a typical single screw

extruder with process input and output variables. The

input variables, including the screw speed, N, and the bar-

rel temperature T1, T2, T3, can be used as manipulated

variables to control the extrusion process. The output var-

iables, such as the melt viscosity, g, and the barrel pres-

sure, Pb, can be used as control variables to design a

closed loop control scheme. The ultimate goal of any con-

trol scheme in a polymer extrusion process is to control

the final product quality. Melt viscosity is largely recog-

nized as one of the most relevant indicators of melt qual-

ity. However, on-line viscosity measurement to a required

standard has proved difficult to achieve. Thus, controlling

the melt viscosity requires good understanding of the pro-

cess and prediction of it from available process variables.

Soft Sensor

The principle of the soft sensor is based on a feedback

observer mechanism, which was introduced in the previ-

ous work in [7, 12] as shown in Fig. 2. A viscosity model

was identified based on the process inputs, such as barrel

temperatures and screw speed, to infer the melted viscos-

ity. The estimated melt viscosity, together with the screw

speed, is then used as input variables for the pressure

model to predict the barrel pressure. Finally, the predicted

barrel pressure is compared with the actual measured

value, and the generated error used as a feedback signal

to correct the estimated viscosity. This novel feedback

structure enables the online adaptability of the viscosity

model in response to modeling errors and disturbances,

hence producing reliable viscosity estimate. In Fig. 2, Ti
is the barrel temperature in zone (i ¼ 1,2,. . ., n); e is the

error signal of the predicted barrel pressure, ~Pb, and the

measured barrel pressure, Pb. The accuracy of the feed-

back soft sensor depends largely on the accuracy of the

pressure model as it corrects deviations in the viscosity

model. The accuracy of the viscosity model is more rele-

vant to achieving precise control of the process. To carry

out the proposed method it is necessary that viscosity data

for the polymer must be determined in advance to initially

identify the viscosity model using a capillary rheometer

or equivalent equipment, such as in-line rheometer. The

data evaluated by the proposed method is compared with

that obtained by the in-line rheometer.

MODELING TECHNIQUE

First Principles

The extrusion process is characterized by strong inter-

actions between mass, energy, and momentum transfer,

coupled with physiochemical transformations which deter-

mine the properties of the final product [9]. To obtain ro-

bust models for the barrel pressure and the melt viscosity,

it is essential to understand the underlying behavior of

process variables using first principles knowledge.

Pressure Model. The physical relationship of the back

pressure with the throughput rate and the melt viscosity is

recalled by the Poiseuille equation [13]:

Pb ¼ aQZ (1)

where a is a parameter related to die resistance, and Q is

volumetric throughput. Note that this equation holds for

laminar flow in a capillary or slit die—in general laminar

flow will not be fully achieved in a practical situation, also

more complex dies will not follow this relationship. How-

ever it does give an approximation. As Q was proportional

to screw speed for the plant and material used in this arti-

cle, under these conditions the barrel pressure is

Pb ¼ abNZ (2)

where b is a parameter related to the material and the

machine.

Viscosity Model. The viscosity of a polymer melt can

generally be considered as a function of shear rate, tem-

perature, and pressure. In extrusion, polymer melts are in

a predominantly shear flow regime where the viscosity

follows a power-law relationship with shear rate

FIG. 1. The diagram of a single screw extruder with input (screw speed

N, and barrel temperature T1, T2, T3) and output variables (barrel pres-

sure Pb, and viscosity g).

FIG. 2. Soft sensor with a feedback structure.
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Z ¼ mġ�n�1 (3)

where Z is the shear viscosity, ġ is the shear rate, and m
and �n are material-specific parameters (consistency index

and power-law index). The relationship between viscosity

and temperature is less explicitly defined; increasing tem-

perature tends to decrease viscosity, but the nature of this

behavior varies with the polymer type and state. A num-

ber of physical and empirical relationships have been pro-

posed in the literature to describe behavior at various con-

ditions. For a material in the power law region, an Arrhe-

nius-type representation of the consistency index as a

function of temperature is commonly applied

m ¼ m0e
½�bðT�T0Þ� (4)

where m0 is the consistency index at a reference tempera-

ture, T0. b is a constant in the range of [0.01, 0.1] [14].

GA-Based Dynamic Gray-Box Modeling

In this subsection the GA-based dynamic gray-box mod-

eling method [15] which was used both for the pressure

and the viscosity modeling in the soft sensor structure is

reviewed. It involves a genetic algorithm approach to iden-

tify the model structure and unknown parameters which

best fitted the measured process output, based on a priori

knowledge of process fundamental mechanism and empiri-

cal data. A priori ‘‘term pool’’ including candidate model

terms is defined to capture the fundamental relationship

between the system input and the output variables. More

details on the methodology of the dynamic gray-box mod-

eling and the GA approach are presented below [15–17].

Methodology. Within the context of nonlinear model

using linear-in-parameter polynomial structure, fuzzy

method, neural networks etc, the underlying principle is

to use simple linear or nonlinear functions as the basis to

approximate a complex process. Every process has its

own particular characteristics and may exhibit particular

behavior. It is possible to select the approximation basis,

such as the nonlinear terms in a linear-in-parameter gener-

alized polynomial model structure or the activation func-

tion in the neural networks, according to a priori knowl-

edge of the process. However, how much success a model

can achieve largely depends on the form of the chosen

approximation basis or functions.

These basic approximation functions acquired from the

fundamental a priori knowledge of the studied process

was referred to as fundamental elements (FEs) [16] and

they formed the candidate model terms or the process

‘‘term pool.’’ Once the FEs are collected, a process model

which reflects the dynamics of the process may be appro-

priately determined combining these FEs. At this model

construction stage experimental data is required. There-

fore, the applied dynamic gray-box modeling technique

involves a search for the FEs from the ‘‘term pool’’ of the

process, and then constructing the process model using

appropriate combinations of these FEs.

Most system modeling methods would assume that the

model structure is known or partially known, and that the

main modeling task is to identify unknown parameters and

unmodeled dynamics. Such methods may be suitable for

simple systems, however, for complex polymer extruder

processes, it is impossible to build a simplified model as the

process fundamental knowledge only partially known. In

the applied dynamic gray-box modeling method proposed

by Li et al. [15], physical modeling and system identifica-

tion form two interacting paths, as shown in Fig. 3. The

essential part of this method aims to produce a simple NFIR

model structure for the polymer extrusion process with only

the ‘‘term pool’’ being proposed from a priori knowledge of

process fundamental mechanism.

As shown in Fig. 3, for complex polymer extrusion proc-

esses where it is impractical to obtain a simple model struc-

ture, the main task in the physical modeling path (the upper

part in Fig. 3) is to establish the fundamental ‘‘term pool.’’

Such a ‘‘term pool’’ is formed with appropriate static non-

linear functions that are uniquely identified from a priori

process knowledge. The main task for the model optimiza-

tion module in the lower part of Fig. 3 is to optimize the

NFIR model structure and the associated parameters. The

genetic algorithms for example were used for this purpose.

The identification function in the lower part of Fig. 3 is for

data collection and preprocessing, which is used later in the

optimization module to obtain the optimal model.

These fundamental functions in the ‘‘term pool’’ can

be power, exponential etc, which depend on the studied

process, or the mathematical equations describing the fun-

damental laws governing the process behavior. A NFIR

model can then be identified to represent the original pro-

cess through appropriate composition and recombination.

Optimization of NFIR Model by the Dynamic Gray-

Box Modeling With GA. As mentioned in the previous

subsection, to obtain a NFIR model reflecting the special

FIG. 3. Dynamic gray-box modeling framework for a polymer extru-

sion process.
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nonlinear characteristics of the process, one of the solu-

tions is essentially to extract process-dependent funda-

mental static functions, which are then incorporated into

the NFIR structure as the fundamental elements, resulting

the mathematical formulation of the identified NFIR

model given by

yðtÞ ¼
Xp
i¼0

yifiðtÞ (5)

where

f0ðtÞ ¼ 1

fiðtÞ ¼ fiðfu1ðu1ðt� du1Þ;~ydu1 Þ; � � � ; fumðumðt� dumÞ;~ydum ÞÞ
i ¼ 1; 2; � � � ; p

8>><
>>:

(6)

and y and uj (j ¼ 1, 2, . . ., m) are the process outputs

and the inputs, yi and ~hduj is the linear and nonlinear pa-

rameter respectively, fuj and /i(t) denote the fundamental

elements and the candidate model terms respectively, and

duj is the time delay for the process inputs uj with its

range identified based on the physical knowledge of the

process.

Given a performance index, optimization of the nonlin-

ear NFIR model formulated in Eq. 5 is a mixed integer

nonlinear hard problem including the following possible

issues: (1) selection of model inputs (2) selection and

optimization FES (3) optimization of the NFIR model

structure (4) NFIR model training. Conventional optimiza-

tion methods often fail to search and find the optimal so-

lution for a mixed integer hard problem as stated above.

As a stochastic optimization tool, the genetic algorithm

was used for the above problem, and more details can be

found in [16, 17].

Based on the above analysis, a GA-based dynamic

gray-box modeling software has been developed [16, 17]

and formed a platform for the dynamic modeling of the

soft sensor proposed in this article.

EXPERIMENTAL

Materials

The six polymers including low density polyethylene

(LDPE), high density polyethylene (HDPE) and polypro-

pylene (PP) used in this study and some of their proper-

ties, such as the melt flow index (MFI-g/10 min) and

melt density (g/cm3), are listed in Table 1. The MFI val-

ues for LDPE1 (LD159AC), HDPE1 (HHM TR114), and

PP (Capilene M45F) are measured according to the

ASTM D1238 procedure, and for the rest (LDPE2 and

LDPE3: Dow352E and Lupolen 2426H, HDPE2: Sabic

B6246LS) the ISO 1133 procedure was used. Both pro-

cedures were based on a weight of 2.16 kg, and a tem-

perature of 2308C for PP and 1908C for the rest. The

selected polymers for testing are general purpose poly-

ethylene/polypropylene. To check if the identified model

structure is still valid to material blends that are com-

monly used in industrial plant, the experiment on HDPE

blends (50% HDPE1 with 50% HDPE2) was also carried

out.

In-Line Rheometer Slit-Die and Capillary-Die

To carry out the proposed ‘‘soft sensor’’ approach, it

is necessary that viscosity data for the polymer is

obtained in advance using a laboratory capillary rheome-

ter or in-line rheometer. A schematic of the designed in-

line rheometer slit-die (slit channel height, H ¼ 2 mm,

width, W ¼ 39.25 mm) and the capillary-die (bore radius

R ¼ 4.7 mm) used for measuring viscosity is shown in

Fig. 4 in which the pertinent dimensions and spacing of

the pressure transducers are shown. Three pressure trans-

ducers are equidistant along the length of the die to

identify the pressure drop. More details of the in-line-

rheometer design can be found in the previous work

[18]. For a capillary die, the melt viscosity calculation is

based on the relation between the pressure drop DP

TABLE 1. Polymer resins and melt index.

Polymer Trade name Source MFI Density

LDPE1 LD159AC ExxonMobil Chemical 1.2 0.923

LDPE2 Dow352E Dow Chemical Company 2.0 0.925

LDPE3 Lupolen 2426H LyondellBasell Industries 1.9 0.925

HDPE1 HHM TR114 Marlex Polyethylene 0.18 0.946

HDPE2 Sabic B6246LS Saudi Basic Industries 0.5 0.962

PP Capilene M45F Carmel Olefins Ltd. 8.0 0.950

FIG. 4. (A) Slit die, (B) capillary die.
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across the in-line capillary die and the flow rate Q as

follows [19]:

Z ¼ DPpR4

2LQ

�n

3�nþ 1
(7)

For the slit die, the viscosity is formed as [19]

Z ¼ DPWH3

12LQ

3�n

2�nþ 1
(8)

where L is the length between the adjacent pressure trans-

ducers. To enable real-time calculation of viscosity, the

throughput was modeled offline. The polyethylene exam-

ined in this study showed a simple linear relationship

between mass throughput and screw speed when the oper-

ating temperatures are fixed.

Single Screw Extruder

The research was performed on two single screw

extruders, one is 25.4 mm, Killon KTS-100 and the other

is 38 mm, Killion KN-150. Both extruders used in this

study have three heating zones (feed zone, melting zone,

and metering zone) controlled by the Eurotherm 808 PID

controller. An in-line rheometer die for viscosity measure-

ment is connected at the barrel exit by the clamp ring and

the adaptor. The feed section is water-cooled to prevent

an early rise in polymer temperature. The in-line rheome-

ter, the clamp ring and the associated adaptor were kept

at constant temperature. Typical sensing elements such as

thermocouples and pressure transducers are located on the

barrel and the die to provide continuous data on the state

of the polymer. Figure 5 shows a photograph of the 25.4

mm extruder instrumented with a capillary in-line-rheom-

eter die.

A LabVIEW software programme was developed to

communicate between the experimental instruments and a

computer. All signals were acquired at a 10-Hz sampling

rate using a 16-bit DAQ card through a SC-2345 connec-

tor box, but averaged over every 10 samples to reduce the

sampling frequency to 1 Hz.

Input Excitation

As mentioned in the previous section, both the barrel

temperature and screw speed have significant effect on

the quality of the final product and the energy efficiency

of the process [7]. Thus, both barrel temperature and

screw speed have been used as input variables in this

study. For obtaining some information-rich data sets of

process inputs, the screw speed, N, and the temperature

settings at the three heating zones, T1, T2, T3, were

excited using a PRS (pseudorandom signal) applied in a

‘‘random walk’’ algorithm, respectively. It is the signal

excited by a Gaussian sequence and the period of input

change was also defined by a Gaussian sequence where

the mean and standard deviation (r) were defined based

on the measured pressure and viscosity response time to

step changes in the inputs. Thus a wide operating range,

including both the low frequency and high frequency

spectra, was covered in the sequences while consecutive

input changes were within practical operating limits [2].

The defined input sequence parameters are given in Table 2.

Figure 6 shows an example of the filtered screw speed and

the three-zone barrel temperature signals excited by the

designed PRS.

Six different tests, as illustrated in Table 3, were per-

formed under the designed PRS excitation, using six poly-

mers, two dies and two extruders. Dynamic gray-box

modeling based on GA was applied for both pressure and

viscosity model structure identification, using data of Test

A. Both model structures were further investigated and

generalized from modeling of different material, die, and

extruder using data of Tests B–F. More details of model

identification are presented next.

FIG. 5. Photograph of the laboratory killion KTS-100 single screw

extruder with in-line-rheometer die.

TABLE 2. Excitation sequence parameters.

Amplitude Period (s) Limit

Mean r Mean r Upper Lower

LDPE

N 65 5.0 30 3.0 105 30

T1 155 3.5 120 5.0 175 135

T2 160 3.5 120 5.0 180 140

T3 160 3.5 120 5.0 180 140

HDPE

N 60 5.0 60 3.0 105 30

T1 190 3.0 150 5.0 195 185

T2 200 3.0 150 5.0 205 195

T3 210 3.0 150 5.0 215 205

PP

N 80 5.0 30 3.0 105 45

T1 195 4.0 120 5.0 205 185

T2 200 3.5 120 5.0 210 180

T3 210 3.5 120 5.0 215 185
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RESULTS AND DISCUSSIONS

The dynamic gray-box modeling method presented in

the modeling technique section was used for pressure and

viscosity model in the previous work [7, 12]. Here, both

models have been further improved and generalized to a

broader material range with different die and extruder.

The improvements include (1) the barrel pressure, which

is widely measured in industrial processes and less de-

pendent on the die design, is examined instead of the

pressure inside the die; (2) The NFIR model was used

instead of previous NARX model, which has a few

advantages, for example, the NFIR model is inherently

stable, and requires no feedback of the model output; (3)

The motor power and other terms in the form of Nkjgkj

(ki, kj is a constant) were considered in the previous work

and resulted in a random model structure. The NFIR

model presented in this study has less terms in the prede-

fined ‘‘term pool’’ based on the first principles which

results in a simplified model structure; (4) The NFIR

model has a linear-in-the-parameter structure, where the

linear parameters are fairly easy to update by the least

square method [20] on-line for different materials. More-

over, with the requirement of identifying only the linear

parameters for different die and extruder, this NFIR struc-

ture performs well without employing the expensive GA-

based dynamic gray-box modeling method.

Dynamic Gray-Box Model for Barrel Pressure

The priori ‘‘term pool’’ for the dynamic gray-box mod-

eling method is paramount to the success of the identified

model. Based on the above physical relationship between

the barrel pressure and the screw speed and the melt vis-

cosity in Eq. 2, the ‘‘term pool’’ for the pressure model is

defined by the products of screw speed and viscosity:

Nðt� dNÞgðt� dgÞ, where, dN, dg represents the time

delay. Using the dynamic gray-box modeling method, the

pressure model is generated with a time series of system

inputs based on Test A data

~PbðtÞ ¼ y1 þ y2Nðt� 1ÞZðt� 1Þ (9)

where y1 ¼ 1.45 and y2 ¼ 1 � 10–3. The error residual of

the above model based on data of Test A has zero mean

and variance 0.03, which can be approximated by a nor-

mal distribution. Its performance on the unseen validation

measured barrel pressure data of Test A is shown in Fig.

7, with the root mean square (RMS) percentage error,

2.3%. The RMS percentage error (RMSPE) here is used

for evaluation purpose and is defined as

RMSPE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPs
i¼1

ðyi � ~yiÞ2=S
s

�y
� 100% (10)

where S is the number of samples, yi, ~yi and �y is the

measured value, the predicted value, and the mean value,

respectively.

The effect of changes in material, die or machine on the

pressure model is further investigated to adapt this model

to different material or machine without extensive remodel-

ing. Other five tests (B–F), as shown in Table 3, on five

FIG. 6. Filtered screw speed and three-zone barrel temperature signals

excited by designed PRS.

TABLE 3. Experimental material/die/extruder.

Material Die Extruder

LDPE1 LDPE2 LDPE3 HDPE1 HDPE blends PP Capillary Slit 25.4 mm 38 mm

A H H H
B H H H
C H H H
D H H H
E H H H
F H H H

FIG. 7. Barrel pressure model performance on data of Test A–F.
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polymers, two dies, and two extruders were carried out for

this purpose. The linear parameters and the root mean

square percentage errors of the pressure model on different

tests using the proposed NFIR, are presented in Table 4.

When the model was applied on different materials but

with the same die and extruder, there is an offset of 0.98

and the RMS percentage error is 3.4%. When the model

was applied on different die and extruder in Test C–F, the

RMS percentage error is less than 2%. The model per-

formance on these tests is illustrated in Fig. 7. Based on
the above analysis, it can be seen that the predicted pres-
sure value of Test B–F matches the measured value very
well. Thus the above NFIR structure based on the
dynamic gray-box modeling reflects the fundamental
physical relationship between viscosity and extruder pres-
sure, and only the linear parameter y ¼ (y1, y2) needs to
be updated when the material, machine or die changes.

Viscosity Model

In this subsection, the prediction model is generated to

estimate the melt viscosity based on the process inputs.

To reduce model complexity and to improve the perform-

ance, the dynamic gray-box modeling approach is also

applied here for identification of a dynamic model which

is a function of the properties of the material and the

physical processes inside the extruder. To determine the

‘‘term pool’’ for viscosity model, a complex term approxi-

mating to an Arrhenius-type relationship may be appropri-

ate. But as this involves a difficult problem of tuning sev-

eral parameters, the ‘‘term pool’’ with power law terms,

Nk1
Tk2
3 (k1, k2 is a constant) [2] is selected. For a continu-

ous nonlinear function a general power law element could

potentially fit the relationship accurately if enough terms

are included. However, it should be noted that a viscosity

model with more terms does not necessarily have better

generalization ability. Using data of Test A, a NFIR vis-

cosity model is identified

~ZðtÞ ¼ �y1 þ �y2Nðt� 1Þ0:22T3ðt� 38Þ0:36 (11)

The model performance of Eq. 11 on the unseen data

of Test A is shown in Fig. 8, with the RMS percentage

error 0.96%. It can be seen that the identified model (Eq.
11) by dynamic gray-box modeling method is able to

describe the dynamic behavior of the LDPE1 material and

hence tracks the viscosity change on the same material.

Similar to the pressure model, the viscosity model with a

fixed structure (Eq. 11) was applied on the data of Test

B–F, to check the model performance on different mate-

rial, die and machine, and the results are shown in Table

4 and Fig. 8. If the melt viscosity estimate g is used as an

input to the pressure model, and then it might give an

inaccurate predicted pressure value due to changes in feed

material properties. For a better solution, the error e gen-

erated by the predicted and the measured pressure value

TABLE 4. Linear in parameters and the RMS percentage errors (RMSPE) of the pressure and the viscosity model on different tests using different

methods.

Proposed dynamic gray-box NFIR Black-box polynomial NFIR

y RMSPE y RMSPE

Pressure model

A [1.45, 1 3 1023] 2.45% — —

B [0.47, 1 3 1023] 3.41% — —

C [20.66, 2 3 1023] 1.80% — —

D [20.97, 4 3 1023] 0.65% — —

E [23.69, 3 3 1023] 0.64% — —

F [20.09, 1 3 1023] 0.03% — —

Viscosity model

A 103 [3.05, 20.12] 0.96% [232.85, 16.25, 20.03, 20.05] 1.30%

B 103 [1.87, 20.07] 1.28% [802.86, 28.31, 0.01, 20.0007] 54.87%

C 103 [2.78, 20.12] 2.05% [1.19 3 103, 26.4, 0.30, 20.88] 3.63%

D 103 [8.18, 20.39] 1.31% [3.54 3 103, 231.4, 23.5, 21.2] 8.01%

E 103 [6.57, 20.30] 1.62% [3.36 3 103, 216.2, 29.2, 21.8] 42.88%

F 103 [3.01, 20.11] 0.05% [1.28 3 103, 212.6, 0.02, 20.01] 55.59%

FIG. 8. Viscosity model performance on unseen data of Test A–F.
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is used as a feedback signal to correct the melt viscosity

estimate ~g of Eq. 11.

ẐðtÞ ¼ ~ZðtÞ þ kPeðtÞ þ kI
X1

k¼1
eðt� kÞ (12)

where the last two terms in Eq. 12 are in the forms of PI (pro-

portional gain and integration) of the error signal, e. To mini-

mize the error signal between the predicted and measure bar-

rel pressure value, the parameters in Eq. 12 can be identified.
The effectiveness of the soft sensor based on the pressure

model and the viscosity model developed above is then

tested on the unseen data of LDPE2 in the following section.

Soft Sensor Testing

Applying the pressure model in Eq. 9 and the viscosity

model in Eqs. 11–12 on the unseen LDPE2 data, the soft

sensor performance on the barrel pressure and the viscos-

ity is shown in Fig. 9.

The difference between the measured viscosity and the

prediction value in terms of RMS percentage error is

0.46%. A satisfactory match between the estimated and

the measured value validated the developed soft sensors

for real time monitoring of the polymer extrusion process.

Therefore, it has been verified that using the error

between the predicted and the measured barrel pressure as

a feedback to correct the viscosity estimate made the real

time monitoring of viscosity feasible and reliable.

To better understand the advantage of the dynamic gray-

box NFIR model proposed in this article over a general

black-box polynomial NFIR model which does not incorpo-

rate first principle knowledge [21], the performance of the

viscosity models based on the above two different

approaches is illustrated in Table 4, with the identified black-

box polynomial NFIR model

~ZðtÞ ¼ �y1 þ �y2Nðt� 1Þ þ �y3Nðt� 1ÞT3ðt� 5Þ
þ�y4Nðt� 1ÞT3ðt� 8Þ (13)

The polynomial NFIR model performance is good on

the unseen LDPE1 data, with RMSE 1.3%; however, this

model has poor generalization to data from different

materials of LDPE2 as well as PP even using the same

machine and die, with RMSE 54.87 and 55.59%, respec-

tively. Further, poor generalization performance is also

observed on data from a different machine using HDPE

blends, with RMSE 42.88%. This is due to the fact that

the black-box modeling methods do not use physical

knowledge. In comparison, the proposed NFIR model

combines the first principles with the data-driven identifi-

cation method, and hence the model terms reflect the

physical relationship between the input and output varia-

bles, leading better model prediction performance.

Soft Sensor Implementation

Implementation of the proposed ‘‘soft sensor’’ approach

on any material/die/machine configuration involves off-

line modeling and online monitoring. In model develop-

ment, a data set describing the dynamic process behavior

is first recorded to acquire the linear parameters of both

pressure and viscosity models. In the on-line monitoring

procedure, a feedback correction mechanism in the form

of the PI of the error signal is employed and used to cor-

rect the predicted melt viscosity. The construction of the

off-line models and the on-line implementation proce-

dures can be summarized by the following steps.

For the off-line modeling, it involves: (i) Record

dynamic data including the screw speed, N, the barrel

pressure, Pb, the barrel temperature, T3, and the melt vis-

cosity, g (measured by the in-line-rheometer in this

study). (ii) Identify the parameters y1 and y2 of the pres-

sure model in Eq. 9, based on the recorded screw speed,

N, the barrel pressure, Pb, and the melt viscosity, g. (iii)
Identify the parameters �h1 and �h2 of the viscosity model

in Eq. 11 based on the recorded screw speed, N, the bar-

rel temperature, T3, and the melt viscosity, g.
For on-line monitoring, it involves: (i) Record normal

operating data including the screw speed, N, the barrel pres-

sure, Pb, the barrel temperature, T3. (ii) Compute the melt

viscosity ~g based on Eq. 11 and the identified parameters �h1
and �h2. (iii) Compute the barrel pressure ~Pb based on Eq. 9,
the identified y1 and y2, and the predicted melt viscosity ~g.
(iv) Compute the error signal e between the measured barrel

pressure, Pb, and the predicted barrel pressure, ~Pb. (v) On-

line identification of kp and kI in Eq. 12 to minimize the pre-

dicted and the measured pressure values. (vi) Recompute

the corrected melt viscosity ĝ based on Eq. 12.

CONCLUSIONS

This article presents the latest progress and a compre-

hensive coverage of the soft sensor approach developed in

the group, which has shown to be able to accurately esti-

mate the viscosity using industrially available measure-

ments, including barrel pressure, barrel temperatures, and

screw speed, and is robust to process disturbances and

adaptive to operation variations such as the change of

materials. The proposed soft sensor structure is simple to

FIG. 9. Soft sensor performance on LDPE2 unseen data.
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implement and has shown to be capable of tracking of

polymer viscosity in extrusion based on the experimental

data with RMS percentage error less than 1%. The success

of the structure is due to (1) the identification of a pressure

model with a simplified fixed structure (NFIR) which cap-

tures the fundamental physical relationship between the

viscosity, screw speed and extruder barrel pressure by a

dynamic gray-box modeling technique; (2) a NFIR model

identified for the estimation of the melt viscosity based on

the process inputs such as screw speed and temperature;

(3) the viscosity model with adaptable linear parameters to

different material; (4) using the error between the predicted

and the measured barrel pressure as a feedback to correct

the viscosity estimate which has made the real time moni-

toring of viscosity feasible and reliable. The developed soft

sensor can greatly help to reduce the need for measuring

devices and to develop robust on-line system identification

and real time control of feed material changes in future

work. It should also be noted that the soft-sensor frame-

work presented in this article and in our previous research

works is generic and can be extended to online prediction

of many process variables which can not be directly meas-

ured online or are too expensive to measure in real-time.
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