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10 
Abstract 11 
To investigate the genetic diversity of porcine reproductive and respiratory 12 
syndrome virus (PRRSV) in Northern Ireland, the ORF5 gene from 9 field isolates 13 
was sequenced and phylogenetically analysed. The results revealed relatively 14 
high diversity amongst isolates with 87.6-92.2% identity between farms at the 15 
nucleotide level and 84.1-93.5% identity at the protein level. Phylogenetic 16 
analysis confirmed that all 9 isolates belonged to the European (type 1) 17 
genotype, and formed a cluster within the subtype 1 subgroup. This study 18 
provides the first report on PRRSV isolate diversity in Northern Ireland. 19 

Porcine reproductive and respiratory syndrome virus (PRRSV), the causative agent of 20 
porcine reproductive and respiratory syndrome (PRRS), is a small, enveloped, 21 
positive sense, single stranded RNA virus (genus Arterivirus). It is responsible for 22 
inducing reproductive failure in sows and respiratory disease in growing pigs [1]. 23 
Two genotypes of PRRSV are recognised internationally, European (type 1) and 24 
North American (type 2). The type 2 virus was originally isolated in pig herds in 25 
America in 1987 [2], while type 1 was first identified in European pigs in 1991 [3]. 26 
Although the first outbreaks occurred close together, the two genotypes have high 27 
sequence divergence and share only 50-70% genetic identity [4–7]. There are at least 28 
4 subtypes of type 1 PRRSV, with different worldwide and European distributions, as 29 
well as variations in pathogenicity [8]. Similarly, type 2 PRRSV is further divided 30 
into several lineages [9].  31 

The high strain diversity of PRRSV is consistent with other RNA viruses, and results 32 
in rapidly emerging virus variants that lead to recurrent disease outbreaks and 33 
increased difficulty with virus control [10–12]. As the island of Ireland is 34 
geographically isolated we hypothesised that Northern Ireland (NI) may have 35 
circulating strains of virus that are different from those found in Great Britain and the 36 
rest of Europe. The genotype of the virus has obvious implications for diagnostics and 37 
vaccination, with only limited protection afforded against heterologous strains. In this 38 
study, the ORF5 gene from PRRSV field isolates in NI was sequenced and compared 39 
with those from modified live virus (MLV) vaccine sequences and other European 40 
isolates. The genetic diversity of PRRSV strains in NI relative to vaccine and 41 
European wild type strains was examined and the implications for PRRSV-associated 42 
disease management discussed. 43 

Seven lung samples and 2 mesenteric lymph node (MLN) samples were obtained 44 
from 9 pigs from 5 farms in NI. Ten percent w/v tissue homogenates were prepared 45 
and RNA was extracted using standard methods. A previously described primer set 46 
[13] was used to amplify a 780 bp PCR product containing the complete ORF5 gene 47 
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of PRRSV and resultant amplicons were sequenced commercially. Raw sequence 48 
reads were analysed and trimmed using Geneious version 6 [14]. Clustal W was used 49 
to align the NI nucleotide sequences with a selection of chronologically and 50 
geographically varied wildtype PRRSV type 1 isolates from subtypes 1-4 as well as 51 
MLV sequences from GenBank. Phylogenetic trees were generated using the 52 
neighbour-joining method [15] in MEGA 6 [16] with 1000 iterations for 53 
bootstrapping.  Predicted protein sequences were also aligned using Clustal W. The 54 
sequences of the predicted GP5 proteins were searched for motifs associated with N-55 
linked glycosylation [17] and a previously described neutralising epitope [18, 19].   56 

All field isolates from NI were analysed and confirmed as type 1, subtype 1 PRRSV 57 
isolates by sequencing and BLASTn analysis. Comparison of aligned sequences 58 
showed the expected high degree of variability among sequences (Table 1). Analysis 59 
of nucleotide sequences from NI isolates showed 87.62-92.2% similarity between 60 
farms. Within farms there was a high level of sequence conservation (99.5-100%).   61 

Nucleotide sequence homology between NI strains and selected European sequences 62 
ranged from 76.2% (subtype 2) to 92.7% (subtype 1). The NI strains were all subtype 63 
1 and had between 82.5% and 92.7% similarity with the other sequences in this 64 
subtype. Nucleotide similarity was lower between the NI sequences and other 65 
European subtypes (76.2-80% with subtype 2, 79.2-83.5% with subtype 3 and 77.6 -66 
82.1% with subtype 4). NI sequences were also compared to the ORF5 sequences of 4 67 
commercially available PRRSV MLV vaccines. Sequence comparison showed 68 
nucleotide homology ranging from 84.7-92.9%. The majority of NI PRRSV isolates 69 
were collected in 2015 (8 sequences from 4 farms) and these clustered together as a 70 
distinct subtype 1 subgroup on the phylogenetic tree as part of a larger subgroup 71 
(Figure 1). One sequence from farm 13320-12 collected in 2012 clustered with UK 72 
and North American strains, most closely clustering with EuroPRSSV (Accession no. 73 
AY366525) [20].  74 

The predicted proteins were 201 amino acids in length for all NI sequences, with 75 
homology ranging from 74.1-100% with the other international sequences (Table 1), 76 
reflecting the differences evident at the nucleotide level. NI PRRSV protein sequences 77 
were 81.6-91.5% identical to vaccine strains. 78 

The presence of a neutralisation epitope located in the N-terminus of the GP5 79 
ectodomain was observed between residues 29-35 (WSFADGN) (Fig. 2), as 80 
previously described [19]. The MLV vaccine-derived sequences and 3 other subtype 1 81 
sequences had a slightly different motif of WSFVDGN. Interestingly, the 2 NI 82 
sequences from farm 1776-15 had differences in the neutralisation epitope at residues 83 
30 and 35, resulting in a motif of WPFADGA. All ORF5 sequences displayed 3 84 
potential N-linked glycosylation sites, at residues 37-39 (Asn-Ser-Ser), 46-48 (Asn-85 
Leu-Ser) and 53-55 (Asn-Gly-Thr). One NI sequence from farm 5612-15 displayed an 86 
additional N-linked glycosylation site at residues 38-40 (Asn-Ser-Thr), which 87 
overlapped with the sequon at residues 37-39 to contain the sequence Asn-Asn-Ser-88 
Thr.  89 

ORF5 was targeted for phylogenetic analysis as it encodes the most variable structural 90 
protein, GP5 [13, 21]. GP5 is also the major target for virus neutralising antibodies 91 
[22] and, as such, is important in relation to protection derived from previous 92 
infection or vaccination. Alignment of the complete ORF5 sequences revealed 93 
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nucleotide homology ranging from 87.6-100% between NI field strains. The 94 
difference in homology between these virus strains is consistent with the genetic 95 
diversity previously reported for PRRSV isolates in the United Kingdom [23], Italy 96 
[13], Denmark [24], the United States [6], China [25] and Poland [26].  Phylogenetic 97 
analyses confirmed that all NI PRRSV isolates are of the European genotype, and 98 
placed the 2015 NI sequences into a distinct cluster within this group (Fig. 1). As 99 
expected, virus sequences from the same farms were closely related.  100 

Interestingly, sequence diversity was observed between the ORF5 nucleotide and 101 
predicted protein sequences of circulating NI isolates and those of MLV vaccine 102 
sequences. MLV vaccines are capable of reducing the clinical signs associated with 103 
PRRSV infection, as well as viremia and viral shedding [27]. However, the efficacy 104 
of commercially available PRRSV type 1 MLV vaccines is variable and is 105 
characterised by a delayed neutralising antibody response [28]. Importantly, the 106 
genetic diversity of circulating strains may result in diminished protection afforded by 107 
the vaccines. For example, in vaccine efficacy studies, vaccination of pigs with MLV 108 
vaccine resulted in only partial protection against challenge with a heterologous East 109 
European PRRSV type 1 subtype 3 strain (Lena strain) [29]. The ORF5 of the Lena 110 
sequence was found to be 88% identical to the MLV vaccine at the protein level. The 111 
levels of amino acid homology between NI isolates was as low as 81.6% (farm 112 
13320-12). It is not known what level of protection would be provided by MLV 113 
vaccines against this Northern Irish field isolate. However, such large differences may 114 
have a significant impact on vaccine efficacy. Consequently, continued monitoring of 115 
local PRRSV sequence variation is necessary. Nonetheless, vaccination against 116 
PRRSV with MLV vaccines remains one of the most important tools for control of the 117 
virus.   118 

Changes in neutralising epitopes were shown to alter the effectiveness of neutralising 119 
antibodies [30]. A number of studies have described neutralisation epitopes in type 2 120 
PRRSV [18, 31]. While the putative neutralising epitopes have not been as well 121 
documented for type 1 PRRSV we explored one epitope situated between residues 29-122 
35 [19, 22]. The NI isolates from farm 1776-15 had mutations in amino acids in this 123 
neutralisation epitope compared to the majority of subtype 1 strains and the vaccine 124 
sequences. This suggests that vaccine efficacy may be compromised in NI. However, 125 
further studies are evidently required to determine the significance of these amino 126 
acid changes on vaccine efficacy.  127 

As well as resulting in variation in neutralising epitopes, genetic variation can lead to 128 
changes in N-linked glycosylation sites and this can have an effect on the recognition 129 
of the neutralisation epitope [32]. Three potential N-linked glycosylation sites were 130 
identified in the GP5 ectodomain of NI PRRSV strains at residues 37-39, 46-48 and 131 
53-55. This is consistent with Pesente et al. [13] and Frossard et al. [23], who 132 
identified the same predicted glycosylation sites on the GP5 protein of Italian and 133 
British PRRSV isolates, respectively. Interestingly, in one NI PRRSV strain an 134 
additional N-linked glycosylation site that overlapped with the sequon present at 135 
residue 37 was identified. Glycosylation of the viral envelope protein is a mechanism 136 
for immune evasion and several studies demonstrated a role for PRRSV GP5 137 
glycosylation modification in evading host immune responses [33, 34]. Indeed, 138 
removal of N-glycosylation sites surrounding the neutralisation epitope of PRRSV 139 
GP5 resulted in increased sensitivity to neutralising antibodies [33] and convalescent-140 
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phase serum [17]. Consistent with the NI strains, the majority of subtype 1 sequences 141 
studied had predicted N-glycosylation sites at residues 37-39, 46-48 and 53-55.  142 
Importantly, all but one of the MLV vaccine strains (Porcilis) had no predicted N-143 
glycosylation at residues 37-39, suggesting that the neutralising epitope may be more 144 
immunogenic for these vaccine strains. The presence of N-glycosylation at this site in 145 
the NI field isolates could compromise the immunity provided by the vaccines. 146 

In conclusion, despite the genetic diversity observed between NI PRRSV isolates, 147 
these strains mostly clustered together in a distinct group within the European 148 
genotype. These data demonstrated relatively high genetic variability among PRRSV 149 
strains in NI and this variability poses significant challenges to the control of PRRS 150 
through vaccination. The geographical isolation of the island of Ireland may be a 151 
positive factor in terms of prevention of the introduction of diverse strains of PRRSV. 152 
However, the diversity between Northern Irish PRRSV strains evident in this study 153 
suggests that a more in depth surveillance on an all-island basis will be important in 154 
understanding, and locally controlling, PRRSV disease in Ireland.   155 
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 273 
Legends 274 
Fig. 1 Neighbour-joining phylogenetic tree based on complete PRRSV ORF5 275 
nucleotide sequences. Scale bar indicates an evolutionary distance of 10.0 nucleotides 276 
per position in the sequences.  Sequences from the Northern Irish strains from this 277 
study are in blue, while MLV vaccine sequences are in red. Tree is rooted with VR-278 
2332 type 2 PRRSV sequence. 279 
 280 
Fig. 2 Alignment of the predicted amino acid sequence of the PRRSV GP5 protein of 281 
the Northern Irish strains and selected European and vaccine strains. Three potential 282 
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N-linked glycosylation sites are denoted with an arrow (↓) and the neutralisation 283 
epitope (WSFADGN) is highlighted by a box.  284  1 
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Table 1. The minimum and maximum percentage homologies of PRRSV ORF5 

nucleotide and protein sequences. Comparisons were within and between Northern 

Ireland farms, between Northern Ireland sequences and type 1 PRRSV subtypes (1 – 

4) and between Northern Ireland sequences and selected MLV vaccine sequences. 

 

 

ORF5 sequences 

compared 

Minimum 

nucleotide 

homology 

Maximum 

nucleotide 

homology 

Minimum 

protein 

homology 

Maximum 

protein 

homology 

NI – NI (between 

farms) 
87.6 92.2 84.1 93.5 

NI – NI (within farms) 99.5 100 99 100 

NI – Subtype 1  82.5 92.7 82.1 92.5 

NI – Subtype 2 76.2 80 74.1 82.6 

NI – Subtype 3  79.2 83.5 75.6 86.1 

NI – Subtype 4 77.6 82.1 77.6 85.3 

NI – Porcilis PRRS 

MLV 
90.3 92.9 87.6 91.5 

NI – Pyrsvac-183  87.3 89.8 83.6 90.1 

NI – UNISTRAIN 

PRRS 
87.6 89.9 85.1 91 

NI – Ingelvac 

PRRSFLEX 
84.7 88.1 81.6 87.6 

Table




